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Abstract: The scattering of X-ray ultrashort pulses (USPs) is an important aspect of the diffraction
analysis of matter using modern USP sources. The theoretical basis, which considers the specifics
of the interaction of ultrashort pulses with complex polyatomic structures, is currently not well
developed. In general, research is focused on the specifics of the interaction of ultrashort pulses with
simple systems—these are atoms and simple molecules. In this work, a theory of scattering of X-ray
ultrashort pulses by complex polyatomic structures is developed, considering the specifics of the
interaction of ultrashort pulses with such a substance. The obtained expressions have a rather simple
analytical form, which allows them to be used in diffraction analysis. As an example, it is shown
that the obtained expressions can be used to study the structures of deoxyribonucleic (DNA) and
ribonucleic (RNA) acids.

Keywords: atoms; complex molecules; polyatomic structures; X-ray pulse; ultrashort pulse; scattering;
X-ray diffraction analysis; DNA; RNA

1. Introduction

X-ray ultrashort pulse (USP) scattering is the basis of X-ray diffraction analysis
(XRD) [1–4]. In turn, XRD is one of the most important methods to study the structure
and properties of matter. The structures of most crystals and many molecules have been
determined using this method and underlie many modern discoveries in physics, chemistry,
biology, medicine, and crystallography, such as [2]. Currently, XRD has many directions,
which are complemented and expanded due to the creation of new types of radiation
sources, increased power and decreased duration of ultra-short pulses, etc. [5–9].

Particular attention is now focused on ultrashort pulse physics [5,8,9]. Using such
USPs, it is possible to conduct research on the structure of matter with high temporal and
spatial resolution. This is even more so now that there is the technical possibility to conduct
such studies. One of the most promising sources of USPs are free-electron XFELs [10].
At present, the formation of attosecond pulses is reported due to improvements in X-ray
free-electron lasers techniques [11,12].

Researchers also reached the subfemtosecond barrier with high peak power, which al-
lows the study of excitation in the molecular system and the movements of valence electrons
with high temporal and spatial resolution, for example [13]. Due to the creation of high-
power USP sources, there is a need for new theoretical approaches that take into account
the specifics of the interactions of such USPs with complex polyatomic structures [6,14].

The theory of X-ray diffraction is typically constructed in the approximation of plane
wave scattering of infinite time duration [15]. The scattering processes of femto- and
particularly attosecond pulses on such structures have not been sufficiently studied and are
actively developed in our time [6,16–25]. Usually such theories consider simple systems,
such as atoms, simple molecules, model systems, systems of one-part atoms, etc. A simple
theory that considers the specificity of X-ray scattering on complex polyatomic structures
currently does not exist.
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In the present paper, such a theory, obtained on the basis of the sudden perturbation
approximation, will be presented. The results will have a simple analytical form and
can be applied to calculations of scattering spectra for complex polyatomic structures.
As an example, the case of scattering of X-ray USP on nucleotides (adenine, guanine,
cytosine, thymine), which are the basis of deoxyribonucleic acid (DNA), is considered. It is
shown that the scattering spectra are sensitive to spatial changes in the position of atoms
in nucleotide structures. The results obtained can be easily extended to more complex
structures, including deoxyribonucleic (DNA) and ribonucleic (RNA) acids.

Next, we will use the atomic system of units: h̄ = 1; |e| = 1; me = 1, where h̄ is the Dirac
constant, e is the electron charge, and me is the electron mass.

2. Scattering of X-ray Ultrashort Pulses

We will assume that the USP falls in the direction of n0 onto a complex polyatomic
structure. We will assume that the time duration of such a pulse τ is much shorter than the
characteristic atomic time τa ∼ 1, i.e., let us assume that τ � τa. This will allow us to use
the sudden perturbation approximation. In this approximation, the eigen Hamiltonian of
the system can be neglected, since the electron in the atom does not have time to evolve
under the action of the USP field because the momentum interaction with the electron in
the [26] atom is too fast.

It should be added that the condition τ � τa to use our approximation is not strict. In
the case of X-ray USPs, as was shown in [22,26], it is sufficient to assume that ω0τa � 1,
where ω0 is the carrier frequency of the incident USP. Let us choose the electromagnetic field
strength of USP in general form E(r, t) = E0h(t− n0r/c), i.e., we will consider spatially
inhomogeneity, where E0 is the field amplitude, and h(t− n0r/c) is an arbitrary function
specifying the form of USP, c is the speed of light (in a.u. c ≈ 137). In [26], when solving
the Dirac equation, the wave function of the electron in the USP field with strength E(r, t)
was found, which we will use.

We will consider the fields not so strong as to account for the magnetic field of the USP,
i.e., we will assume that E0/c2 � 1 or in units of intensity I� 1025 W/cm2. In this case, as
shown in [26], the wave function of a complex multi-electron system can be represented as

Ψ(t) = ϕ0({ra})e
−∑

a
i
∫ t
−∞ E(ra ,t′)radt′

, (1)

where ∑a is the summation over all electrons in a complex polyatomic structures, ϕ0({ra})
is the initial wave function of all electrons in such a system.

To calculate the basic scattering characteristics, we will use the quantum theory of
USP scattering, in which there are no restrictions on the number of atoms in the system [20].
In this theory, general expressions for calculations of the main scattering characteristics are
derived. As a result, using Equation (1) and the theory in [20], we obtain an expression to
calculate the scattering energy ε per unit solid angle Ωk (k = ω

c n, where n is the direction
of the scattered pulse) in the unit frequency interval ω (hereafter the spectrum)

d2ε

dΩkdω
=

[E0n]2

(2π)2
|h̃(ω)|2

c3 〈ϕ0 | ∑
a,a′

e−ip(ra−r
a′
) | ϕ0〉, (2)

where h̃(ω) =
+∞∫
−∞

h(η)eiωηdη, and p = ω
c (n− n0) has the meaning of recoil momentum

when a USP is scattered on a bound electron. In Equation (2), the USP scattering spectrum
is represented as an average over the ground state of a complex polyatomic system. To
calculate the mean in Equation (2), one must know the wave function of the polyatomic
structures and perform a multidimensional integration. It is clear that this problem cannot
be solved directly for complex systems even considering modern computational power.

This problem can be solved using the electron density of an atom and considering
complex polyatomic structures consisting of separate isolated atoms, i.e., using the model
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of independent atoms, see for example [22]. Dividing Equation (2) by two, where the first
term corresponds to the summation at a = a

′
and the second term at a 6= a

′
, we obtain

d2ε

dΩkdω
=

[E0n]2

(2π)2
|h̃(ω)|2

c3

[
A

∑
i=1

Ne,i NA,i(1− |Fi|2) +
A

∑
i,j=1

δi,jNe,i Ne,jFiF∗j

]
(3)

where Ne,i is the number of electrons in the atom i variety; NA,i is the number of atoms i vari-
ety; A is the number of varieties of atoms; and Fi =

1
Ne,i

∫
ρe,i(r)e−iprd3r is the form factor of

the i atom of the variety with electron density ρe,i(r). The factor δi,j = ∑Ai,A′ j e
−ip(RAi−R

A′ j
)

depends only on the coordinates of atoms i of the variety (with number Ai) whose position
is determined by the radius vector RAi. Equation (3) is analytic, which contributes to a
fairly simple calculation of the spectra. The main difficulty in the calculation is determined
by the factor δi,j, as, for complex systems, it is difficult to find an analytical expression for
this.

This factor determines the interference, and, only in this factor, the coordinates of
atoms in a complex polyatomic structures are concentrated. For fairly simple systems
consisting of a single variety of atoms, such a factor has been found for many carbon
systems [21,22]: graphene, nanotube, atomic rings, “forests” of nanotubes, etc. Equation (3)
considers both coherent USP scattering (second term) and incoherent scattering (first term).

In the general case, the predominance of the coherent over the incoherent factor is
determined by many factors. If the USP is multicycle, i.e., τω0 � 1 (τ is the pulse duration,
ω0 is the carrier frequency of the USP), then scattering occurs at the frequency ω → ω0. In
this case, coherent scattering dominates over incoherent scattering at λ0 � 1. In the case
of multi-cycle USP, the predominance of the incoherent term over the coherent one, the
problem is determined not only by the condition λ0 � 1 but also by the number of atoms
in the system in question. In the case of low-cycle and sub-cycle pulses, it is necessary
to consider a particular polyatomic structures and the form of the USP to determine the
predominance of coherent over non coherent; this cannot be done in a general form.

If the polyatomic structure has a certain symmetry or periodicity, it is reflected only in
the δi,j factor. For polyatomic systems, it is difficult to analyze and calculate the scattering
spectra during the numerical calculation of Equation (3). In order to make the calculation
and analysis simple, it is necessary for polyatomic structures with a certain symmetry and
periodicity to represent the factor δi,j in the analytical form. In general, for such systems,
the factor δi,j can be represented as

δi,j =
s

∑
α=1

Nα

∑
nα=0

eipRnα ∑
Ai∈Rα,1

eipRAi

s

∑
β=1

Nβ

∑
nβ=0

e−ipRnβ ∑
Aj∈Rβ,1

e
−ipRAj , (4)

where α or β is some symmetry in the system, s is the number of symmetries in the system,
Rnα or Rnβ

is the radius vector that sets the symmetry position α or β respectively, Nα is
the number of translations with a given symmetry, RAi is the radius vector specifying the
position of the atoms of variety i within the region Rα,1 (analogously RAj ), see Figure 1.

The importance of Equation (4) is determined by the fact that it is not necessary to
calculate numerically the parameter δi,j by summing up all positions of atoms in space.
It is sufficient to determine the symmetry of the object under study and find the sum
∑Nα

nα=0 eipRnα in analytical form. The sum ∑Ai∈Rα,1
eipRAi can be found analytically if there is

symmetry inside the region Aj ∈ Rα,1 or numerically, where summation is sufficient only
in the region Rα,1.

For example, in the simplest case of a one-atom cubic lattice: s = α = 1, i = j =

const = 1, ∑Ai∈Rα,1
eipRAi = eipRA1 , since the atom within the symmetry is alone. As a result,

for this case, the factor δ1,1 =
∣∣∑Nα

nα=0 eipRnα
∣∣2, which is well known [21] and calculated in a

simple analytical form.
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...

Figure 1. Schematic representation of the main parameters included in the factor δi,j calculated by
the Equation (4). Multicolored circles are atoms; one color specifies a certain kind of atoms. If the
arrangement of atoms in the system is repeated—first, second, etc. up to Nα large circles, this sets the
symmetry α, and R1, R2, . . . Rnα , . . . , RNα

are radius vectors setting the position of 1, 2, . . . , nα, . . . , Nα

large circles. For example, the symmetry with α = 1 is represented in this figure, and with α = 2
the location, color, number of circles inside the big circle, number of big circles, and Rn2 would
be different.

3. Scattering on DNA Nucleotides

The study of scattering on various polyatomic structures is a separate scientific task.
The most interesting systems may be deoxyribonucleic (DNA) and ribonucleic (RNA) acids.
Consider, for example, the DNA molecule. This molecule is based on nucleotides: adenine,
guanine, cytosine, thymine. Each of the nucleotides is repeated in the DNA molecule, which
means there is a symmetry that can be calculated in the factor δi,j. The most interesting
thing is that this symmetry can be modified by modeling the contraction, stretching or
twisting of the DNA molecule.

The change in symmetry, and the symmetry itself, should be reflected in the scattering
spectra calculated from Equation (3). In any case, knowledge of the scattering spectra
on individual nucleotides is necessary when scattering a USP on such a molecule. Here,
we will present such calculations. Let us calculate the scattering spectra on the following
nucleotides separately: adenine, guanine, thymine, and cytosine. In this case, we need

to find the factor δi,j, with s = 1, Nα = 1, then δi,j = ∑Ai∈R1,1
eipRAi ∑Aj∈R1,1

e
−ipRAj . These

nucleotides are non-periodic and asymmetric systems, and thus the calculation of the
scattering spectrum will be conducted directly by substituting the coordinates of the atoms
in the nucleotide into the factor δi,j.

To calculate scattering spectra, we will use the model of independent atoms [27], in
which molecules are represented by independent isolated atoms. The electron density of
such atoms ρe,i(r) =

Ne,i
4πr ∑3

k=1 Ak,iα
2
k,ie
−αk,ir, where Ak,i, αk,i are constant coefficients (for all

varieties of atoms with number i) defined in [27]. The result is a simple expression for Fi =

∑3
k=1

Ak,iα
2
k,i

p2+α2
k,i

. Next, we need to determine the form of the incident USP, which we choose as

a Gaussian form h(t) = e−γ2(t−n0r/c)2
cos(ω0t− k0r), where γ ∝ 1/τ, k0 = n0ω0/c.

The Gaussian momentum is chosen as one of the best known for describing USP. For
example, in [28] an exact description of the subcyclic pulse beam (SCPB) was found, where,
in the case considered in this paper (ω0/γ� 1), the solution has the form of a Gaussian
pulse. In the chosen USP case, we obtain h̃(ω) =

√
π

2γ

(
e−(ω−ω0)

2/4γ2
+ e−(ω+ω0)

2/4γ2
)

.
Consider the case of multi-cycle momentum, i.e., when ω0/γ� 1, which is mainly used in
diffraction analysis of matter. Using the expression (3), we obtain

dε

dΩk
=

[E0n]2

8c3γ
√

2π

[
A

∑
i=1

Ne,i NA,i(1− |Fi|2) +
A

∑
i,j=1

δi,jNe,jFiF∗j

]
(5)

The expression in square brackets in (5) differs from the same in (3) only in that you
have to replace ω → ω0. In other words, the scattering is at the incident pulse frequency ω0.
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Next, we carry out calculations of the scattering of the USP on nucleotides using the
resulting Equation (5). The Figures 2–5 show the results of the USP scattering calculations
on nucleotides: adenine, see Figure 2; guanine, see Figure 3; thymine, see Figure 4; cytosine,
see Figure 5. The calculation results in all figures are normalized to the maximum value of
the scattering spectrum.

The value ω0 = 2c, which corresponds to the photon energy h̄ω0 = 7.46 keV. The
choice of the USP intensity value I ∝ E2

0 and the duration γ do not affect the spatial distribu-
tion of the scattering intensity; therefore, these parameters may not be set (considering the
chosen normalization to the maximum value of the scattering spectrum). From Figure 2,
we can see that there is one main diffraction peak at scattering and many smaller ones. All
in all, we can distinguish four small peaks that dominate the others. In Figure 3, there is
also one main diffraction peak at scattering and many smaller ones. In general, three small
peaks can be distinguished, which dominate the others.

In Figure 4, there is also one main diffraction peak at scattering and many smaller ones.
In general, we can distinguish three small peaks that dominate the others, although these
three peaks dominate insignificantly. In Figure 5, there is also one main diffraction peak at
scattering and many smaller ones. In general, it is not possible to distinguish small peaks
that clearly dominate the others. The directions of the smaller peaks in all of the figures
are complex and are set by the spatial arrangement of the atoms in a given molecule. The
arrangement of the small peaks is asymmetric, which is due to the asymmetric arrangement
of the atoms in the nucleotides. One can also see that, in general, the direction and size of
most of the scattered peaks are located in the direction of the incident pulse.

adenine z

USP

0.0 0.1

Figure 2. The spectra of USP scattering on adenine are presented. The direction of incidence of the
USP corresponds to the representation in the figure and is perpendicular to the z axis. A contour
plot of the normalized scattering spectrum is shown on the bottom left, and a 3D spatial scattering
spectrum with a clipping from the region where the scattering is most diverse is shown on the
bottom right.
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z

 USP

guanine

0.0 0.1

Figure 3. The spectra of USP scattering on guanine are presented. The rest is similar to Figure 2.

z

 USP

Timin

0.0 0.1

Figure 4. The spectra of USP scattering on thymine are represented. The rest is similar to Figure 2.
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z

 USP

Cytosine

0.0 0.1

Figure 5. The scattering spectra of USP on cytosine are presented. The rest is similar to Figure 2.

4. Discussion and Conclusions

Thus, we obtained a general Equation (3) for calculations of scattering spectra of USP
on complex polyatomic structures. The main value responsible for the spatial arrange-
ment of atoms in the system is determined by the parameter δi,j, which is calculated by
Equation (4). In the case of multi-cycle USP, Equation (3) can be represented as (5). The
obtained expressions have an analytical form, which greatly simplifies the calculations and
the interpretation of the results obtained. As examples, we considered scattering on DNA
nucleotides: adenine, guanine, thymine, and cytosine.

Scattering on nucleotides has its own diffraction pattern by which one can judge the
structure of a nucleotide. The results obtained have good prospects for the further investi-
gation of scattering spectra of complex polyatomic structures, including those for complex
biomolecules. These biomolecules include high molecular weight organic substances, for
example, proteins, etc. Indeed, proteins consist of alpha-amino acids linked in a chain by
peptide bonds, which makes it possible to reveal a certain pattern and find the δi,j factor.
Such complex structures include various modern composite materials and nanostructures.

Of particular interest is the study of promising materials for quantum technologies,
for example, quantum bits at room temperature in two- and three-dimensional solids.
The resulting Equation (3) is more general and relative to the well-known expression in
diffraction analysis theory [6]. Equation (3) takes into account the characteristics of the
USP: its duration and shape, as well as the incoherent part in the scattering spectrum. From
Equation (3) in the frequent case, we can obtain the well-known expression in diffraction
analysis if we do not take into account the incoherent part in the scattering spectrum and if
we consider the duration of the USP to be infinitely long, so that the condition ω0/γ� 1 is
satisfied—i.e., the pulse must be multicyclic.

It is necessary to use Equation (3) for systems consisting of a small number of atoms,
since the incoherent part in the scattering spectrum makes a significant contribution. This
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is easily shown using Equation (5) at λ0 � 1, and then
(

dε
dΩk

)
max
∼ Ne + N2

e (λ0/a)4,
where a ∼ 1, and Ne is the total number of electrons in the polyatomic structures. This
is an important refinement because the incoherent part in the scattering spectra of X-ray
USPs is usually not taken into account. For polyatomic structures and low-cycle USPs,
the contributions of the incoherent and coherent components may also be comparable.
In general, Equation (3) should always be used for low-cycle pulses, since the shape and
duration of the pulse are important.
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