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Creep Behavior of Passive Bovine Extraocular Muscle
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This paper characterized bovine extraocular muscles (EOMs) using creep, which represents long-term stretching induced by a
constant force. After preliminary optimization of testing conditions, 20 fresh EOM samples were subjected to four different loading
rates of 1.67, 3.33, 8.33, and 16.67%/s, after which creep was observed for 1,500s. A published quasilinear viscoelastic (QLV)
relaxation function was transformed to a creep function that was compared with data. Repeatable creep was observed for each
loading rate and was similar among all six anatomical EOMs. The mean creep coefficient after 1,500 seconds for a wide range of
initial loading rates was at 1.37 = 0.03 (standard deviation, SD). The creep function derived from the relaxation-based QLV model
agreed with observed creep to within 2.7% following 16.67%/s ramp loading. Measured creep agrees closely with a derived QLV
model of EOM relaxation, validating a previous QLV model for characterization of EOM biomechanics.

1. Introduction

Since strabismus surgery manipulates extraocular muscles
(EOMs) mechanically to correct binocular misalignment,
accurate determination of quasistatic biomechanical proper-
ties of EOMs may be important. Classical studies investigated
the uniaxial force and length relationship for EOMs [1-4].
More recently, comprehensive biomechanical methods have
been employed to characterize constitutive models [5] for
EOM:s, representing their viscoelastic, or history-dependent
relationship between stress and strain [6, 7]. Several impor-
tant mechanical behaviors reflect viscoelasticity: hysteresis,
relaxation, attenuation of acoustic waves, and creep.
Hysteresis is history dependent variation in mechanical
behavior, resulting in differences in stress between loading
and unloading phases. Hysteresis implies work, energy dis-
sipation due to loading and unloading [5, 8, 9]. Relaxation
describes how a material deformed by external perturbation
returns to equilibrium. In stress relaxation testing, a material
is rapidly subjected to displacement and then maintained
over an extended time interval at the same displacement by

external feedback while a decline in required external force is
observed [6, 10—13].

Creep is the tendency of a material to deform perma-
nently under constant force. To characterize creep, tensile
loading is rapidly imposed and maintained at a constant
level while specimen elongation is observed over an extended
time [13, 14]. Creep is likely to be particularly significant
in binocular alignment and strabismus, where agonist and
antagonist EOMs remain under loading for extended time
periods, and where such loading is purposely altered by, for
example, strabismus surgery that alters EOM tension.

While viscoelastic properties have often been neglected
in interpretation of conventional EOM length-tension data,
realistic constitutive modeling is essential for accurate finite
element models (FEMs) that graphically simulate interac-
tions of EOMs with orbital connective tissues. Supporting
this contention, Quaia et al. [7] and our previous investiga-
tion [6] highlighted the need for valid constitutive models of
EOMs in application of quasilinear viscoelastic (QLV) theory
to constitutive modeling.
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Linear elasticity theory is well established for strains of
<3% in generic materials. Soft tissues generally, however,
undergo larger physiological strains in the range of tens
of percent where behavior becomes nonlinear. Modeling of
EOMs should consider the hyperelastic nature of soft tissue,
which means that it is highly nonlinearly elastic [12, 15—
20] Fung’s QLV theory [5, 21-23] is appropriate because it
incorporates both linear viscoelastic and nonlinear elastic
characteristics. We previously reported that a QLV model
based upon in vitro relaxation data was effective in describing
mechanical behavior of passive bovine EOMs [6].

Quaia et al. found limitations in QLV describing con-
stitutive properties of in vivo simian EOMs at short-time
scale and proposed a modification that they termed adaptive
quasilinear viscoelasticity (AQLV) [7]. Although AQLV was
superior to QLV in describing EOM properties relevant to
the most rapid eye movements (saccades), the approach is
computationally intensive and requires extensive data collec-
tion that would limit its practicality for FEM. We supposed
that the simpler QLV formulation might be adequate to
quasistatic, passive behavior of EOMs relevant in binocular
alignment and strabismus.

Since the EOMs are not contracting when under tensile
loading, we emulated a previous study with the assumption
that absence of perfusion and innervation would not strongly
influence constitutive properties [6]. By investigating EOM
creep, we aimed to extend understanding of their time-
dependent stress-strain behavior and to validate the previ-
ously reported relaxation-based QLV model applicable to
FEM [6].

2. Methods

The approach was similar to that previously published [6].
The EOM specimens prepared from heads of cattle freshly
slaughtered for food. The total time from slaughter to me-
chanical testing ranged from 3 to 4 hours. During the prep-
aration of specimens, the tissues were constantly irrigated
with lactated Ringer solution, which was kept at 37°C, to
prevent any dehydration. The EOM specimens were cut into
2~3cm long rectangular prisms (length of actual bovine
EOMs) having 2mm X 2mm cross-section. Actual test
length of each specimen was 10 mm, with <5mm on both
ends that was clamped on the load cell, excluding the termi-
nal tendon. As in the previous study, a tabletop microtensile
load cell, Instron model 4411 (Instron, Norwood, Mass,
Series IX software) was enclosed in a plastic chamber where
warm water vapor and radiant heat maintained physiologic
97% humidity and 37°C temperature as indicated by a
sensor (Fisher Scientific, Chino, Calif). Preconditioning was
omitted because a previous investigation of passive EOM
relaxation properties demonstrated that preconditioning did
not influence results [6]. For both creep testing and prelimi-
nary experiments to optimize the testing parameters, total of
60 EOM specimens from 8 different bovine orbits were used.

2.1. Creep Testing. We determined the reduced creep (e(¢)/
€(0)). In ideal creep testing, an initial tensile force should be
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imposed on the specimen instantaneously and then main-
tained at a constant level for an extended time [5, 13]. Since
instantaneous imposition of tensile force is physically impos-
sible, tensile force is rapidly increased at a constant ramp
rate to a level that is subsequently maintained. Based upon
tensile-loading results [6], we selected 0.2 N, which produces
30% strain that is well within the linear range, as an ap-
propriate ramp force. Although the maximum loading rate
of the load cell was 550 mm/min, it was necessary to limit
the rate to 100 mm/min to maintain stable force feedback.
Therefore, all the creep tests were performed at the following
four rates: 10, 20, 50, and 100 mm/min, equivalent to 1.67,
3.33, 8.33, and 16.67%/s, respectively. After the initial load-
ing of 0.2 N was imposed, this force was then maintained by
the load cell’s feedback servo for 1,500 s during recording of
specimen length.

2.2. Fung’s Quasilinear Viscoelasticity Theory. It represents
stress as a function of strain and time. In stress relaxation
testing, strain is held constant and the stress declines as a
function of time alone:

o(t) = 6oG(t), (1)

where G(t) is the time dependent reduced relaxation func-
tion with G(0) = 1, and oy is initial stress. Similarly, for
static creep in which stress is held constant, strain varies as
a function of time alone:

£(t) = gJ(1), (2)

where J(t) is the time dependent reduced creep function with
J(0) = 1 and & is the initial strain. For linear viscoelasticity
[5], which is a special case of the more general QLV theory
[24], time-varying stress relaxation function G(t) and creep
function J(t) should be related as follows:

1
. (3)
G(o) = W>
or
1
G(s)J(s) = & (4)

where G(s) and J(s) are Laplace transforms of the functions
G(t) and J(t), respectively. A nonlinear least square method
was used in previous study fit the stress relaxation data,
determining constants a, b, ¢, d, g, and h [6]:

G(t) = ael ™™ + cel "4V 4 gelht), (5)

Using the Laplace transform of the stress relaxation function
and (4), a predicted creep function for EOM was determined
using MatLab (The Mathworks Inc, Natick, Mass, USA).

3. Results and Discussion

As is typical for creep testing generally [5, 24, 25], a
logarithmically increasing displacement was observed after
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FIGURE 1: Mean normalized displacement J () plotted for two specimens each of the six bovine EOMs in both linear and semi-log scales. All

EOMs exhibited similar creep to 1.34 + 0.02 (SD) maximum.

initial ramp loading of each specimen, without asymptote.
Data were plotted as normalized displacement J(¢), the ratio
of instantaneous specimen length to initial length.

3.1. Creep for Each Anatomical EOM. Although relaxation
and tensile properties were similar among the four rectus
and both oblique bovine EOMs in the previous study [6],
preliminary experiments were conducted on two specimens
of each of the six EOMs to determine if they exhibit similar
creep at 3.33%/s strain rate. As can be seen from Figure 1,
creep was essentially identical for all six EOMs.

3.2. Dependence of Creep on Ramp-Loading Rate. In order
to determine if EOM properties depend on initial loading,
experiments were conducted for five specimens each at four
ramp-loading rates: 1.67, 3.33, 8.33, and 16.67%/s. As an
example, Figures 2(a) and 2(b) show the force displacement
and creep plots for 0.2 N force. Since all EOMs exhibited
similar creep, differentiation of each anatomical EOM was
unnecessary.

Creep at other ramp-loading rates was similar to
Figure 2, with maximum standard deviations (SDs) for five
specimens each of 0.029, 0.056, and 0.036 for 3.33, 8.33, and
16.67%/s loading, respectively.

As seen in Figure 3, for all four initial loading rates,
creep coefficients at the end of 1,500 seconds were similar at
1.37+0.033. Despite the ultimate similarity of creep behavior,
the linear part of each curve under initial loading steepened
as loading rate increased, and the shape of each curve varied
with loading rate (Figure 3). As loading rate decreased, the
curve showed slower elongation. Since EOM is a soft tissue,

TasBLE 1: QLV relaxation model parameters.

a 2.81
b (1/sec) 1.57
c 0.86
d (1/sec) 1.4x107*
g 0.34
h (1/sec) 1.7 x 1072

reaching a true asymptotic value during creep testing is nei-
ther practical nor theoretically necessary [5, 25]. Although
the creeping behavior exhibited by EOM after ramp loading
is used in its viscoelastic characterization, the rate-dependent
ramp behavior can also be used to understand the contri-
bution of EOM elasticity in its overall creep behavior. With
behavior of the EOM during the ramp phase being less
affected by viscosity as the loading rate is decreased, one can
optimize the loading rate for tensile testing to extract the
tensile elasticity of the EOM.

3.3. Conversion of Relaxation Function to Creep Function. All
constants in the reduced relaxation function were derived
from the published relaxation function [6] and are shown
in Table 1.

Using parameters extracted from the QLV relaxation
model, (4) in the time domain was converted to a reduced
creep function using the inverse Laplace transform function
and symbolic toolbox in Matlab, 6 constant values from
the Laplace S domain (6), and 7 constants from the time
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FIGURE 2: Mean creep for 1.67%/s loading rate for 5 EOM specimens. (a) Force versus displacement. After initial ramp loading achieved
at around 6 mm deformation, the force was held constant at 0.2 N. (b) Reduced creep coefficients over 1,500 seconds. Maximum creep

coefficient SD was 0.023.

TaBLE 2: Constants in Time and Laplace S Domain for Creep (6)
and (7).

a 2.81 C 1.6137 x 10~*
a, 1.57 G, 4.0473 x 10%
as 0.86 Cs 0.2312
a 1.4x107* Cy 1.5097 x 103
as 0.34 Cs 1.6788 x 10%
ag 1.7x 1072 Cs 0.2434

C 1.1487

domain (7) of the resulting reduced creep function are listed
in Table 2

1
J(s) = S2(a1/(s+ a2) + as/(s + as) + as/(s + as))’ (©)
J(t) = Cyp + ESRGD = Cucosh(G) (o - (o)

Cs exp(Cgt)

Since ideal initial loading is assumed instantaneous, data
obtained at higher rates of initial ramp loading should more
closely reflect ideal creep. Hence, the reduced creep function
derived from the reduced relaxation function was compared
with experimental data for the highest ramp-loading rate,
showing close agreement (Figure 4). Experimental creep
coefficient values fell within +2.7% of theoretical values for
all time points tested.

When an EOM is innervated and perfused with oxy-
genated blood, it is constantly under tension. It is important
to understand EOM creep properties for simulation of the

0 T T T T T T 1
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Time (s)
— 1.67 %ls .—.— 8.33%/s
---333%/s ... 16.67 %/s

FiGure 3: Comparison of creep at 4 different initial loading rates.
The left arrow indicates that a lower reduced creep coefficient is
reached at the end of initial ramp loading as the ramp-loading rate
increases. The right arrow indicates that a higher creep coefficient is
reached after 1500 seconds as ramp-loading rate increases.

common situation where a physiologically relaxing EOM is
still experiencing tensile force exerted by its antagonist. In
the current study, passive bovine EOM creep was investigated
within the framework of linear viscoelasticity by comparing
converted creep function from QLV model based upon stress
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FIGURE 4: Observed reduced EOM creep function, and theoretical
function derived from the reduced relaxation function.

relaxation data [6]. The current experiment varied initial
elongation rate and demonstrated excellent agreement with
the theoretical prediction based upon QLV relaxation model.
It has been suggested that initial ramp loading for creep
testing of articular cartilage should occur within 250 ms [20];
however, even over a longer time of 800 ms, the data for
bovine EOMs agreed closely with values derived from relax-
ation function.

Regardless of which anatomical rectus or oblique EOM
was tested, creep for initial ramp-loading rates from 1.67
to 16.7%/s showed similar asymptotic creep coefficients of
1.37 £ 0.03 over 1,500 s. However, dynamic creep varied with
initial strain rate. Creep coefficient J(¢) reached a higher
initial value when the loading rate was lower, but subse-
quently increased more slowly (Figure 3). It seems reasonable
to assume that each EOM specimen has the same elasticity.
It is a well-accepted notion that when solid specimen is
stretched slowly, dynamic contributions are reduced because
at low initial loading speed, elasticity predominates over
viscous effects [26-28]. With predominantly elastic effects,
less energy is dissipated than when initial loading is rapid.
Since the present models were based upon data from low
strain rates, we suggest that the QLV models derived from
these investigations are most applicable to slow eye move-
ments such as fixations and pursuit. Since loading for both
relaxation and creep tests closely approximates ideal step
loading, the relaxation and creep functions are likely to
accurately reflect EOM viscosity.

4. Conclusion

This paper validated a previously reported QLV model for
EOM relaxation. Since a reduced creep function is the
inverse Laplace transform of a reduced relaxation function,
agreement between experimental creep and the previously

published reduced relaxation function constitutes a strong
test of the relaxation-based QLV model for passive EOMs,
with experimental agreement to within +2.7% of theoretical
values. Hence, we can infer that a QLV model based upon
relaxation effectively describes the constitutive properties of
passive EOMs. The present validation of the quantitative
viscoelastic constitutive relationship for passive bovine EOM
provides better understanding of EOM biomechanics, in a
theoretical framework practical for graphical simulation of
quasistatic ocular motility using FEM.
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