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Abstract Methods for analysing correlated mutations in proteins are becoming an increasingly

powerful tool for predicting contacts within and between proteins. Nevertheless, limitations remain

due to the requirement for large multiple sequence alignments (MSA) and the fact that, in general,

only the relatively small number of top-ranking predictions are reliable. To date, methods for

analysing correlated mutations have relied exclusively on amino acid MSAs as inputs. Here, we

describe a new approach for analysing correlated mutations that is based on combined analysis of

amino acid and codon MSAs. We show that a direct contact is more likely to be present when the

correlation between the positions is strong at the amino acid level but weak at the codon level. The

performance of different methods for analysing correlated mutations in predicting contacts is shown

to be enhanced significantly when amino acid and codon data are combined.

DOI: 10.7554/eLife.08932.001

Introduction
The effects of mutations that disrupt protein structure and/or function at one site are often suppressed

by mutations that occur at other sites either in the same protein or in other proteins. Such compensatory

mutations can occur at positions that are distant from each other in space, thus, reflecting long-range

interactions in proteins (Horovitz et al., 1994; Lee et al., 2008). It has often been assumed, however,

that most compensatory mutations occur at positions that are close in space, thus motivating the

development of computational methods for identifying co-evolving positions as distance constraints in

protein structure prediction (Göbel et al., 1994). These methods, which rely on multiple sequence

alignments (MSA) of homologous proteins as inputs, will become increasingly more useful in the coming

years owing to the explosive growth in sequence data. The output of methods for correlated mutation

analysis (CMA) is a rank order of the pairs of columns in the alignment according to the statistical and/or

physical signficance attached to the correlation observed for each pair. The various methods for CMA

that have been developed in the past 15 years differ in the measures they employ for attaching

significance to the correlations (Livesay et al., 2012; de Juan et al., 2013; Mao et al., 2015). Early

measures include, for example, mutual information (MI) from information theory (Gloor et al., 2005) and

observed-minus-expected-squared (OMES) in the chi-square test (Kass and Horovitz, 2002).

Statistically significant correlations in MSAs that do not reflect interactions between residues in

contact, that is, false positives, can stem from (i) various indirect physical interactions and (ii) common

ancestry. The extent of false positives due to the latter source is manifested in the large number of

correlations between positions in non-interacting proteins that can be observed when the sequences of

non-interacting proteins from the same organism are concatanated and subjected to CMA (Noivirt

et al., 2005). Several methods for removing false positives owing to common ancestry were developed

(Pollock et al., 1999;Wollenberg and Atchley, 2000; Noivirt et al., 2005; Dunn et al., 2008) but their
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success in contact prediction using CMA remained limited. False positives due to the former source, that

is, indirect physical interactions, can occur when, for example, correlations corrersponding to positions i

and j that are in contact and positions j and k that are in contact lead to a correlation for positions i and k

that are not in contact. Methods that remove such transitive correlations have been developed in recent

years and include, for example, Direct Coupling Analysis (DCA or DI for Direct Information) (Weigt

et al., 2009;Morcos et al., 2011), Protein Sparse Inverse COVariance (PSICOV) (Jones et al., 2012) and

Gremlin’s pseudolikelihood method (Kamisetty et al., 2013). These methods have been found to be

very successful in identifying contacting residues (Marks et al., 2012) and they outperform earlier

methods (Mao et al., 2015). Nevertheless, their accuracy, which is ∼80% for the correlations in the top

0.1% (ranked by their scores), drops to ∼50% for the top 1% (Mao et al., 2015). Given that the number

of contacts in a protein with N residues is ∼N (Faure et al., 2008), it follows that for proteins with, for

example, 100 residues (i.e. with 4560 potential contacts between residues separated by at least 5

residues in the sequence) only about 25% of the contacts (i.e. 23 of the top 1% 46 predictions) will be

identified by these CMAmethods. In addition, these methods require large MSAs comprising thousands

of sequences in order to perform well and such sequence data are not always available. Consequently, it

is clear that much can be gained from further improvements in methods of CMA. Here, we describe the

development and application of a new method for CMA that uses both amino acid and codon MSAs as

inputs instead of relying exclusively on amino acid MSAs as done before. We show that contact

prediction is improved in a meaningful manner when amino acid and codon information are combined.

Results and discussion
The key premise underlying the method introduced here is that a correlation at the amino acid level

between two positions is more likely to reflect a direct interaction if the correlation at the codon level

for these positions is weak (Figure 1). In other words, it is assumed that cases of strong correlations at

eLife digest Genes contain instructions to make proteins from building blocks called amino acids.

The instructions are encoded in units called codons that each specify a single amino acid in the chain.

A small mutation in a particular codon can change the amino acid found at the corresponding position

in the protein. Some amino acids interact with other amino acids in the chain, thereby enabling the

protein to adopt the three-dimensional shape it needs to work properly. Therefore, a mutation that

affects one of these amino acids may have a large impact on the ability of the protein to work.

A mutation at one position in the protein may, however, have little effect if it is accompanied by a

‘compensatory’ mutation at another position. Such compensatory mutations are more likely to occur

when the two positions in the protein are close to each other. To identify such mutations, the amino

acid sequences of similar proteins from different organisms are aligned and compared.

A computational method called ‘correlated mutation analysis’ searches for pairs of positions in the

alignment that display co-variation, i.e. where particular mutations at one position tend to be

accompanied by certain mutations at the second position. These pairs are then ranked according to

the strength of their correlation and those with the highest ranking are predicted to be in close

contact. Such predictions are, however, far from perfect and can give false results.

Jacob et al. developed and tested a new technique of correlated mutation analysis by examining

codon sequences as well as amino acid sequences. The rationale behind the technique relies on the

fact that several different codons can encode the same amino acid, so that a mutation in a codon

does not always change the amino acid it encodes. Therefore, a strong correlation at the amino acid

level can be accompanied by a weak correlation at the codon level. In such cases the positions are

more likely to be in contact than in cases where there is a strong correlation also at the codon level

since the correlation can then be due to constraints at the DNA or RNA level.

Jacob et al. tested their approach using different methods for analyzing correlated mutations that

were proposed in previous studies. This showed that the predictions obtained using both amino acid

and codon data are significantly more accurate than those obtained by comparing amino acid

sequences only. Future work will test whether combining amino acid and codon data can also be

used to predict interactions between different proteins.

DOI: 10.7554/eLife.08932.002
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both the amino acid and codon levels for a pair of positions are less likely to reflect selection to

conserve protein contacts and more likely to reflect selection to conserve interactions involving DNA

or RNA and/or common ancestry. Given this rationale in mind, we decided to test whether contact

identification improves when all the pairs of positions are ranked using a score that increases with (i)

increasing strength of the correlation at the amino acid level and (ii) decreasing strength of the

correlation at the codon level. Such a score, Si, is given, for example, by: Si = Si
α(AA)/Si(C), where

Si(AA) and Si(C) are the scores generated by method i (e.g., MI) for the amino acid and codon

alignments, respectively, and the value of the power α is determined empirically depending on the

method (see below).

The approach outlined above was tested for the OMES (Kass and Horovitz, 2002), MI (Gloor

et al., 2005), MIp (Dunn et al., 2008) and DCA (Morcos et al., 2011) methods using 114 MSAs each

comprising at least 2000 sequences of length between 200 and 500 residues. In the case of the

PSICOV method (Jones et al., 2012), only 86 MSAs out of the 114 MSAs were used since the others

didn’t pass this method’s threshold for amino acid sequence diversity. Each MSA also included at least

one sequence with a known crystal structure at a resolution <3 Å in which at least 80% of all the

residues are resolved. The mean accuracy of contact identification was plotted as a function of the top

ranked number of predicted pairwise contacts (Figure 2—figure supplement 1) or as a function of

the top ranked fraction of protein length, L, number of predicted pairwise contacts (Figure 2).

Residues were considered as being in contact if the distance between their Cβ atoms is ≤8 Å following

the definition used in CASP experiments (Ezkurdia et al., 2009) and other studies (Kamisetty et al.,

2013; Skwark et al., 2014) (see also Figure 2—figure supplement 2). The results show that the

PSICOV and DCA methods outperform the OMES, MI and MIp methods (Figure 2) as established

Figure 1. Example of a pairwise correlation in a multiple amino acid sequence alignment and two possible

corresponding codon alignments. A correlation at the amino acid level between two positions i and j may (top left)

or may not (top right) be accompanied by a correlation at the codon level. The premise of the method introduced

here is that a correlation at the amino acid level between two positions is more likely to reflect a direct interaction if

the correlation at the codon level for these positions is weak (top right).

DOI: 10.7554/eLife.08932.003
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Figure 2. Plots of the mean accuracy of contact identification by various methods of correlated mutation analysis as

a function of the top ranked fraction of protein length, L, number of predicted pairwise contacts. The mean

accuracies of contact identification by the OMES, MI, MIp, DCA and PSICOV methods are shown either with or

without incorporating codon data. Residues were defined as being in contact if the distance between their Cβ atoms

is ≤8 Å. PSICOV* indicates that it was carried out without the APC.

DOI: 10.7554/eLife.08932.004

The following figure supplements are available for figure 2:

Figure supplement 1. Plots of the mean accuracy of contact identification by various methods of correlated

mutation analysis as a function of the top ranked number of predicted pairwise contacts.

DOI: 10.7554/eLife.08932.005

Figure 2. continued on next page
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before (Mao et al., 2015). They also show that combining amino acid and codon data leads to an

improvement in the predictions by OMES, MI, DCA and PSICOV. In the case of MIp, however, no

improvement is observed despite the fact that this method performs worse than DCA and PSICOV. In

MIp, a term called average product correction (APC) is subtracted from the MI score for each pair of

positions in order to reduce false positives. Removing this correction from PSICOV where it also exists

and including the codon data yielded the best method (Figure 2). Hence, we can conclude that there

is an overlap between the background noise reduced upon including the APC term and codon data

and that including the latter can be more advantageous as we observe for PSICOV.

The extent of improvement increases with increasing values of the power α until a maximum is

reached (Figure 3A) at a value of α that depends on the method used and different values of αmax

were, therefore, chosen accordingly. Cross-validation by dividing the MSA data into training and test

sets showed that the values of αmax are stable, that is, they do not vary depending on the set of MSAs

(Figure 3—figure supplement 1). Given these values of α max, the significance of the extent of

improvement was assessed by comparing for each MSA the accuracy of the contact predictions using

the different methods with and without incorporating codon data. Significance levels were

determined using two non-parametric tests: (i) the Wilcoxon signed-rank test, which takes into

account both the number of MSAs for which the accuracy of the contact predictions increases upon

incorporating codon data (e.g., 81 in the case of DCA) and the magnitude of the improvement; and (ii)

the sign test, which only considers the number of MSAs with improved accuracy. The extent of

improvement achieved by incorporating codon data was found to be highly significant as indicated by

the p-values obtained using both tests (Figure 3B).

The improvement in the predictions upon combining amino acid and codon data, when residues

are defined as being in contact if the distance between their Cβ atoms is ≤8 Å, led us to examine

whether direct contacts are identified better using this contact definition compared with an ‘All’

definition used by others (Morcos et al., 2011) according to which a contact exists if at least one inter-

atomic distance between the residues is ≤8 Å. A non-redundant set of 2481 proteins with an available

crystal structure at a resolution better than 1.6 Å was compiled and all the residue pairs in each

structure that are in contact according to these two definitions were identified. We then determined

for each protein what is the fraction of the residue pairs in contact according to these two definitions

that are actually in direct physical contact, that is, with a distance <3.5 Å between two of their

respective heavy atoms. It should be noted that atoms can interact with each other even if the

distance between them is larger than 3.5 Å via, for example, weak electrostatic interactions but pairs

of atoms which are closer than 3.5 Å can always be considered as interacting. It may be seen that, on

average, pairs in direct contact constitute only about 10% of the pairs in contact according to the ‘All’

definition and 30% of the pairs in contact according to the Cβ-based definition (Figure 2—figure

supplement 2). The better success of DCA in identifying contacts according to the Cβ-based

definition when amino acid and codon data are combined is, therefore, an important result since more

pairs that are in true physical contact are identified in this way.

Our finding that the Cβ-based definition of contacts is better than the ‘All’ definition but still poor

(only 30% of the pairs defined as being in contact are in physical contact) prompted us to test the

performance of our method for additional contact definitions. The mean of the extent of improvement

in contact prediction for 114 domains (or 86 in the case of PSICOV) was, therefore, determined as a

function of the distance that must exist between at least two Cβ atoms in different residues in order for

them to be defined as being in contact. It may be seen that, in the cases of PSICOV, OMES and DCA,

the maximum improvements in contact prediction upon combining amino acid and codon data are

when these distances are about 5.5, 7 and 5.5 Å, respectively, and that, in the cases of DCA and

OMES, the improvement decreases dramatically when this distance is >∼10 Å (Figure 4). In the case

of MI, the extent of improvement upon combining amino acid and codon data is found to be relatively

insensitive to the distance used to define a contact and is maximal when it is ∼4.5 Å (Figure 4). These

Figure 2. Continued

Figure supplement 2. Histogram of the fractions of residue pairs in physical contact out of those considered to be

in contact according to two widely used definitions.

DOI: 10.7554/eLife.08932.006
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Figure 3. The effect of the relative weights of amino acid and codon information on contact prediction improvement

and its statistical significance. (A) The median of the extent of improvement in contact prediction for 114 MSAs (86 in

the case of PSICOV) is plotted as a function of the value of the power α which determines the relative weights of the

Figure 3. continued on next page
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data, therefore, show again that the improvement in contact prediction upon combining amino acid

and codon data is greatest when the distance used for contact definition does not lead to many pairs

being defined in contact when in fact they are not in direct physical contact.

The added value in combining amino acid and codon data can be illustrated for contact prediction

by DCA in the case of Kex1Δp, a prohormone-processing carboxypeptidase from Saccharomyces

cerevisiae that lacks the acidic domain and membrane-spanning portion of Kex1p. The crystal

structure of Kex1Δp was solved at a resolution of 2.4 Å (Shilton et al., 1997) and its MSA consists of

1877 sequences. The predictions by DCA with or without incorporating codon data are shown in the

respective top and bottom halves of the Kex1Δp contact map (Figure 5A). A comparison of the

predictions by the two approaches shows that those made with incorporation of codon data are more

long-range (in sequence) and more spread throughout the protein structure than those made without

incorporation of codon data. Examples for such long-range contacts between different secondary

structure elements in Kex1Δp that are predicted only when also the codon data is used include the

interactions between Thr148 with Phe185, Ala186 with Leu208 and Leu190 with Leu368 (Figure 5B).

This and other examples (Figure 5—figure supplement 1) show that incorporation of codon data can

yield predictions of contacts between residues that are distant in sequence and are, thus, of more

value for structure prediction.

Conclusions
The input for methods for analysing correlated mutations has exclusively been multiple amino acid

sequence alignments. Here, we have shown that improved contact prediction can be achieved by

analysing both amino acid and codon MSAs together. The premise of our approach is that direct

contacts are more likely if the correlation at the amino acid level is high but at the codon level is low.

The score we propose, which reflects this expectation, can be used in conjunction with different

methods of CMA but other possible scores should be examined in future work. Importantly, we find

cases where contacts between residues that are distant in sequence and, thus, of greatest value for

structure prediction are predicted only by using the combined method. Future work should test other

potential applications of combined analysis of amino acid and codon MSAs such as predicting

protein–protein interactions and, more generally, in feature selection in machine learning.

Materials and methods

Collection of sequences
Protein sequence datasets were collected from Pfam version 27.0 (Finn et al., 2014) based on

representative proteomes (Chen et al., 2011) at 75% co-membership threshold (RP75). Protein

coding sequences (CDS) of the collected proteins from Pfam were retrieved based on Uniprot cross

reference annotations (for Refseq, Ensembl, EMBL and Ensembelgenomes databases in that order of

priority) using the EMBL-EBI’s WSDbfetch services (McWilliam et al., 2009) and Ensembl REST API

Figure 3. Continued

amino acid and codon correlations in the score, Si (Si = Si
α(AA)/Si(C), where Si(AA) and Si(C) are the respective amino

acid and codon scores generated by method i). The extent of improvement was determined by calculating the

difference in the areas under the curves (AUC) of prediction accuracy vs number of predictions for each method i

with and without incorporation of the codon data normalized by the area under the curve generated without codon

data. The analysis was done for domains of length between 200 and 500 residues and at least 2000 coding

sequences in their MSA. The value of α which maximizes the median improvement was used for predictions. Maximal

respective improvements of 3.9% and 4.2% were found for DCA and MI when α is 2.5, 17.6% for OMES when α is 1.7

and 1.13% for PSICOV when α is 11.2. (B) Stacked bar plots showing the number of MSAs for which including codon

data improved the contact predictions using the different methods (orange) and the number of those for which it

was otherwise (green). The statistical significance of the improvement achieved by incorporating codon data is

indicated by the top and bottom p-values obtained using the Wilcoxon signed-rank and sign tests, respectively.

DOI: 10.7554/eLife.08932.007

The following figure supplement is available for figure 3:

Figure supplement 1. Testing the stability of the value of α by cross-validation.

DOI: 10.7554/eLife.08932.008

Jacob et al. eLife 2015;4:e08932. DOI: 10.7554/eLife.08932 7 of 14

Research article Biophysics and structural biology | Computational and systems biology

http://dx.doi.org/10.7554/eLife.08932.007
http://dx.doi.org/10.7554/eLife.08932.008
http://dx.doi.org/10.7554/eLife.08932


(Beta version) (Yates et al., 2015). All collected CDSs were aligned in accordance to the Pfam HMM

based MSAs using tranalign tool from the EMBOSS package (Rice et al., 2000). Pfam domain families

with more than 2000 successfully retrieved coding sequences were used for further analysis (total of

551 MSAs). Only families with a known crystal structure at a resolution of 3 Å or better (more than 95%

of the families have at least three such structures) and with an overlap of at least 80% of the domain

sequence to the ATOM sequence in the solved structure were included in the analysis (total of 460

MSAs). Our analysis was also restricted for proteins with more than 200 residues that have a large

number of potential contacts for prediction (114 MSAs). PDB structures were assigned to Pfam families

in accordance to the mapping in the files downloaded from http://www.rcsb.org/pdb/rest/hmmer?

file=hmmer_pdb_all.txt and ftp://ftp.ebi.ac.uk/pub/databases/msd/sifts/text/pdb_chain_uniprot.lst.

PDB structures were retrieved and their coordinates were extracted using the bio3D R package

(Grant et al., 2006). Pairwise sequence alignments for mapping were performed using Biostrings

(Pages H., Aboyoun P., Gentleman R. and DebRoy S. Biostrings: String objects representing biological

sequences, and matching algorithms. R package version 2.34.1).

Figure 4. Improvement in contact prediction as a function of the distance used to define a physical contact. The

mean of the extent of improvement in contact prediction for 114 domains (or 86 in the case of PSICOV) is plotted as

a function of the distance that must exist between two Cβ atoms in different residues in order for them to be defined

as being in contact. The extent of improvement was determined by calculating the difference in the areas under

the curves of prediction accuracy vs number of predictions by OMES, MI, DCA and PSICOV with and without

incorporation of the codon data normalized by the area under the curve generated without codon data. The analysis

was done for domains of length between 200 and 500 residues and at least 2000 coding sequences in their MSA. The

contact predictions were made for the seven sequences with available crystal structures that have the highest

resolution and that in all cases is <3 Å.

DOI: 10.7554/eLife.08932.009
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Evaluation of prediction accuracy
The evaluation was based on the all structures

with the highest resolution (at least 3 Å) but, in

cases where families have more than 30 known

structures with unique sequences, only 30 with

the best resolution were used (in cases of

structures with the same resolution we arbitrarily

chose one). The average accuracy of contact

predictions for all the crystal structures of each

domain family was then calculated so that domain

families with many crystal structures would not be

over-represented. Two definitions for a contact

between two amino acids were employed: a

distance of less than 8 Å between Cβ atoms and

a distance of less than 8 Å between any two heavy

atoms. Only pairs of residues that are separated

by at least five amino acids in the protein

sequence were considered. Accuracy was calcu-

lated as the proportion of true contacts from the

N pairs with the highest score in that set. We

evaluated the improvement of our method using

the difference in the area under the curve (AUC)

of the accuracy vs number of predicted pairs of

our method relative to the results of the original

OMES, MI, MIp, PSICOV and DCA methods. AUC

was calculated using the auc function in MESS

package in R with the default parameters.

Determination of the number of
pairs in physical contact using
different contact definitions
A non-redundant set of 2481 PDB entries with a

percentage identity cutoff of 20%, resolution

better than 1.6 Å and an R-factor cutoff of 0.25

was downloaded from the pre-compiled CullPDB

lists (Wang and Dunbrack, 2003) at http://

dunbrack.fccc.edu/Guoli/pisces_download.php on

February 25, 2015. Two residues were defined to

be in a physical contact if they have at least one

pair of atoms with a distance ≤3.5 Å. The number

of true physical contacts, that is, those with a

distance ≤3.5 Å between two of their respective

heavy atoms, was determined for each protein in

the set and divided by the number of residue pairs

defined to be in contact if at least one inter-atomic

distance between them is ≤8 Å (designated ‘All’)

or if the distance between their Cβ atoms is ≤8 Å.

Only pairs of residues that are separated by at

least five amino acids along the protein sequence

were considered.

Methods for analysing correlated
mutations
The score for a pair of positions i and j, S (i,j), for

the OMES (Observed Minus Expected Squared)

Figure 5. Added value of combining amino acid and

codon data in contact prediction by DCA illustrated for

Kex1Δp, a prohormone-processing carboxypeptidase

from Saccharomyces cerevisiae. (A) Contact map of the

structure of Kex1Δp (PDB ID: 1AC5) in which all the

Figure 5. continued on next page
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method was calculated, as follows (Kass and

Horovitz, 2002; Fodor and Aldrich, 2004):

SOMESði; jÞ=   ∑
a

∑
b

�
OBSaibj

−EXPaibj

�2

where OBSaibj
and EXPaibj

are the respective

observed and expected number of sequences in

the MSA with residue type a at position i and

residue type b at position j. The score for the

mutual information, MI, method was calculated

as follows (Gloor et al., 2005):

SMIði; jÞ=   ∑
21

a=1

∑
21

b=1

fði;a;j;bÞ   log
fði;a;j;bÞ
fði;aÞfðj;bÞ

where f(i,a) and f(j,b) denote the respective

frequencies of occurrence of residue type a at

position i and residue type b at position j and f(i,a; j,b)
denotes the joint probability of occurrence

of residue type a at position i and type b at

position j. In the case of the MIp method (Dunn

et al., 2008), an average product correction (APC)

term is subtracted from the MI score for each pair of positions. The APC term, which is a measure of the

background MI shared by positions i and j, is given by:

APCði; jÞ=    
MIði;xÞMIð j;xÞ

MI

where terms in the nominator are the respective average MI values of positions i and j with all other

positions in the alignment and the term in the denominator is the average background MI of all the

positions in the alignment. The MIp score is given by:

  SMIpði; jÞ=   SMIði; jÞ−APCði; jÞ
The Direct Coupling Analysis (DCA) method (Morcos et al., 2011) was implemented in R

for amino acid and codon MSAs based on a Matlab source code provided by Weigt et al.

(http://dca.rice.edu/portal/dca/download). The PSICOV code was downloaded from http://

bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV/ and used for the predictions based on amino acid

MSAs with the default parameters for faster options as recommended by the authors (-p -r

0.001 and with the -l option in order to avoid using the APC term). The PSICOV code was

modified in order to carry out the same analysis for codon MSAs and a python script was

implemented to perform the whole analysis as done for the other methods using Pfam MSA

files in Stockholm format and fasta MSA files as inputs. PSICOV was used here either with the

APC for amino acid MSAs or without the APC for the predictions based on both amino acid

and codon MSAs.

Available software
The R and Python source codes for the contact prediction by all methods, C source code modifications

to PSICOV V2.1b3, R source code for structure-domain sequence mapping and python scripts for

generating codon MSAs are available at https://etaijacob.github.io/. Details on the relevant R packages

that will be available on CRAN will also be provided at: https://etaijacob.github.io/.
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Figure 5. Continued

contacts are shown as gray rectangles. Residues were

defined as being in contact if the distance between their

Cβ atoms (Cα for glycine) is ≤8 Å. The top 100 predictions

of contacts made with or without incorporating codon

data are highlighted above (in red) and below (in green)

the diagonal, respectively, and those predicted by both

methods by black circles. (B) The crystal structure of

Kex1Δp with predicted contacts highlighted. Only true

predicted contacts that were not predicted by the

original method are highlighted. Each contacting pair

has a different color. The contacts were predicted using

an MSA with 1877 coding sequences with a length of 415

codons. The magnified region shows some long-range

contacts between different secondary structure elements

that are predicted only when also the codon data is used.

DOI: 10.7554/eLife.08932.010

The following figure supplement is available for figure 5:

Figure supplement 1. Illustration for four proteins of

added value of combining amino acid and codon data

in contact prediction by DCA.

DOI: 10.7554/eLife.08932.011
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