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Abstract

Viral sequence data coupledwith phylodynamicmodels have become instrumental in investigating the outbreaks of human and animal
diseases, and the incorporation of the hypothesized drivers of pathogen spread can enhance the interpretation from phylodynamic
inference. Integrating animal movement data with phylodynamics allows us to quantify the extent to which the spatial diffusion
of a pathogen is influenced by animal movements and contrast the relative importance of different types of movements in shaping
pathogen distribution. We combine animal movement, spatial, and environmental data in a Bayesian phylodynamic framework to
explain the spatial diffusion and evolutionary trends of a rapidly spreading sub-lineage (denoted L1A) of porcine reproductive and res-
piratory syndrome virus (PRRSV) Type 2 from 2014 to 2017. PRRSV is the most important endemic pathogen affecting pigs in the USA,
and this particular virulent sub-lineage emerged in 2014 and continues to be the dominant lineage in the US swine industry to date.
Data included 984 open reading frame 5 (ORF5) PRRSV L1A sequences obtained from two production systems in a swine-dense produc-
tion region (∼85,000 mi2) in the USA between 2014 and 2017. The study area was divided into sectors for which model covariates were
summarized, and animal movement data between each sector were summarized by age class (wean: 3–4weeks; feeder: 8–25weeks;
breeding: ≥21weeks). We implemented a discrete-space phylogeographic generalized linear model using Bayesian evolutionary analy-
sis by sampling trees (BEAST) to infer factors associated with variability in between-sector diffusion rates of PRRSV L1A. We found that
between-sector spread was enhanced by themovement of feeder pigs, spatial adjacency of sectors, and farm density in the destination
sector. The PRRSV L1A strain was introduced in the study area in early 2013, and genetic diversity and effective population size peaked
in 2015 before fluctuating seasonally (peaking during the summer months). Our study underscores the importance of animal move-
ments and shows, for the first time, that the movement of feeder pigs (8–25weeks old) shaped the spatial patterns of PRRSV spread
much more strongly than the movements of other age classes of pigs. The inclusion of movement data into phylodynamic models as
done in this analysis may enhance our ability to identify crucial pathways of disease spread that can be targeted to mitigate the spatial
spread of infectious human and animal pathogens.

Key words: Bayesian inference; phylodynamic models; phylogeography; molecular epidemiology; animal movement; livestock
networks

1. Introduction
Porcine reproductive and respiratory syndrome (PRRS) is a viral
disease of swine caused by a ribonucleic acid (RNA) arterivirus
broadly classified as PRRS virus (PRRSV) Type 1 (Eurpobartevirus
Betaarterivirus suid 1) and Type 2 (Ampobartevirus Betaarterivirus suid
2) (Kuhn et al., 2016; Shi et al., 2010a; Stadejek et al., 2013; Walker
et al., 2020). PRRS is arguably the most expensive swine disease
in the USA, with annual economic losses estimated at ∼$664 mil-
lion/year (Holtkamp et al., 2013; Pileri andMateu 2016; Nathues et
al., 2017). These losses are associated with decreased reproductive
performance and piglet mortality, although the severity of clinical
disease varies with the infective strain of PRRSV and other farm
management practices (Goldberg et al., 2000).

Since the initial detection of PRRS in the USA in the early 1990s,

the swine industry has made considerable efforts to understand
and manage the disease. These efforts have included the imple-
mentation of strict biosecuritymeasures on swine farms (Velasova

et al., 2012; Silva et al., 2019), different immunization programs
(Corzo et al., 2010), disease surveillance, and monitoring pro-
grams (Perez et al., 2019) among others. Despite these efforts,

effective management and control of PRRS remain a challenge.
These difficulties have been attributed to several factors, key

among them being the importance of animal movements and

environmental factors in between-farm spread (Otake et al., 2010;

Pileri and Mateu 2016; Arruda et al., 2018a; VanderWaal et al.,

2020) and rapid viral evolution resulting in substantial genetic
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and antigenic diversities (Charerntantanakul 2012; Paploski et al.,
2019).

PRRSVType 2 is typically classified according to restriction frag-
ment length polymorphisms (RFLPs) or phylogenetic relatedness
(Shi et al., 2010b; Paploski et al., 2019). PRRSV Type 2 viruses
were originally classified into nine phylogenetic lineages (Paploski
et al., 2019; Shi et al., 2010b). Around 2014, a novel and viru-
lent PRRSV Type 2 strain was reported in US farms, causing high
piglet mortalities and severe clinical diseases in sows. This strain
was classified as RFLP Type 1-7-4 (Wang et al., 2015; van Geelen
et al., 2018) and belonged to a sub-lineage of lineage 1, denoted
as 1A (L1A) (Shi et al., 2010b; Paploski et al., 2019). L1A became
the dominant sub-lineage of PRRSV (60per cent of the sequences
reported in the region between 2014 and 2017). The effective popu-
lation size of L1A increased tremendously around 2014, suggesting
some changes in the epidemiological and evolutionary dynam-
ics of the L1A sub-lineage, notwithstanding co-circulating strains
(Paploski et al., 2021). The spread of this viral variant has been
shown to be associated with genetic recombinations and spatial
spread through animal movements (Wang et al., 2015; van Geelen
et al., 2018; Ramírez et al., 2019; VanderWaal et al., 2020; Makau
et al., 2021). Epidemiological analyses suggest that the occurrence
of L1A and other co-circulating lineages/sub-lineages was driven
more by animal movements than the spatial proximity of farms,
and secondary farm contacts (via animal movements) with L1A-
positive farms were a risk factor for L1A occurrence on a farm
(Makau et al., 2021). That being said, local-area spread between
neighboring farms cannot be ruled out (VanderWaal et al., 2020)
and a farm’s risk of viral outbreaks is increased when animal
movements are received by neighboring farms (Machado et al.,
2019).

Using sequence data, Bayesian phylodynamic models provide
a quantitative framework to test the hypotheses about viral evo-
lution and transmission, reconstruct the geographic patterns of
spread, and map the flows of population connectivity (Alkhamis
et al., 2016). Recent phylodynamic approaches allow for the inclu-
sion of an array of relevant factors that may be associated with
the spatial dispersal of a phylogeny (Lemey et al., 2009, 2010,
2014; Drummond et al., 2012; Rambaut et al., 2018). Primar-
ily, these approaches have enabled the inclusion of spatial and
environmental data in phylodynamic analysis to understand the
spread of different epidemics, e.g. Ebola, influenza and HIV in
humans (Dudas et al., 2017; Müller, Rasmussen, and Stadler
2018; Rasmussen et al., 2018), foot-and-mouth disease in livestock
(Duchatel, Bronsvoort, and Lycett 2019; Munsey et al., 2021), and
infectious wildlife diseases (Fountain-Jones et al., 2017; Yang et
al., 2019; Dellicour et al., 2020). Given the role of long-distance ani-
malmovements in the spread of PRRS and other livestock diseases
(Mortensen et al., 2002; Carlsson et al., 2009; Amirpour et al., 2017;
Neira et al., 2017; VanderWaal et al., 2020; Makau et al., 2021),
the inclusion of empirical animal movement data in these mod-
els could increase the accuracy and robustness of phylodynamic
inference and is essential for capturing how host population
connectivity interacts with spatial drivers of transmission.

The usage of phylodynamic methods in understanding PRRS is
a growing field (Shi et al., 2010a; Franzo et al., 2015; Alkhamis
et al., 2016, 2017; Sun et al., 2019; Jara et al., 2020). These
models have been instrumental in the identification of high-risk
areas and transmission routes for epidemic management and dis-
ease surveillance in China (Sun et al., 2019) and have identified
sow farms as a high-risk group facilitating the spread of PRRSV
between different farm types in the USA using discrete-trait

phylodynamic models (Alkhamis et al., 2016; Jara et al., 2020).
Even fewer studies have utilized recently developed inferential
framework to evaluate the contribution of external factors to spa-
tial spread (Jara et al., 2020). However, none of these studies
have incorporated data on pig movements into a phylogeographic
framework, which limits the inference and acuity of observed
conclusions related to viral dispersal.

The US swine industry is vertically integrated and consol-
idated into multi-site production systems, whereby different
phases of the pig production lifecycle (i.e. farrowing, weaning,
growing and finishing) occur at separate locations (Lee et al.,
2017; Passafaro et al., 2020). Generally, the directional flow of
pigs would be from sow farm to nursery and, then, to grow-
ing/ finishing sites. Multi-site pig production systems form com-
plex networks where different farm types are connected via
the movement of pigs of different ages within the production
chain (Lee et al., 2017; Kinsley et al., 2019). The transportation of
weaned pigs (∼3weeks) connects sow farms to nurseries/wean-
to-finish farms, while the movement of feeder pigs (8–25weeks
old) connects nurseries/wean-to-finish farms to finishing farms
The transportation of replacement gilts for breeding purposes
connects gilt development units or finishing farms to sow farms.
These different connections between farms pose different levels
of risk for disease transmission because the management styles
and levels of biosecurity vary between farm types. For example,
better biosecurity and prophylaxis are practiced in sow farms and
gilt development units compared to the other farm types, while
most nursery farms handle animals in all-in/all-out cohorts, fill-
ing and completely emptying barns of all animals at the same
time as they are moved to the next phase of production (USDA
2002). Despite the outsized role of suchmovement networks in the
spread of pathogens (Gibbens et al., 2001; Kao 2002), animalmove-
ment data are rarely incorporated into phylogeographic models of
pathogen spread.

Therefore, the objective of this study was to determine fac-
tors associated with the viral evolution and spatial diffusion of
PRRSV L1A in a swine-dense production area in the USA. Through
integrating Bayesian phylodynamicmodels built with PRRSVORF5
sequence data with empirical pig movement data, we investigate
the role of host population connectivity and the relative impor-
tance of animal movements stratified by age class in the spread
of PRRSV. We hypothesized that different types of animal move-
ments have differing relative impacts on the spread of PRRSV in
the study area. Given the role of animal movements in the spread
of PRRSV in the USA (Shi et al., 2010b; VanderWaal et al., 2020),
the inclusion of animalmovement data is expected to improve our
ability to interpret spatiotemporal evolutionary trends of PRRSV.

2. Materials and methods
2.1 Sequence data
Sequences obtained from two production systems within the
study region, collected through the Morrison Swine Health Mon-
itoring Project (MSHMP), were used for this analysis. MSHMP is

a nation-wide swine health monitoring program based at the

University of Minnesota. This program is based on voluntary self-
reporting of infection status of swine herds and collates data from
swine production companies, veterinarians, and regional disease
control programs (Perez et al., 2019). MSHMP monitors the health
status of approximately half of the US swine-breeding population.
The swine-dense region that comprises our study area encom-
passes approximately 15per cent of the US breeding herd, and
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our study includes data from ∼90per cent of swine-breeding and
grow/finish premises in this region. Participating production sys-
tems share PRRSV sequences isolated on their farms either during
routine sampling or in the course of an active outbreak. Lineage
identification and classification of open reading frame 5 (ORF5)
was based on phylogenetic classification by Paploski et al. (2019).
ORF5 is one of 10 ORFs in the PRRSV viral genome. It is ∼600 base
pairs long and encodes for the main envelope protein referred to
as GP5. This protein has several antigenic sites that stimulate host
immune response upon infection (Dea et al., 2000; Kim et al., 2013)
and has beenwidely used formolecular epidemiological investiga-
tions and classification of PRRSV Type 2 (Kapur et al., 1996; Wesley
et al., 1998; Shi et al., 2010b; Paploski et al., 2019). Sequence
assembly and preparation was done using protocols described by
Paploski et al. (2019). The sequences used in this analysis are part
of the dataset reported in Paploski et al. (2019) and are available
in GenBank under the accession numbers MN498289-MN502669.

2.2 Preliminary phylogenetic analysis
A total of 1,514 L1A sequences were obtained from 651 farms
in the study area, isolated between 2014 and 2017. Of these
sequences, 81 were excluded from the analysis due to incom-
plete geographical metadata. Of the remaining 1,433 sequences,
440 were genetic duplicates (i.e. sequences that were 100per cent
genetically similar to at least one other sequence). 37per cent
of identical sequence pairs were isolated from the same farm,
and 38per cent of identical pairs belonged to the same sector.
Duplicate sequences were excluded from the analysis, with only
the earliest isolated sequence of the duplicate being retained in
the data (Supplementary Fig. S1). The remaining 993 sequences
were aligned using the MUSCLE algorithm in AliView (Larsson
2014) using default settings. We used RAxML (v8) to construct a
maximum-likelihood (ML) phylogenetic tree (using the GTR+Γ

substitution model within 100 bootstraps) and used TempEst
(v 1.5.3) to assess the temporal signal of the ML tree (correlation
coefficient=0.5, R2 =0.3) (Rambaut et al., 2016). Subsequently,
detection of recombinants was done using the recombinant detec-
tion program (RDP v 4.1) (Martin et al., 2015), and nine potential
recombinant sequences (Maxchi and 3Seq P-value <0.01) were also
excluded from the analysis. Ultimately, we used 984 ORF5 PRRSV
L1A sequences isolated from 515 farms in a swine-dense produc-
tion area in the USA, between 2014 and 2017. A second ML tree
constructed using GTR+Γ substitution model within 100 boot-
straps in RAxML (v 8) was then assessed for temporal signal using
TempEst (v 1.5.3) (correlation coefficient=0.7, R2 =0.4) (Rambaut
et al., 2016).

2.3 Overview of spatial diffusion analysis
We used a discrete-space generalized linear model (GLM) imple-
mented within a Bayesian evolutionary analysis by sampling trees
(BEAST v1.10.4) framework to quantify the effects of different fac-
tors on the rate of viral transitions between different sampling
locations (Lemey et al., 2014). This model framework allows for
the identification of predictors that either enhance or impede the
spatial dispersal of the virus through estimating their effect on
the rate of viral spread and posterior inclusion probabilities in the
model, evaluated on the basis of the Bayes factor (BF). We used
this framework to investigate long-distance spread of the L1A at
the regional level (a broader scale than farm-to-farm transmis-
sion). In this approach, the viral transition rate matrix between
discrete locations is parameterized as a log-linear function for
the predictive potential of hypothesized covariates included in
the model. These are used in a Bayesian model and interpreted

in combination with phylogeographic reconstruction to explain
spatial diffusion of the virus. Model predictors can be defined
as attributes of either the origin/destination (i.e. farm density,
environmental/landscape attributes, etc.) or an attribute of the
origin-destination dyad (i.e. spatial adjacency or pig movements
between two sectors) (see below for details).

2.4 Geographical region classification
The swine-dense production region from which sequences were
isolated spans ∼85,000 mi2 (approximately 220,000 km2). The
study area was first subdivided into a grid of 61 sectors of
equal size (∼20×20 mi, 436 mi2) using QGIS software (QGIS
Development Team 2019), but some sectors only had a single
sequence. Therefore, some sectors were merged to create 13 sec-
tors in total ensuring a minimum of at least 30 sequences per
sector, with the area of sectors ranging between 436 and 5,972 mi2

(1,130–15,468km2) (Fig. 1). The risk of local introduction of viral
diseases like porcine epidemic diarrhea virus into farms has been
associated with attributes of the farm’s surrounding neighbor-
hood, includingmovementsmade by neighboring farms (Machado
et al., 2019). Based upon this finding, we hypothesize that the over-
all between-sector flow of animals (summed across all farms in
the sectors) will shape patterns of dispersal of the virus across
sectors, even though not all farms engaged in such movements.
Summarizing the farms into sectors enabled us to account for
movement-mediated connectivity of host meta-populations, as
well as summarize other environmental factors thatmay promote
transmission. The number of farms per sector ranged from 60 to
227, with 35–155 sequences recorded through time in each sec-
tor. Subsequently, all other model covariates (see below) were
summarized at the sector level. A queen adjacency matrix was
also created to account for the spatial structure of the popula-
tion, whereby a 0/1 binary value was assigned to each matrix cell
as an indicator of whether two sectors bordered one another. This
matrix was included in the phylogeographic GLM as an indica-
tor of spatial proximity between sectors. Centroids for each sector

Figure 1. Distribution of swine farms in the 13 sectors in a swine-dense
production area in the USA. The size of the sectors ranges from 436 to
5,972mi2 (1,130–15,468km2). Sectors vary in size in order to achieve
comparable availability of data in each sector. Movement data were
obtained for these farms, but not all farms provided sequence data for
this analysis.
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were subsequently used to visualize spatiotemporal diffusion. The
average distance between sector centroids was 98.4 km with a
range of 27–264km.

2.5 Predictors of spatial diffusion
The between-farm spread of PRRS has been ascribed as either
local-area spread or long-distance spread, the latter of which is
strongly linked to animal movements (Lager, Mengeling, andWes-
ley 2002; Arruda et al., 2018a, 2019; VanderWaal et al., 2020).
Spatial proximity, wind dispersal, and physical contamination are
some of the factors largely associated with local-area spread of
PRRSV (Lager, Mengeling, and Wesley 2002; Arruda et al., 2019).
Land topology, vegetation cover, and land use have also been
shown to correlate with risk of viral outbreaks in swine farms
(Arruda et al., 2018a; Machado et al., 2019). Therefore, we included
these factors in our model to account for the potential effects of
these factors on the spatial diffusion of PRRSV.

The mean normalized difference vegetation index (NDVI) was
summarized across a 5km pixel raster of NDVI within the sec-
tors. Land use data were obtained from the national land cover
database (MRLC 2016). Since the database is not updated yearly,
the most relevant raster file from 2016 was used to calculate the
proportion of each sector that was forested vs. crop cover. This
decision was guided by the assumption that changes in land use
trends would be minimal given the brevity of the study period
(4 years). Data on wind speed, ambient temperature, and precipi-
tation were obtained from the National Oceanic and Atmospheric
Administration (NOAA) database (NOAA 2019). The average ambi-
ent temperatures for each of the 13 sectors were calculated from
mean monthly ambient temperature for the study area between
2014 and 2017. Average wind speed and mean precipitation for
each sector were also calculated for the study period. Given the
size of our study area, the resolution for mean ambient tempera-
ture and average wind speeds was coarse and there was minimal
variation between sectors. These two predictors were excluded
from the model.

Data on pig population and distribution of farms in the sec-
tors were obtained from the MSHMP database, and farm density
was calculated as a function of the number of farms in a sector
and sector area (km2). Animal movement data were summarized
in two forms. First, the directional flow of all animals shipped
between farms located within any two sectors was summed to
obtain the total flow of animals moving between two sectors.
These total flows were stratified by the type of movements based
on the production type of the origin and destination farms, which
also correspond to the age class of animalsmoved: breedingmove-
ments (from gilt development units to sow farms, finishing farms
to sow farms, finishing farms to isolation units [animals of breed-
ing age ≥21weeks old]), weaned pig movements (from sow farms
to nursery/wean-to-finish farms [3–4weeks old]), feeder pigmove-
ments (from nursery to finishing farms or wean-to-finish to fin-
ishing farms [8–25weeks]), and same-phase movements (between
farms of the sameproduction level [animals of same age]). Second,
farm-level metrics from a social network analysis were calculated
from a static farm-level network of animal movements during the
entire study period. These metrics included farm indegree (the
number of farms from which a farm received animals), outdegree
(the number of farms to which a farm sent animals), normalized
mean betweenness (the frequency with which a farm was located
on the shortest (geodesic) path between other pairs of farms),
and closeness (the total geodesic distance between a farm and
other farms in the network along the shortest path between them)
(Wasserman and Faust 2009; Lee et al., 2017). These farm-level

metrics were then averaged for farms within each sector to obtain
mean sector indegree, outdegree, betweenness, and closeness.
There was minimal variation in the sector mean betweenness
and closeness, which were therefore excluded from the model.
To account for uneven distribution of the number of sequences
in the different sectors, the total number of sequences in each
sector was also summarized and included as a model covariate.
Ultimately, all sector covariates were arranged in a matrix (for
movement data and spatial adjacency) and data frames (for other
covariates) and used for subsequent modeling using BEAST.

2.6 Phylogeographic model
We used a relaxed-clock model and choice of tree priors to
reconstruct virus population demographics in BEAST (v1.10.4)
(Suchard et al., 2018). Further, we used the discrete-space GLM
(Lemey et al., 2014; Magee, Suchard, and Scotch 2017) imple-
mented in BEAST, with the predictors described above, to infer
the phylogeographic diffusion process between different sectors.
Specifically, we selected the general time-reversible and discrete
gamma distribution models (GTR+Γ) (Felsenstein 1981; Tavare
1986) as the best-fitting substitution model using the Bayesian
information criterion as implemented in PartitionFinder (v1.1)
(Lanfear et al., 2012). We also evaluated different combina-
tions of the uncorrelated lognormal (UCLN) and uncorrelated
exponential branch-rate clock model and coalescent population
models (Bayesian Skygrid (Sg) (Gill et al., 2013), constant pop-
ulation size (Kingman 1982), expansion growth (Ex), and expo-
nential growth (Exg) (Griffiths and Tavare 1994) coalescent mod-
els) to identify the best-fitting phylodynamic model for our data
out of eight candidate models. We used the marginal likelihood
estimated by path-sampling (Baele et al., 2012) and stepping-
stone (Fan et al., 2011) methods to select among candidate
models.

We used 350 million Bayesian Markov chain Monte Carlo
(MCMC) cycles and sampled every 35000th state to infer the poste-
rior evolutionary parameters for each candidate model. Further-
more, for each model, we used duplicate MCMC runs to evaluate
the stability of their marginal-likelihoods estimates. Additionally,
we assessed the convergence of the posterior parameters through
evaluating the effective sample size >200 using Tracer (v1.7.1)
(Rambaut et al., 2018). The best-fitting phylodynamicmodel to the
sequence data was the Sg+UCLN (BF>400).

We summarized the resulting posterior probability density of
the selected model as a maximum clade credible (MCC) tree using
TreeAnotator (v1.10.4). R packages ggtree (Yu 2020) and ggplot2
(Wickham 2016) were used to generate plots for the MCC tree and
the effective population over time from the Skygrid coalescent
model output. For GLM predictors, we used Bayesian stochas-
tic search variable selection to identify well-supported model
covariates explaining the phylogenetic diffusion (BF estimates)
and posterior probabilities of inclusion. We also summarized their
contribution to the log-linear rate matrix to calculate the coeffi-
cient estimate of the model predictor on viral spread given their
inclusion in themodel. SpreaD3 (v0.9.7.1) (Bielejec et al., 2016) was
used to generate a spatiotemporal distribution map by combining
geographical data using sector centroids as reference points and
the best phylogenetic tree output.

3. Results
A total of 984 ORF-5 sequences, with a mean nucleotide identity
of 98.3 per cent (standard error 0.2 per cent), from 515 farms were
used in this analysis. Most of the sequences (45.6 per cent) were
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Figure 2. Temporal distribution of PRRSV sub-lineage 1A (L1A) in a swine-dense production area in the USA, between 2013 and 2017.The gray bars
represent the frequency of sequences obtained monthly between 2014 and 2017.

obtained from sow farms and gilt development units, 17.2 per
cent from nursery and 14.0 per cent from finisher farms (Supple-
mentary Fig. S1). Out of the 14 factors intended for inclusion in
our model, two factors were excluded during model parameter-
ization. We excluded the same-phase movements, which were
rare (occurred only in 2014). Total pig flow between sectors was
strongly correlated with weaned and feeder pig flows between
sectors (Spearman’s correlation 0.9,0.8 [P<0.01], respectively) and
therefore were also excluded.

3.1 Phylogeographic analysis
From the Skygrid analysis, we observed that the effective pop-
ulation size of PRRSV L1A in this region appeared to fluctuate
seasonally, peaking during the summer months of 2015 and
2016 (Fig. 2). The estimated viral evolutionary rate was 1.8 × 10−2

(95per cent highest posterior density [HPD] 1.7 × 10−2−2.0 × 10−2)
per site per year. Moreover, the estimated time to the most
recent common ancestor (TMRCA) of PRRSV L1A in this study
region was the first quarter of 2013 (95per cent HPD June
2012−September 2013), indicating that all L1A diversity within
this region stemmed from an ancestor existing around this time.
This suggests a single introduction of this lineage to the region.
Although this analysis was based on the ORF5 region only, we
believe that an analysis of whole genome data would result
in a TMRCA, as viral isolates classified into lineages based on
ORF5 generally maintain their phylogenetic clades when using
whole genome analysis (Schroeder et al., submitted). Between-
sector transmission events occurred frequently within the study
period; hence, the time-scaled phylogenetic tree does not show
any distinct clustering based on sector (Fig. 3). These repeated
transmissions to and from different sectors are also shown
in Fig. 4, where we display the geographical context of the
MCC phylogenetic tree at different time points during the study
period.

3.2 Drivers of spatial diffusion
The geographical diffusion of PRRSV L1A in this area was sig-
nificantly (BF > 6) influenced by animal movements, the spatial
structure of the host population (sector adjacency), farm density
in the destination sector, and pig population size in the origin
sector. The movement of feeder pigs (from nursery to finishing
farms or wean-to-finish to finishing farms [8–25weeks]) greatly
enhanced viral spread between sectors in the study area (posterior
inclusion probability > 0.99 | BF=28.4). Although the contribution
of other animalmovements to the viral transmissionwasminimal
by comparison, breeding movements had a BF of 5.5, suggesting
that they may also enhance the between-sector spread of L1A, to
a much smaller extent. The effect of weaned pig movements was
negligible (posterior inclusion probability <0.1 | BF=2.2) (Fig. 5).
Themean sector indegree and outdegree had no discernable effect
on the rate at which PRRSV L1A spread across the region (poste-
rior inclusion probability <0.1 | BF=0). From additional analysis,
all three movement types occurred with similar frequencies, and
thus, frequency differences cannot explain the greater relative
influence of feeder pig movements (Analysis of variance (ANOVA),
Bonferroni adjusted P-value=0.6). In addition, between-sector
movements were not substantially correlated across type (Spear-
man correlation −0.2–0.4, P-values > 0.05) (Supplementary Table
S1a and S1b and Fig. 2).

Viral spread was inversely associated with pig population
size in the origin sector (posterior inclusion probability =0.8 |
BF=115.7), whereas there was no evidence that population size
in the destination sector influenced spread. Higher farm density
in the destination sector also appeared to enhance viral spread
(posterior inclusion probability=0.37 | BF=17). Higher transi-
tion rates were also observed between adjacent sectors (posterior
inclusion probability=0.88 | BF=212.6) (Fig. 5). The number of
sequences in either source or destination sectors and the farm
density in the origin sector were not associatedwith observed viral
transmission patterns (Fig. 5).
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Figure 3. Bayesian maximum clade credibility time-scaled phylogenetic tree for PRRSV sub-lineage 1A (L1A) between 2013 and 2017. Branches are
colored according to their inferred sector of origin, with the key for the colors shown on the right.

4. Discussion
By integrating viral sequence and animal movement data in
Bayesian phylodynamic models, our research presents a novel
approach for studying the spatial spread and evolutionary dynam-
ics of PRRSV and other livestock diseases. The inclusion of empir-
ical data on animal movements in phylodynamic models allows
for more insightful inferences on disease spread, which can be
useful in surveillance and management of disease outbreaks. In
this analysis, we evaluated the impact of the movement of dif-
ferent age classes of pigs and found that the movement of feeder
pigs (8–25weeks old pigs moved from nurseries) was much more
closely associated with patterns of spatial spread of PRRSV than
other types of pig movements.

While animal movements in general have been highlighted as
risk factors for PRRSV spread (Schulz et al., 2017; Ramírez et al.,
2019; Silva et al., 2019; VanderWaal et al., 2020; Makau et al., 2021),
we observed that some movements may contribute more to spa-
tial spread than others. In this study population, the movements
that contributed the most to geographical spread were feeder pig
movements (Fig. 5). Alkhamis et al. (2016) and Jara et al. (2020)
observed that sow farms were the likely origin of PRRSVs found in
downstream farms in multi-site production systems in the USA,
although Jara et al. (2020) also found evidence of PRRSV transmis-
sion between nurseries and finishers. However, those studies did
not consider movements per se, but rather modeled how often
the virus transitioned from one farm type to another without

reference to spatial spread or empirical movement data on which
farms were actually interconnected. Further, such discrete-trait
phylodynamic analyses are susceptible to data imbalance and
sampling bias, wherein the more common trait in the sampled
sequences (i.e. sow farms) is likely to be identified as the ances-
tral population. In contrast, we empirically examined the role of
specific movement types as related to sector-to-sector patterns of
spatial spread. While there is no doubt in sow farm to nursery
transmission, it did not appear to play a strong role in shaping
spatial patterns of spread on the sector scale. Indeed, although
we observed that the movement of weaned pigs (originating from
sow farms) may have some effect (BF=2.2) on wide-scale spread
of PRRSV, the effect was much smaller than that of feeder pigs

(originating from nurseries). We also observed a weak positive

effect of breeding movements on the spatial spread of PRRSV in

the study area. The movement of replacement gilts to sow farms

is a potential avenue for disease spread. However, these move-

ments conventionally include an acclimation phase during which

pigs are vaccinated before being mixed with the breeding herd,

thusminimizing risk of disease spread, but further researchwould

elucidate this observation.
The importance of feeder pig movements in the spatial

diffusion of PRRSV between sectors could be associated with sev-
eral factors related to distinct characteristics of feedermovements
and biosecurity of nursery farms. In most swine production sys-
tems, nurseries often receive weaned pigs from multiple sow
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Figure 4. Maximum clade credibility (MCC) phylogeny of PRRSV sub-lineage 1A (L1A) diffusion in a swine-dense production area in the USA annotated
with spatially discrete traits at intervals from 2014 to 2017. Lines between locations represent branches in the MCC tree representing the spatial
transition. The branch color corresponds to the grid of destination of the branch. The diameters of red circles represent the number of sequences
obtained at the location at the corresponding time period. In January 2014, we depict the early phase of spread, with L1A spreading from sectors 1 to 2,
2 to 5, and 1 to 8.

farms, and the period of time that these pigs remain at the
nursery coincides with waning of any maternal antibodies (Senn
et al., 1999). In addition, biosecurity for nurseries is typically
not as strict as for sow farms, making it easier for viruses to
be introduced into and transmitted from the farm. For exam-
ple, while transport trucks that serve sow farms are washed
routinely, this is not always the case for feeder pig move-
ments (personal communication). Thus, introduction of a virus
in such an environment is likely to result in rapid amplifica-
tion of the virus within the nursery and subsequent transporta-
tion of these pigs to finishing or wean-to-finish farms, culmi-
nating in dissemination of viruses between sectors in the study
region.

In this study, there was a higher rate of viral transmis-
sion between adjacent sectors than non-adjacent sectors (queen
adjacency, BF=212), indicating that close geographical location
was an important determinant for PRRSV spread. We cannot
discriminate whether this is due to local-area spread between
farms located close to borders or because pig movements and
other mechanical routes of transmission (e.g. feed suppliers,
waste management and rendering services, etc.) exhibit spatial
clustering such that farms in neighboring sectors share service
providers. Given the size of sectors, we believe the latter is
more likely because most farms in two neighboring sectors are
not within a reasonable distance (<10km) for local-area spread
(Mortensen et al., 2002; Larochelle, D’Allaire, and Magar 2003;
Dee et al., 2009; Otake et al., 2010). Regardless of the mechanism

behind transmission between adjacent sectors, our data suggest
that between-sector spread among neighboring sectors can be
expected.

The sector-level spatial resolution likely contributed to why we
failed to find any effect of environmental factors often associated
with local-area spread (Arruda et al., 2018a; Machado et al., 2019).
As opposed to between-farm transmission at localized scales
(among farms <10km apart), environmental and land cover fac-
tors were not shown to play a significant role in the wide-scale
spread of PRRSV at the broader geographical resolution of our
study. While estimating secondary contacts and neighborhood
risk attributes in areas nearby the farm can be beneficial in dis-
ease management, the limitations imposed by the sector-level
approach utilized in this study obscured our ability to discern the
influence of landscape factors that impact short-distance trans-
mission. In addition, since the model setup did not allow for the
inclusion of time-varying parameters, we only included a single
value per sector for each environmental factor, including wind
speed and ambient temperature, which were excluded from the
model due to lack of variation. Averaging environmental data at
the sector level across time led to the loss of fine-scale tempo-
ral and spatial variability in the data. For example, parameters
such as tree cover and crop cover, previously reported as relevant
for area spread of PRRSV (Arruda et al., 2018a; Machado et al.,
2019), may have lost the inherent heterogeneity due to averaging
over larger areas (sectors). It is also likely that by averaging net-
work metrics (degree centrality) across the sectors, heterogeneity
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Figure 5. Predictors of the spatial diffusion of PRRSV sub-lineage 1A
(L1A) between geographic sectors in a swine-dense production area in
the USA. The left-hand panel shows the posterior inclusion probability
for the different GLM predictors reflecting the frequency at which a
predictor is included in the model, hence representing the support for
the predictor’s association with the spatial transition of L1A. The
right-hand panel shows the coefficient estimate of the model predictors
on the spatial transition of L1A, which is a conditional effect size of each
predictor on the rate of transition when the predictor is included in the
model. Factors with BF > 6, are considered to have strong support for
their inclusion in the model as factors influencing the spread of the
virus. Factors with a BF >3 but <6, such as breeding movements, may
have some influence on the viral diffusion trends observed.
Environmental covariates are colored in red, sector-attributes in green,
and movement-related factors in blue. Factors demarcated with (o) and
(d) indicate factors pertaining to the origin or destination, respectively.

in the data was reduced; hence, the mean degree centrality in
the model did not appear to influence between-sector viral disper-
sal. The notwithstanding limitation, wewere able to identify other
factors influencing L1A dynamics in the region at a broader scale
and elucidate the long-distance spread of L1A in the study area.
With a more detailed dataset, a modeling framework with higher
spatial and temporal resolution could be used to identify other
factors affecting the spatial spread and evolution of L1A in the
area.

Sectors were not delineated based on known interaction pat-
terns and farm connectivity in the region. Indeed, farm con-
nectivity and clustering based on service providers such as feed
suppliers, rendering, and waste management services could influ-
ence disease dissemination in the area. Using a different scale
to create sectors may yield slightly different results. However,
we believe the influence of factors with high BF and effect sizes,
such as sector adjacency and movement of feeder pigs, would be
robust to variations in sector boundaries. PRRSV L1A spread was
also influenced by farm density (BF=17), whereby high-density
sectors were more likely to be the recipient of between-sector
transmission events. Several studies have also highlighted the risk
of disease spread and maintenance among farms in high-density
areas (Firkins andWeigel 2004; Alkhamis et al., 2017, 2018; Arruda
et al., 2017). Less intuitively, sectors with larger pig populations
were less likely to be the source of PRRS spread to other sectors
in the study area (BF=115). Potentially, large populations could
mean that pig movements can remain of shorter distance and
thus not cross sector boundaries, although other unexplored fac-
tors could also drive this pattern. Of note, Pearson’s correlation
between population size and farm density was 0.6.

The genetic diversity of the L1A viruses circulating in the
region changed seasonally. In 2015, the genetic diversity increased

rapidly in the spring season, peaking in the summer months and
then declined. A similar trend was observed in 2016, although
the change and the peak were slightly lower than in 2015. The
periods of declining diversity seemed to align with ‘conventional’
PRRS season (November—May) during which newer PRRS out-
breaks are typically reported in farms in many parts in the USA.
(Tousignant et al., 2015; Arruda et al., 2018b). This inverse rela-
tionship could be occasioned by several factors. For instance,
due to the reduced between-farm spread during the summer
months, viruses documented during this time may represent
farms with persistent infections (as opposed to new outbreaks).
These persistent on-farm infections may diverge from the origi-
nal outbreak strains through time. As such, the genetic distance
between viruses isolated during this period would be larger than
those isolated during the PRRS season. During the PRRS sea-
son, the rapid between-farm dissemination of prevalent outbreak
strains may translate to a pattern whereby the viruses detected
(the most prevalent strain) on different farms have little time to
evolve between transmission events, thus leading to less appar-
ent genetic diversity. We therefore postulate that these seasonal
peaks in diversity could be driven by the factors mentioned above
or other anthropomorphic factors. However, these trends require
further investigation.

Although using self-reported data may be associated with
some bias and data imbalance, this bias was considerably miti-
gated by several interventions employed in this study. The farms
present in this study area belong to a very small number of
production systems. Production systems have relatively consis-
tent surveillance and diagnostic protocols across all farms man-
aged by the system. The trust built through the long-standing
working collaboration between veterinarians, production sys-
tems, and MSHMP reduced the likelihood of reporting biases by
the production systems. Additionally, our continued adherence
to confidentiality agreements reduced the likelihood of reporting
bias.

Finally, partial immunity to closely related lineages/sub-
lineages of PRRSV could influence the transmission dynamics of
L1A in the region. Makau et al. (2021) observed that although prior
exposure to non-L1A PRRSV reduced the likelihood of occurrence
of L1A on farms in the study area, this association was not sig-
nificant. However, further research is required to understand the
evolutionary and dispersal dynamics of co-circulating strains in
swine-dense production areas.

5. Conclusion
In this study, we highlight that while animal movements are
generally important for the spread of PRRSV, the movement of
feeder pigs is particularly critical for shaping the regional spread
of PRRSV compared to other types of pigmovements. As such, pro-
duction systems should handle these types of movements more
cautiously and increase disease surveillance and monitoring in
nurseries. Producers could also consider standardizing the vac-
cination of wean pigs at the nurseries to harmonize immune
profiles and institute measures to avoid the introduction of other
viral variants to these farms This study also reiterates the rel-
evance of host population connectivity in viral dissemination.
Therefore, coordinated efforts to implement farm biosecurity
measures for individual farms and their neighbors in a ‘local-
ized’ area may help mitigate the spread of PRRS in the wider
region. Finally, the inclusion of empirical animal movement
data and the use of the GLM framework in BEAST enabled us
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to test novel hypotheses concerning the phylogeographic pat-
terns of L1A spread. The incorporation of movement data into
phylodynamic modeling, particularly stratified by the type of
movement as done here, may advance our ability to discern the
critical pathways of pathogen dispersal that can be targeted to
mitigate the spatial spread of disease of both animal and human
pathogens.
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