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Abstract

Although the constraints on a gene’s sequence are often assumed to reflect the functioning of that gene, here we propose
transfer selection, a constraint operating on one class of genes transferred to another, mediated by shared binding factors.
We show that such transfer can explain an otherwise paradoxical depletion of stop codons in long intergenic noncoding
RNAs (lincRNAs). Serine/arginine-rich proteins direct the splicing machinery by binding exonic splice enhancers (ESEs) in
immature mRNA. As coding exons cannot contain stop codons in one reading frame, stop codons should be rare within
ESEs. We confirm that the stop codon density (SCD) in ESE motifs is low, even accounting for nucleotide biases. Given
that serine/arginine-rich proteins binding ESEs also facilitate lincRNA splicing, a low SCD could transfer to lincRNAs. As
predicted, multiexon lincRNA exons are depleted in stop codons, a result not explained by open reading frame (ORF)
contamination. Consistent with transfer selection, stop codon depletion in lincRNAs is most acute in exonic regions with
the highest ESE density, disappears when ESEs are masked, is consistent with stop codon usage skews in ESEs, and is
diminished in both single-exon lincRNAs and introns. Owing to low SCD, the maximum lengths of pseudo-ORFs fre-
quently exceed null expectations. This has implications for ORF annotation and the evolution of de novo protein-coding
genes from lincRNAs. We conclude that not all constraints operating on genes need be explained by the functioning of the
gene but may instead be transferred owing to shared binding factors.
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Introduction
When considering the evolution of a gene or protein we as-
sume, often implicitly, that sequence constraints within that
gene are important in terms of the functioning of its RNA/
protein products. For example, when we observe constraint
on a protein domain within any given protein, we trivially
assume it to be a result of the domain being important for the
function of that protein. The same logic extends beyond pro-
tein motifs to RNA level features such as microRNA pairing
sites. The assumption that features of genes or proteins exist
to enable the functioning of that gene or protein appears so
self-evidently correct that it is difficult to comprehend that
there may be selectively constrained features of genes that do
not reflect the functioning of the gene in question, except for
overlapping genes. In this article, we suggest that composi-
tional patterns observed in some genes may instead be
explained by a transfer of a selective constraint from one class
of gene to another. We present an exemplar theoretical in-
stance and show that it makes correct predictions of other-
wise paradoxical sequence features.

Our exemplar considers the stop codon density (SCD) in
long intergenic noncoding RNAs (lincRNAs). We define co-
don density as the number of nucleotide positions consti-
tuted by the codon in question in any frame of a given
sequence, divided by the total number of nucleotides in the
sequence. For example, in the sequence AGATAGGGGA,
the GGA codon (AGATAGGGGA) has a density of 0.3. By

counting each nucleotide within the queried sequence only
once, the density is bound by the limits 0 and 1 (e.g., the
density of the codon GGG in the same sequence
AGATAGGGGA is 0.4). We can extend our density calcula-
tion to codon sets, by considering groupings of more than
one codon whose density we calculate together as per single
codon cases. For example, the dicodon set {GAT, GGG}
defines 7/10 positions (AGATAGGGGA) and has a density
of 0.7. Thus, we define SCD as the positions composed of the
tricodon set {TAA, TAG, TGA}. The sequence
GGTGATAACA, for example, has SCD equal to 0.6.

Unlike coding sequence (CDS) that is constrained to one
in-frame stop codon per sequence, lincRNAs have no com-
parable constraint. The SCD in lincRNAs should therefore be
predictable from underlying nucleotide content. However, we
argue that a particular mode of selection, which might be
termed transfer selection, would result in lower stop codon
usage than expected. Our argument is simple. Exonic splice
enhancers (ESEs), typically short hexameric motifs occurring
toward exon ends (within �70 bp of the splice site) (Berget
1995; Fairbrother et al. 2002; Fairbrother, Holste, et al. 2004;
Carlini and Genut 2006; Parmley et al. 2006, 2007; Woolfe
et al. 2010; Caceres and Hurst 2013) act as binding sites in
the immature mRNA for serine/arginine-rich (SR) proteins to
help direct the splice machinery. As ESEs overlap CDS, they
cannot introduce an in-frame stop codon. Consequently, it
seems highly likely that ESEs functioning in CDS are under
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selection to contain no or few stop codons. If SR proteins bind
the same or similar ESEs in multiexon coding and noncoding
transcripts, the need to employ ESEs in lincRNAs should
mean a depletion of stop codons in CDS ESEs transfers to
lincRNA ESEs, despite stop codons in lincRNA having no
translational function. In short, the binding preferences of
SR proteins in CDS may transfer a necessary constraint oper-
ating on CDS to an unnecessary and otherwise paradoxical
sequence constraint operating in noncoding sequences.

Many of the assumptions of our model are robust. First,
lincRNA transcripts containing introns are processed similarly
to protein-coding pre-mRNA transcripts (reviewed by Will
and Luhrmann [2011] and De Conti et al. [2013]).
Although SR protein binding is reported to be �30% less
efficient in lincRNA than in protein-coding exons, evidence
suggests that the same SR proteins bind both gene classes as
the binding of SR proteins SRSF2, SRSF5, and SRSF6 in
lincRNA all improve splicing efficiency (Krchnakova et al.
2019). Second, ESEs are under purifying selection in both
CDS and lincRNA, indicative of functionality. In CDS, this is
illustrated by decreased rates of evolution at both synony-
mous (Fairbrother et al. 2002; Carlini and Genut 2006;
Chamary et al. 2006; Parmley et al. 2006; Parmley and Hurst
2007; Sterne-Weiler et al. 2011; Caceres and Hurst 2013;
Savisaar and Hurst 2018) and nonsynonymous sites
(Parmley et al. 2006, 2007) and the relative lack of single-
nucleotide polymorphisms (Majewski and Ott 2002;
Fairbrother, Holste, et al. 2004; Carlini and Genut 2006;
Caceres and Hurst 2013) within ESEs. This selection is not
modest and, indeed, the proportion of exonic sequence de-
voted to governing splicing, predominantly moderated by
selection for ESEs, predicts the rate of human protein evolu-
tion as well as the amount a gene is expressed, the phyloge-
netically universal best predictor (Parmley et al. 2007).
Similarly, purifying selection on ESEs is thought to explain
most lincRNA constraint (Schuler et al. 2014; Haerty and
Ponting 2015).

To test this model of transfer selection, we start by asking
whether the SCD in ESE motifs is unusually low. We find this
to be the case, even when controlling for the nucleotide
composition of ESEs. We then ask whether, in contrast to a
priori expectation, lincRNA sequences are also relatively de-
pleted in stop codons and, if so, whether ESEs are the cause.
We show that lincRNAs do contain fewer stop codons than
expected given their nucleotide content. We provide several
lines of evidence to support the hypothesis that this is due to
the presence of ESEs and not open reading frame (ORF) se-
quence contamination.

Selective avoidance of stop codons could, at first sight, be
misinterpreted as evidence that any given lincRNA is an
unrecognized coding gene. As the low density of stop codons
in lincRNAs ensures that the longest possible ORF is longer
than expected under null models, our finding has ramifica-
tions for transcript annotation. We show that the typically
used threshold of minimal ORF size (300 bp) causes a high
(�10%) false-positive rate if used in isolation. Although the
dearth of stop codons could confuse annotation, it might also
have consequences for de novo gene origination via

erroneous translation of noncoding RNA as accidental pep-
tides can be longer than expected.

Results
If our model of transfer selection has validity, results must be
consistent with several predictions. First, for any motif that
functions within CDS, the protein-coding constraint requires
it to contain no stop codons in one of the three reading
frames. Thus, stop codons should be relatively rare in ESE
motifs that have to reside in CDS. The same need not be
true of motifs that function exclusively in introns or noncod-
ing exons. Second, any rarity should be specific to the set of
stop codons and not peculiarities resulting from motif set
choice or motif functionality. Third, stop codons should
also be depleted in lincRNA sequences after accounting for
their nucleotide content, this depletion being attributable to
ESEs. We test each of these predictions.

ESEs Are Depleted in Stop Codons
To address the first prediction, we first consider the SCD in
the “gold-standard” (low false-positive) INT3 ESE motif set
(N¼ 84 hexamers), for which each motif was identified in at
least three of four high-throughput ESE data sets (Caceres and
Hurst 2013) (see Materials and Methods for an overview of
how each ESE set was derived). The raw INT3 SCD is 0.054,
lower than the SCD of 0.094 for the 4,012 possible hexamers
not found in the INT3 set. This low SCD in the INT3 set is
significantly lower than SCDs of 10,000 iterations of 84 hex-
amers randomly sampled from the pool of all possible 4,096
hexamers (P� 0.034, one-tailed empirical P value). Thus, to a
first approximation, stop codons appear depleted in the true
ESE motifs.

ESEs Are Significantly Depleted in Stop Codons after
Controlling for Nucleotide Content
The above result is prima facie evidence that ESE motifs are
unusual in having a low SCD. However, it could also be owing
to underlying nucleotide biases within the set of ESEs. If so,
ESEs should also be depleted of codons of similar nucleotide
content to the stop codons. To address whether the low SCD
of ESEs reflects an avoidance specific to the stop codons, we
have to control for both the nucleotide content of the stop
codons and nucleotide content of the ESE motifs.

To control for the nucleotide content of the stop codons,
we compiled codon sets that are compositionally matched to
the stop codon set (see fig. 1A–C, and Materials and
Methods). We start by considering the 2,879 GC-matched
tricodon sets (i.e., with GC content ¼ 0.222, the same as
the stop codon set). To test whether the stop codons specif-
ically are underemployed in ESEs, we also have to control for
ESE nucleotide content. We therefore generated 10,000 dinu-
cleotide-matched pseudo-ESE motif sets (N¼ 84 pseudo-
motifs per iteration matching the number of INT3 motifs).
For any given codon set, we can then calculate a fold-
enrichment (FE) score (see Materials and Methods) that gives
the relative enrichment of a given codon set in the true ESEs
while accounting for underlying ESE nucleotide content. FE>
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FIG. 1. Overview of how the tricodon sets were derived. (A) Every codon was considered (N¼ 64). (B) Every possible permutation of three codons
was generated, ensuring each permutation contained three unique codons, leaving N¼ 64� 63� 62¼ 249,984 sets. For each grouping of three
unique codons, there exists 3!¼ 6 possible permutations of the three codons. Codon sets with the same three codons, just in a different order, were
considered to be the same codon set, and so duplicates were removed leaving N¼ 249,984/6¼ 41,664 codon sets. (C) The codon sets from (B) were
then grouped. The first set contains codon sets with identical net GC content to the stop codons (GC¼ 0.222, N¼ 2,879). A second contained
codon sets with identical net purine content as the stop codons (purine¼ 0.667, N¼ 6,856). Finally, a set comprising the intersection of both GC-
and purine-matched sets was generated (N¼ 473). The example codon set {AAA, AAC, ACT} has both equal GC and purine content to the stop
codons and is highlighted by the *.
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0 implies enrichment, FE < 0 implies depletion, and FE � 0
reflects null.

If stop codons are depleted in the true set of ESEs, because
they are stop codons, their FE should be lower than the FE of
the GC-matched control codon sets. Conversely, if stop
codons are depleted in ESEs because of the nucleotide con-
tent of stop codons and ESEs, their FE should be no lower
than the FE of the GC-matched control codon sets. We find
2,018/2,879¼ 70.09% of the GC-matched codon sets have a
higher FE than for the stop codon set (P< 2.2� 10�16, one-

tailed exact binomial test, null probability of success ¼ 0.5,
fig. 2A), consistent with a depletion due to being stop codons.

A particular curiosity of the ESE motifs (and of INT3 ESEs
more specifically) is that they are purine rich (mean number
of purine nucleotides in an INT3 motif ¼ 4.702/6, minimum
¼ 2/6, maximum ¼ 6/6) (Xu et al. 1993; Dirksen et al. 1994;
Tanaka et al. 1994; Gersappe and Pintel 1999; Fairbrother et al.
2002; Caceres and Hurst 2013). As stop codons are also purine
rich (6/9 nucleotides in the stop codons are purines), the
INT3 motifs should be more conducive to including stop
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FIG. 2. Comparisons of FE scores of the stop codon set. (A) Histogram showing the FE scores of codon sets containing three unique codons with
identical GC content to the stop codon set (GC¼ 0.222) in INT3 ESEs. The stop codon set highlighted by the vertical line. When controlling for the
dinucleotide-content of ESEs, the FE of the stop codon set is highly depleted compared with GC-matched codon sets and falls toward the lower tail
of the distribution of FE scores. (B) Boxplots of FE scores for tricodon sets with GC content equal to that of the set of stop codons, grouped by
purine content. Not only is the FE of the stop codon set (dotted horizontal line) reduced when compared with GC-matched codon sets, it is
significantly reduced (P ¼ 5.484 � 10�14, one-tailed exact binomial test) when compared with sets also containing identical purine content
(purine content grouping 0.6–0.7, N ¼ 473).
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codons. Thus, distorted purine content within both ESEs and
stop codons is unlikely to explain why stop codons are, in
absolute terms, underemployed in ESE motifs. Nonetheless,
we can ask whether after controlling for purine content the
stop codons are specifically underemployed as our transfer
selection model predicts.

To examine this, we identified the 6,856 tricodon sets that
exactly match the purine content of the stop codon set
(fig. 1C). The majority of these purine-matched sets (5,497/
6,856¼ 80.18%) have a higher FE than for the stop codon set
(P< 2.2� 10�16, one-tailed exact binomial test, null proba-
bility of success¼ 0.5). This implies the stop codon depletion
in ESEs is specific to stop codons and not explained by purine
content. Neither this result nor that for GC-matched sets
above can be explained by allowing stop codons to exist in
the matched codon sets or by the inability for stop codons to
overlap one another (supplementary text 1, Supplementary
Material online).

We can also control for both parameters simultaneously
by considering tricodon sets that have both GC and purine
content exactly matching the stop codon set (N¼ 413,
fig. 1C) (e.g., the set {AAA, AAC, ACT}). We find that signif-
icantly more of these GC-purine-matched codon sets have
greater FE than the stop codon set (317/413¼ 67.02%,
P¼ 5.484� 10�14, one-tailed exact binomial test, null prob-
ability of success¼ 0.5, fig. 2B). In sum, we conclude that the
depletion of stop codons in ESEs is relatively specific to the
stop codons themselves, rather than being owing to the pe-
culiarities in nucleotide content of ESEs and stop codons.

The Stop Codon Depletion Is a General Property of ESE
Motifs Defined within CDS
Another possibility that may explain the above depletion is a
peculiarity of the motifs contained in INT3 set. To address this
and ask whether the stop codon depletion applies to ESEs
more generally, we calculated the FE score for the stop codon
set in several ESE collections derived from analyses of coding
exons. As expected, stop codons are significantly depleted in
all ESE sets (table 1 and fig. 3A; note, the INT3 is not fully
independent of the RESCUE-ESE, ESR, and Ke400 sets). This
result also confirms that the INT3 set is representative of ESE
sets more generally. Stop codons in the Ke400 set (Ke et al.
2011), unexpectedly enriched in exon cores and under posi-
tive selection (Caceres and Hurst 2013; Savisaar and Hurst

2018), are also significantly depleted (P � 0.001, one-tailed
empirical P value) consistent with depletions due to function-
ing within coding regions. These results also argue against the
depletion in the INT3 set being a result of motif ascertain-
ment biases resulting from the methods used to identify any
particular set of ESEs (see “Motif sets” section for an overview
of how each set was derived).

To avoid covariance with CDS parameters (such as codon
usage), the PESE set (Zhang and Chasin 2004) was derived
from comparisons of constitutively spliced noncoding exons,
unspliced pseudoexons, and 50 untranslated regions (UTRs)
of intronless genes. Motifs in this set are therefore not subject
to protein-coding constraints and should provide an excep-
tion to the rule. For this set, the SCD (0.084) is higher
(P¼ 0.001, one-tailed one-sample t-test) and FE (�0.122)
negative but higher (P¼ 0.008, one-tailed one-sample t-
test) than for other ESE sets (table 1). This result is in the
direction we expect and consistent with our model. That the
FE is not 0 is likely a result of ESEs in this set also featuring in
the ESE sets derived from CDS exons (Caceres and Hurst
2013), suggesting that some of these ESEs are likely functional
in CDS and subject to protein-coding constraint.

The Stop Codon Depletion Is a General Property of
Motifs That Function in CDS
These results could, however, also be explained if there is a
general avoidance of stop codons in all splice-related or RNA-
binding protein (RBP) motifs whether they bind CDS or not.
By contrast, our hypothesis predicts that motifs that do not
function in CDS should not have a significant depletion. To
ask whether the constraint is specific to motifs that do func-
tion in CDS, we consider FE for CDS-binding RBPs more gen-
erally and motifs associated with intronic binding.

The general set of RBP motifs thought to be CDS binding
(Savisaar and Hurst 2017) (compiled from RBPDB [Cook et al.
2011], RBPmap [Paz et al. 2014], SFmap [Paz et al. 2010], and
CISBP-RNA [Ray et al. 2013]) demonstrates a similar signifi-
cant stop codon depletion (P� 9.999� 10�5, one-tailed em-
pirical P value). For the non-CDS motifs, both intronic splice
enhancers (ISEs) (P� 0.417, one-tailed empirical P value) and
intronic splice silencers (ISSs) (P� 0.307, one-tailed empirical
P value) have no avoidance of stop codons (fig. 3B). These
results therefore argue that the depletion of stop codons in
motifs functioning in exonic sequence is not ESE specific,

Table 1. SCDs and FE Scores Calculated from Dinucleotide-Matched Controls for Various RNA-Binding Protein Motif Sets.

Motif Set Number of Motifs Proportion Containing Stop Codons SCD FE P Valuea

INT3 ESE 84 0.107 0.054 20.459 0.020
RESCUE-ESE 238 0.126 0.065 20.404 9.999 3 1025

Ke400 ESE 400 0.063 0.033 20.391 0.001
ESR ESE 285 0.109 0.054 20.479 9.999 3 1025

PESE ESE* 2,069 0.222 0.084 20.122 5.000 3 1024

ISE§ 110 0.436 0.150 20.034 0.417
ISS§ 103 0.427 0.146 20.068 0.307
RBP motifs (CDS) 232 0.103 0.046 20.450 9.999 3 1025

NOTE.—The PESE motif set marked * was derived from analysis of constitutively spliced noncoding exons, unspliced pseudoexons, and 50 untranslated regions of intronless
genes. The motif sets marked § indicate those not located within CDS.
aOne-tailed empirical P value asking whether the real set of motifs have significantly less stop codons than simulated motif sets.
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splice specific nor a result of being an RBP-binding motif, but
rather a peculiarity associated with being located in exonic
CDS. Further, we find no evidence that stop codons contain-
ing ESE motifs are avoided in protein-coding sequences and
cannot be discounted as being suboptimal (supplementary
texts 2–5, Supplementary Material online).

Multiexon lincRNA Sequences Are Significantly
Depleted in Stop Codons
Does the lack of stop codons within ESEs transfer to and
constrain lincRNA sequences as we propose? To test this,
we employed the set of lincRNA sequences identified by
Cabili et al. (2011). In this set, potential protein-coding
transcripts were removed (see Materials and Methods for
details) and so this set should contain a minimized number
of lincRNAs with potential protein-coding ORFs that would
contaminate our results. After our filtering, we employ 1,919
multiexon lincRNAs (53 from multigene families and 1,866
from singleton families, see Materials and Methods).

To eliminate the possible effects of nucleotide bias of
the lincRNA sequences, we ask whether mature lincRNA
transcripts are depleted for stop codons given the under-
lying nucleotide content of each sequence. We shuffled

the nucleotides within every lincRNA and calculated the
SCD for that iteration of 1,919 shuffled “pseudo-
lincRNAs.” After repeating this for 1,000 iterations to gen-
erate a null distribution, we find no simulated iteration
with overall SCD as low or lower than the SCD in the real
1,919 lincRNA sequences (true SCD¼ 0.130, FE¼�0.162,
P � 9.99� 10�4, one-tailed empirical P value, table 2). As
the absence of a potential ORF was used to classify RNA
species as lincRNA (rather than mRNA), this is a poten-
tially conservative estimate.

To confirm that this low SCD in lincRNAs is specific to the
stop codons and not the GC content of the stop codons, we
consider densities of GC-matched tricodon sets within the real
and simulated sets of lincRNA sequences (converting codon
set SCD values to FE values). The FE of the stop codon set is
significantly lower than the FE of the majority of GC-matched
control tricodon sets both when stop codons are permitted in
the GC-matched codon sets (codon sets with FE> stop codon
set FE ¼ 2,315/2,879¼ 80.41%, P< 2.2� 10�16, one-tailed
exact binomial test, null probability of success¼ 0.5, table 2)
and when they are excluded (codon sets with FE> stop codon
set FE ¼ 1,771/2,121¼ 83.50%, P< 2.2� 10�16, one-tailed
exact binomial test, null probability of success ¼ 0.5). We
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FIG. 3. Histograms of the SCDs in 10,000 sets of dinucleotide-matched null pseudo-motif sets. The SCD in the real motifs of each set is shown by the
vertical line. (A) Each ESE motif set demonstrates a significant stop codon depletion. (B) SCDs in the motifs of ISEs, ISSs, and CDS-binding RBPs.
These depletions accord with their locations—intronic motifs not avoiding stop codons, CDS exonic motifs avoiding stop codons.
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conclude that the low SCD in lincRNA cannot be explained by
the low GC content of the stop codons.

We find this stop codon depletion is also robust to pair-
wise analysis (i.e., each gene vs. randomizations of that same
gene) (table 3), with 79.62% (1,528/1,919) of sequences having
FE< 0 (P� 0, one-tailed exact binomial test, null probability
of success ¼ 0.5). Of these, 493/1,919 have a significant de-
pletion (P¼ 1.23� 10�200, one-tailed exact binomial test,
null probability of success ¼ 0.05). Results are not affected
by the choice of sequences from paralogous families (supple-
mentary text 6, Supplementary Material online). Results are
also quantitatively similar using a second independent set of
sequences (GENCODE RNA Capture Long Seq annotated
sequences, Lagarde et al. [2017]) (supplementary text 7,
Supplementary Material online, and table 3). This trend is
unlikely to result from hidden ORF contamination as the
sequences 50 of the most 50 ATG, and therefore lacking
protein-coding potential, also have reduced SCD (supple-
mentary text 8, Supplementary Material online).

Is this depletion specific to exonic lincRNA sequence as
predicted by our transfer selection model? We compared the
SCD in exons and introns of lincRNA sequences in a pairwise
manner. This test is potentially conservative as some
“intronic” sequence may well be hidden exon derived from
unannotated alternative splice forms. However, we find that

in 68.79% (1,320/1,919) of genes, the SCD of the exons is less
than the SCD of the introns (P< 2.2� 10�16, one-tailed exact
binomial test, null probability of success¼ 0.5, table 2). Thus,
the depletion appears to be more specific to exonic sequen-
ces, consistent with our model.

Exons of Multiexon lincRNAs Demonstrate
Significantly Reduced SCDs When Compared with
Single-Exon lincRNA Exons
The above results are all consistent with our model of transfer
selection. If we are to attribute this depletion to the presence
of ESEs, the magnitude of the depletion in exons of single-
exon lincRNAs should not be as great as that for multiexon
lincRNAs, assuming single-exon genes do not need to contain
ESEs to bind splicing factors. As the filtered Cabili et al. (2011)
data set contained only 12 single-exon sequences in total, we
performed this analysis on the GENCODE lincRNA sequences
(Lagarde et al. 2017).

As expected, the SCDs of single-exon sequence exons
(N¼ 877 exons) are significantly higher than the SCDs of
the exons of multiexon sequences (N¼ 1,417 exons,
N¼ 456 sequences) (median single-exon SCD ¼ 0.139, me-
dian multiexon SCD ¼ 0.122, P¼ 8.878� 10�14, Wilcoxon
rank sum test). However, given the compositional difference

Table 2. A Summary of Various Tests of Sequence Composition for Sequences in the Two lincRNA Data Sets.

Sequence Set

Cabili et al. (2011) Lagarde et al. (2017)

Number of sequences 1,919 456
SCD 0.130 0.128
FEa 20.162

P � 9.99 3 1024
20.169

P � 9.99 3 1024

Number of GC-matched codon sets with FE > stop codon
set FEb

2,315/2,879 (80.41%)
P < 2.2 3 10216

2,300/2,879 (79.89%)
P < 2.2 3 10216

Number of GC-matched codon sets excluding stop
codons with FE > stop codon set FEb

1,771/2,121 (83.50%)
P < 2.2 3 10216

1,751/2,121 (82.56%)
P < 2.2 3 10216

Number of sequences with exonic SCD < intronic SCDb 1,320/1,919 (68.79%)
P < 2.2 3 10216

325/456 (71.27%)
P < 2.2 3 10216

Median single-exon sequence exon SCD n/a 0.139c

Median multiexon sequence exon SCD n/a 0.122c

Median single-exon sequence exon FE n/a 20.148d

Median multiexon sequence exon FE n/a 20.162d

aOne-tailed empirical P value.
bOne-tailed binomial P value, null probability of success ¼ 0.5.
cP¼ 8.878� 10�14, Wilcoxon rank sum test between the SCD of each gene’s exons and introns.
dP¼ 8.878� 10�14, Wilcoxon rank sum test between the FE scores of each gene’s exons and introns.

Table 3. A Summary of Individual Sequence FE Scores after Comparisons with Randomized Simulations of the Same Gene.

Sequence Set

Cabili et al. (2011) Lagarde et al. (2017)

Sequences with FE < 0a 1,528 (79.62%)
P � 0

416 (91.23%)
P � 0

Sequences with FE < 0, empirical P < 0.05b 493 (25.69%)
P 5 1.23 3 102200

206 (45.18%)
P 5 2.33 3 102139

aOne-tailed binomial P value, null probability of success ¼ 0.5.
bOne-tailed binomial P value, null probability of success ¼ 0.05.
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between single-exon and multiexon transcripts (median
single-exon GC ¼ 0.456, median multiexon GC ¼ 0.477,
P¼ 4.938� 10�12, Wilcoxon rank sum test), it is important
to control for the compositional differences of the exons for
each class. We therefore calculated FE scores of single-exon
sequence exons and multiexon sequence exons by simulating
each exon sequence individually. Consistent with the above
result and our expectations, FE scores for single-exon lincRNA
are negative but significantly higher than for multiexon
lincRNA (median single-exon FE ¼ �0.148, median multi-
exon FE ¼ �0.167, P¼ 0.027, one-tailed Wilcoxon rank sum
test). That the single-exon genes also have a negative FE is not
unexpected, as they are likely to be frequently bound by RBPs
that also bind in CDS and contain ESEs that have splice-
independent roles (Savisaar and Hurst 2016). In accord with
the reduced SCD in single-exon lincRNAs, we also find a lower
ESE density (median single-exon sequence exon ESE density
¼ 0.127, median multiexon sequence ESE density ¼ 0.155,
P< 2.2� 10�16, one-tailed Wilcoxon rank sum test).
Confirming that the FE metric controls for GC differences,
the slope on the line of FE predicted by GC is not significantly
different from 0 (P¼ 0.334).

All else being equal, 50 UTRs of protein-coding genes
should have a lower SCD in single-exon transcripts than in
multiexon ones, not least because the first intron is often
close to the ATG and hence to the UTR. We find that there
is a lower SCD in single-exon protein-coding genes than in
multiexon protein-coding genes, although this is not robust
to nucleotide control (see supplementary text 9,
Supplementary Material online). For reasons unknown, the
50 UTRs of single-exon protein-coding genes have higher ESE
densities than for those of multiexon genes (see

supplementary text 9, Supplementary Material online), which
both runs counter to a priori expectations and conflates the
above test.

SCD Is Lowest in Regions Where ESE Density Is Highest
Although the above is consistent with reduced SCD in
lincRNAs (compared with a nucleotide controlled null) as
we predict, can we attribute this to ESEs and hence argue
that the depletion is a result of CDS-imposed constraints on
ESEs? If so, we expect SCD to be lowest in the regions in which
ESEs typically reside. Despite selection on ESEs in protein-
coding genes being most pronounced at exon ends (Berget
1995; Fairbrother et al. 2002; Fairbrother, Holste, et al. 2004;
Carlini and Genut 2006; Parmley et al. 2006, 2007; Caceres and
Hurst 2013), in lincRNA the proportion of sequence within
70 bp of an exon junction is not significantly correlated with
evolutionary rate (Schuler et al. 2014), probably because in
lincRNA ESEs function at the 50 end more profoundly than at
the 30 end (Krchnakova et al. 2019). The depletion of stop
codons and enrichment of ESEs should therefore be strongest
at the 50 end of lincRNA exons.

For each lincRNA gene, we divided each exon longer than
207 nucleotides into the 50 flank (nucleotides 3–69), the
equivalent 30 flank and exon core (67 nucleotides centered
about the exon midpoint), such that each region from each
exon contained 67 nucleotides. We then calculated both ESE
density and SCD for each region within each exon. As pre-
dicted, ESEs are enriched in 50 flanking regions, whereas SCDs
in this region are closer to 0 than either the core or 30 regions
(fig. 4). In accord with the notion that 30 ends are not such key
SR protein interaction domains, ESE densities in 30 flanks are
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FIG. 4. Densities of ESEs and stop codons in separate regions of lincRNA exon sequences longer than 207 nucleotides. 50 flanks contain nucleotides
3–69 and 30 flanks the corresponding nucleotides at the other exon terminus. Core regions are the 67 nucleotides centerd about the exon
midpoint. In the 50 flank region with higher ESE density, the SCD is reduced. In both the core and 30 flank where ESE density is much reduced, SCD is
increased. These trends are consistent with the presence of ESEs reducing SCD.
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lower than in 50 flanks and have higher SCDs. Similarly, exon
cores have lower ESE densities and higher SCDs than 50 flanks.

SCDs in the various regions differ significantly from null
expectation (v2¼ 160.822, P¼ 1.20� 10�35, chi-square test),
with the 50 region observed/expected frequency (O/E) lowest
of all regions (50 flank O/E¼ 0.917, core O/E¼ 0.960, and 30

flank O/E¼ 1.1253). Further, when simulating each region
separately, the stop codon FE for the 50 flank (�0.185) is
more negative than both the core (�0.142) and 30 flank
(�0.121) (all FE scores with empirical P values < 0.05).
These broad-scale data are therefore consistent the lowest
SCD being in the region where ESEs are most frequent.

Reduced SCDs in lincRNA Sequences Are Attributable
to the Presence of Predicted ESE Motifs
Can we attribute the depleted SCD in lincRNAs to ESEs di-
rectly? We compiled a consensus set of motifs from the non-
redundant union of all ESE motif sets (2,582 motifs, 468
hexamers, and 2,060 octamers), excluding the Ke400 set as
motifs in this set demonstrate positive selection and enrich-
ment in exon cores over flanks (Caceres and Hurst 2013;
Savisaar and Hurst 2018) despite splice mutations being
enriched at exon ends (Woolfe et al. 2010). By excluding
any sequence that matches a motif within the consensus
set after predicting hits to all motifs to recover overlapping
motifs, the influence of ESEs on SCD is eliminated. If ESEs are
driving the depletion, the remaining (unmatched) sequence
should have SCD similar to that predicted by its underlying
nucleotide content.

We predicted hits to the consensus ESE motifs in each
lincRNA and retained only the unmatched sequence. After
randomly shuffling the remaining nucleotides, we observe
that the real non-ESE sequence has a higher SCD than null
(FE ¼ 0.159, P � 9.99� 10�4, one-tailed empirical P value,
supplementary table 1, Supplementary Material online) indi-
cating the overall depletion of stop codons is owing to ESE
motifs. This result further argues against the net depletion of
stop codons in lincRNAs being an artifact of hidden protein-
coding ORFs, as such a model predicts stop codon depletion
both within and outside ESEs. Why the remaining sequence is
enriched in stop codons is unknown, but could be the result
of selection on the remaining non-ESE sequence to “appear”
less like ESE to SR proteins to prevent inappropriate binding
(e.g., see Savisaar and Hurst 2017) (supplementary text 10,
Supplementary Material online). We also find that the

depletion of stop codons is not a result of lincRNA sequences
avoiding the use of those ESE motifs that contain stop codons
(supplementary texts 11 and 12, Supplementary Material
online).

Skewed Stop Codon Usage in ESEs Reflects Skewed
Stop Codon Usage in lincRNA
Above we have treated the stop codons as a single set.
However, in all ESE sets (including INT3 and the consensus
set), TGA is more abundant than TAA or TAG (table 4). This
provides us with a further test of our transfer selection model. If
the stop codon avoidance in lincRNAs is owing to ESEs avoid-
ing stop codons, the avoidance of TAA and TAG in ESEs should
be reflected in the usage of each stop codon within lincRNAs.

Using the Cabili et al. (2011) set of lincRNAs, we find that
the stop codons in lincRNA are not used at similar frequen-
cies, with TGA the most abundant (TAA density ¼ 0.043,
TAG density¼ 0.027, and TGA density¼ 0.060). When com-
pared with null randomized shuffled lincRNA sequences, both
TAA and TAG are significantly depleted (TAA: FE¼�0.292, P
� 0.001; TAG: FE¼�0.439, P� 0.001, one-tailed empirical P
values), whereas TGA is significantly enriched (FE¼ 0.247, P�
0.001, one-tailed empirical P value). Thus, the stop codons
most avoided in ESEs are those most avoided in lincRNA.

To attribute this directly to the presence of ESE motifs, we
also ask whether the significant depletion of TAA and TAG
occurs when ESEs are not present. If the TAA and TAG
depletions remain in non-ESE sequence, this would argue
for depletion due to reasons other than ESEs. As before we
considered the lincRNA sequence that remains after the re-
moval of sequence matching motifs in the consensus ESE set.
After removal, both TAA and TAG are now found signifi-
cantly more frequently than expected (FE ¼ 0.590, P �
0.001 and FE ¼ 0.117, P � 0.001, respectively, one-tailed em-
pirical P values), whereas TGA is depleted (FE¼ �0.164, P�
0.001, one-tailed empirical P value). We conclude that the
depletion of both TAA and TAG in ESEs appears to force
lincRNA sequences to also underemploy these two stop
codons, consistent with our model.

The Majority of lincRNAs Contain Permissible Pseudo-
ORFs Longer than Expected by Chance
Taken together the above results are consistent with our
model, transfer selection forcing a low density of stop codons
in lincRNAs. Might this impact gene annotation? To distin-
guish noncoding RNA from protein-coding sequence, com-
putational annotation approaches often consider the lengths
of potential ORFs (Frith, Bailey, et al. 2006; Clamp et al. 2007;
Dinger et al. 2008). To reduce the likelihood of falsely cate-
gorizing noncoding RNAs, putative noncoding RNAs are con-
sidered as those lacking ORFs longer than 300 bp as the
majority (>95%) of annotated eukaryotic proteins are
thought to be longer than 100 amino acids (Frith, Bailey,
et al. 2006; Clamp et al. 2007; Dinger et al. 2008).

Our results above, however, have implications for any po-
tential lincRNA pseudo-“ORF” (pORF) lengths. If the net de-
pletion of stop codons constrains lincRNA sequences as we
suggest, lengths of potentially tolerated lincRNA pORFs

Table 4. Density of Each the Three Stop Codons in Each of the ESE
Motif Sets.

Motif Set Codon Density in Motif Set

TAA TAG TGA

INT3 0 0 0.054
ESR 0.005 0.011 0.039
Ke400 0 0 0.033
PESE 0.005 0.007 0.071
RESCUE 0 0 0.065
Combined 0.005 0.007 0.068
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should be longer than expected. Indeed, Niazi and Valadkhan
(2012) show a nonnegligible proportion of “functional” long
noncoding RNAs (lncRNAs), although not intergenic, have an
“ORF” length> 300 nucleotides (e.g., the Xist gene encodes a
functional�15-kb transcript in mouse [Prasanth and Spector
2007] with a potential 592 nucleotide ORF [Brockdorff et al.
1992]).

To address the likely extent to which true noncoding
lincRNAs present long pORFs by chance, we generated
1,000 sets of simulated lincRNA sequences by shuffling the
full multiexon lincRNA transcripts. For each real and simulant
sequence, we determined the length of the longest pORF,
assuming pORFs start ATG and terminate with a stop codon
in the same reading frame. Seven real sequences had no com-
plete pORF in any frame and were excluded. We calculated
the Z score for each sequence, with a positive Z indicating an
increased maximum pORF length compared with null
sequences.

We find robust evidence that pORFs are commonly longer
than expected, with 62.33% (1,227/1,912) having Z> 0
(P< 2.2� 10�16, one-tailed exact binomial test, null proba-
bility of success ¼ 0.5, median longest pORF length: real ¼
159, simulants¼ 129; maximum longest pORF length: real¼
2,202, simulants ¼ 450). Further, more sequences than
expected by chance also have a significantly positive Z
(13.13% ¼ 251/1,912, P< 2.2� 10�16, one-tailed exact bino-
mial test, null probability of success ¼ 0.05). Only one se-
quence had a significantly shorter pORF than expected (P �
1, one-tailed exact binomial test, null probability of success¼

0.05). These differences in pORF length are greatest when AT-
content is highest, that is, when stop codons are more likely
to occur by chance (q ¼ �0.083, P¼ 3.00� 10�4,
Spearman’s rank correlation between sequence GC content
and sequence pORF length, fig. 5A). Thus, it would appear
that not only are permissible pORFs longer than expected,
but there exists greater deviation from expected pORF
lengths (measured in standard deviation units) when stop
codons should be more frequent.

Almost 10% of Sequences Would be Misannotated If
Categorized on ORF Length Alone
Do longer than expected pORFs have implications for
lincRNA sequence identification? Although the 300-bp ORF
lower limit is applied to reduce false-positive rates (Frith,
Bailey, et al. 2006; Clamp et al. 2007; Dinger et al. 2008),
sequences are also annotated based on their level of sequence
conservation as noncoding RNAs demonstrate conservation
but below that of protein-coding genes. However, a conser-
vation approach is a priori poor at identifying young ORFs.
Given pORF lengths are increased owing to stop codon avoid-
ance, we ask what a safe length threshold might be.

We find 11.57% (222/1,919) of the total sequences meet or
exceed the 300-bp threshold in our data (taking the median
length for sequences grouped into gene families). However, is
this number biologically relevant? For example, random
sequences of equal length to lincRNA sequences may also
contain pORFs longer than 300 bp. To test this, we
concatenated all exons from all sequences, randomly shuffled
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FIG. 5. Analyses of potential ORFs in lincRNA sequences. (A) Z scores for the longest permissible ORF lengths when compared with randomly
shuffled simulated sequences are negatively correlated with GC content (q¼�0.082, P¼ 2.976� 10�4, Spearman’s rank correlation). Moreover,
data points demonstrating significant deviations (blue diamond) from expected ORF are all positive, except one. One sequence with Z¼ 32.519
has been removed from the figure for visual purposes. (B) The excess proportion of sequences with maximum ORF lengths longer than expected
decreases with increasing ORF length thresholds. A threshold of 368 bp is required such that there is less than a 5% excess (dotted line). Results for
thresholds within the region highlighted in red demonstrate areas of ORF lengths that could be ambiguous if used as the sole determinant of
coding capability, extending beyond thresholds that are up to and including the commonly used 300-bp threshold (gray).
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the concatenation and extracted randomized sequences with
lengths matching the real mature transcript sequences,
thereby generating 1,000 randomized null sets of sequences
with equal overall transcript length and nucleotide content.
For each iteration of randomized sequences, we then calcu-
lated the number of sequences with a pORF exceeding
300 bp. We find the number of real lincRNA sequences ex-
ceeding the threshold (222) is almost significantly greater for
the null sets (mean number exceeding ¼ 44.434, standard
deviation¼ 171.770, P� 0.051, one-tailed empirical P value).
Further, no randomized set had a pORF longer than the
longest pORF seen in the true lincRNAs (P � 9.99� 10�4,
one-tailed empirical P value, maximum true ¼ 2,202, maxi-
mum simulant ¼ 594). Using the mean number of simulant
sequences exceeding the 300 bp threshold as the expected
number to exceed the threshold, this suggests 222�44:434

1;919 �
9:25% of real sequences could be misclassified based on ORF
length alone beyond that expected by chance.

The above results suggest that owing to transfer selection,
achieving a 5% false-positive rate requires a threshold longer
than 300 bp. How long might this cutoff be? Using ten nu-
cleotide threshold intervals between 200 and 600, we calcu-
lated percentage excesses over null as above and fitted a local
regression model. This model predicts a threshold of 368 bp is
required so that only 5% of sequences exceed the threshold
(fig. 5B). However, although a longer threshold reduces the
false-positive rate, we note that there likely exists an abun-
dance of functional protein-coding genes that encode short
proteins (Oyama et al. 2004; Frith, Forrest, et al. 2006;
Andrews and Rothnagel 2014; Slavoff et al. 2014). Thus, a
longer threshold will also increase the false-negative rate.
Given this, bioinformatic approaches should be coupled
with experimental validation (Kashi et al. 2016) whenever
possible.

Discussion
Although much is known about the selective pressures acting
on CDSs, those in noncoding sequences are less well under-
stood. Human lincRNAs are under weaker purifying selection
than protein-coding genes (Marques and Ponting 2009; Cabili
et al. 2011; Haerty and Ponting 2013) and contain fewer con-
served regions (Pang et al. 2006). However, ESE motifs that are
under strong purifying selection in protein-coding genes
(Parmley and Hurst 2007; Parmley et al. 2007; Warnecke
et al. 2008; Smithers et al. 2015; Savisaar and Hurst 2018)
are also under purifying selection in lincRNA sequences, sug-
gesting splicing of multiexonic lincRNA transcripts is also
important for function (Schuler et al. 2014; Haerty and
Ponting 2015). With both coding and noncoding sequence
thought to undergo the same splicing process by the same
splice machinery (Will and Luhrmann 2011; De Conti et al.
2013; Krchnakova et al. 2019), we hypothesized that the same
constraints should apply to both types of sequence.

Here, we have provided evidence consistent with a deple-
tion of stop codons found in ESE motifs that, allowing for
nucleotide content, is specific to the stop codons. That both
ESEs and stop codons are purine rich makes the depletion of

stop codons particularly noteworthy (indeed the high purine
content may be a defining feature of ESEs to discriminate
exon ends from other sequences, see supplementary text
13, Supplementary Material online). The evidence that we
have presented suggests that this stop codon depletion of
ESEs that function in CDS transfers to lincRNA sequences. As
a consequence, and contrary to null expectations, lincRNAs
too are significantly depleted in stop codons. Multiple lines of
evidence, including a significant increase in stop codons
found after removing ESEs from lincRNA sequences, suggests
that ESEs are the origin of this depletion (or at least a major
contributor). Thus, constraints imposed on motif composi-
tion in protein-coding sequences can transfer to noncoding
sequence.

One could argue that the most obvious alternative expla-
nation for the depletion of stop codons in lincRNA is the
contamination of the data set with true, but unrecognized,
protein-coding sequences. However, several pieces of evi-
dence argue against this. First, if a lack of ORF is used to
classify RNA species as lincRNA, rather than mRNA, we ex-
pect an enrichment of stop codons in lincRNA. Our tests
comparing SCDs are thus conservative. Second, we observe
similar depletions from two independent data sets, in which
both take measures to exclude sequences demonstrating ev-
idence of protein-coding potential. That there is also a deple-
tion of stop codons in exon regions with the highest ESE
density, yet no depletion in exonic sequence after the removal
of ESEs (and indeed an enrichment), suggests lincRNA
sequences are not depauperate in stop codons in their en-
tirety but biased by the presence of ESEs. Furthermore, the
sequence upstream of the first ATG is stop codon depleted,
despite no influence of any ORF on densities (supplementary
text 8, Supplementary Material online).

We also question whether ORF contamination could ex-
plain the magnitude of the observed reduction in SCD. Any
contamination by real hidden protein-coding ORFs would
also have to be substantial, particularly given the pairwise
analysis of SCDs against randomizations of each gene indi-
cates that 79.62% of sequences have a stop codon depletion.
Given the filters on the original sequences, it seems unlikely
that true ORFs, common enough to provide such contami-
nation, would have gone unrecognized.

In principle, lincRNA sequences may be depleted in stop
codons if they overlap unannotated protein-coding genes on
the same strand. Unless there is a rich source of unannotated
overlapping ORFs this is not parsimonious to explain the
commonality of stop codon depletion. Moreover, in neither
the hidden ORF nor the unannotated overlapping ORF
model is the specificity of stop codon depletion to ESEs
and exon 50 ends (where ESEs are most abundant) explained.
That the stop codons depleted in lincRNA (TAA and TAG)
accord with the stop codons depleted in ESEs also supports
transfer selection above ORF contamination. In sum, transfer
selection therefore provides the most parsimonious explana-
tion of our observations.

We have also assumed that as SR proteins must bind cod-
ing exons there is a constraint transferred to noncoding
exons. Might there be a transfer in the opposite direction?
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If we consider CDS alone, a theoretical set of motifs with most
utility (most likely to hit exons exclusively) would be one that
avoids stop codons entirely. Over evolutionary time, selection
might therefore be expected to eliminate ESEs with stop
codons as potential binding motifs. Yet stop codon contain-
ing motifs persist. However, RBPs and binding motifs are
thought to coevolve which has been exploited to predict
RBP-binding domains (Yang et al. 2018). If these stop codon
containing motifs can be more easily employed in noncoding
sequence while also providing the adequate binding capabil-
ity, then they might still provide enough splicing functionality
to be selected for. Given only a minority of transcribed se-
quence is protein-coding (Encode Project Consortium 2012),
the relative frequency of noncoding RNA splicing may render
such motifs selectable. In turn, they may also then be useful
motifs in protein-coding sequence where splice specificity is
less important, but the nucleotide composition of the se-
quence allows their usage. Thus, if motifs that include stop
codons are of utility and can be frequently used within
lincRNA, it may be that RBPs and stop codon containing
motifs coevolve such that they persist as functioning motifs.
A suggestion of this is found in our result that the ESEs that
feature stop codons are if anything overused on a per motif
basis in CDS (supplementary text 2, Supplementary Material
online).

Stop Codon Depletions and the Origin of De Novo
Genes
The stop codon depletion in lincRNA and ESEs more gener-
ally might modulate the evolution of new genes. The origin of
new genes receives much attention (overviews in Long et al.
2003; Kaessmann 2010; Tautz and Domazet-Loso 2011;
McLysaght and Hurst 2016). Although duplication and rear-
rangement (Ohno 1970; Jacob 1977; Zhang 2003; Ciccarelli
et al. 2005; Innan and Kondrashov 2010; Magadum et al. 2013;
Van Oss and Carvunis 2019) are known to be important
processes that adapt and reuse functional sequence, the cre-
ation of de novo protein-coding genes from previously non-
functional or noncoding sequences is increasingly being
recognized as a source of novelty (Tautz and Domazet-Loso
2011; McLysaght and Guerzoni 2015; McLysaght and Hurst
2016).

Two important steps are required to give rise to and allow
fixation of functional proteins from noncoding sequence: ac-
quisition of uninterrupted ORFs and regulatory transcrip-
tional signals. The order of these events is not clear nor
necessarily uniform, with two models proposed each arguing
for the respective events occurring first (McLysaght and
Guerzoni 2015; Schlotterer 2015). In the “RNA-first” scenario,
the abundance of lncRNAs that are transcribed and, possibly
accidentally, associated with ribosomes (Wilson and Masel
2011; Ruiz-Orera et al. 2015) makes it possible that many
unintended peptides are actively translated, thereby becom-
ing protogenes. In an “ORF-first” scenario, if an ORF is already
present within the sequence mutations in cis regions could
induce expression of the ORF (Kaessmann 2010; Zhao et al.
2014).

LincRNAs containing longer than expected ORFs owing to
stop codon depletion are relevant to the RNA-first model.
What is unknown is how the length of the pORF of a proto-
gene relates to the probability of evolving from proto to
functional protein-coding gene. If longer sequences are
more likely to find immediate utility, rather than be toxic
(Boyer et al. 2004; Levine et al. 2006), then this should exag-
gerate any putative tendency for de novo genes to originate in
GC-rich sequence. Although ORF lengths in AT-rich regions
have a greater deviation from expected (fig. 5A), the raw ORF
lengths are longer in GC-rich domains (correlations between
GC raw ORF lengths are significantly positive, q 5 0.219,
P< 2.2� 10�16, Spearman’s rank correlation). Further, GC-
rich regions are more transcriptionally active (Lercher et al.
2003) with transcription factor binding sites being GC rich
(Wang, Zhuang, et al. 2012), and therefore more likely to give
rise to lincRNA expression.

Stop Codon Avoidance Is Seen for Other RBP Motifs
Although above we have considered ESEs and show that they
contain few stop codons, in principle, these are only one
exemplar of CDS exonic motifs subject to stop codon deple-
tion and hence subject to transfer selection. An expectation
of stop codon depletion should then not be limited to ESEs
but should also apply to other RBP-binding motifs that func-
tion within coding regions. We indeed find a broader set of
such motifs (compiled by Savisaar and Hurst [2017]) has a
significant depletion of stop codons (P � 9.999� 10�5, one-
tailed empirical P value, table 1 and fig. 3). We caution that
only conservative conclusions should be drawn from this re-
sult as the quality of motifs used in the set is thought to vary
(Savisaar and Hurst 2017). Nonetheless, we suggest that any
peculiarities of sequence content necessitated by binding
within CDS could have multiple transfer modes. It remains
to be seen to what extent the compositional properties of
lincRNAs are a consequence of carryover of binding prefer-
ences of RBPs shared with CDSs.

It is also the case that transfer selection should not be
considered restricted to RBPs but may apply in other contexts
and not limited to stop codons. Here, we consider the com-
parison between coding and noncoding sequence, yet in the-
ory similar logic could be applied to anything that interacts
with two different sequence types. For example, there may be
proteins that interact within different regions at the DNA
level and transfer constraints between them.

Materials and Methods

General
Analyses were conducted using custom Python 3.6.4 scripts
(available at https://github.com/la466/lincrna_stops_repo)
using standard, readily available Python libraries. R version
3.5.1 (R Core Team 2018) was used for statistical testing
and plotting of figures. BEDTools version 2.27.1 (Quinlan
and Hall 2010) was used for operations performed on se-
quence coordinate data. For motif simulations, 10,000 itera-
tions were run. For all other simulations, 1,000 iterations were
run unless specified.
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Retrieval and Filtering of lincRNA Sequences
LincRNA sequence coordinates were downloaded from the
supplementary data set 2, Supplementary Material online,
“TraitTable” sheet of Cabili et al. (2011). Sequences identified
by Cabili et al. (2011) were done so via four key steps: 1)
transcriptome reconstruction from RNA-seq data using two
transcript assemblers (Cufflinks and Scripture), 2) compila-
tion of all noncoding and unclassified transcripts previously
annotated, 3) determination of unique isoforms from each
transcript locus by integrating RNA-seq reconstructions with
all annotation resources (Cuffcompare), and 4) processing of
transcripts to identify those reliably expressed, large, multi-
exonic, noncoding, and intergenic. Of these, the lowly
expressed transcripts were removed using a learned read cov-
erage threshold. Noncoding transcripts were filtered from
novel potential protein-coding transcripts by removing those
with evolutionary constraint to preserve amino acid content
in any of the three reading frames (those with a positive
phylogenetic codon substitution frequency metric [Lin et al.
2011]) and by excluding transcripts matching a protein-
coding domain present in the Pfam database (Finn et al.
2010).

From the supplementary data, Supplementary Material
online, only entries with the “ConservativeSet” flag set to 1
were retained, to leave 4,662 data points. These sequences are
those with no evidence of protein-coding potential and that
can be reconstructed in at least two different tissues or recon-
structed by two assemblers in the same tissue. As such, tran-
scripts with insufficient coverage should also have been
removed. This sequence set should therefore contain a min-
imized number of potential protein-coding transcripts.
Sequences containing noncanonical nucleotides and those
containing only one exon were removed, leaving 4,646 multi-
exon sequence data points.

To limit the effects of retaining genes with similar compo-
sition from our results, genes were clustered into paralogous
families. The sequences were BLASTed all against all (nucleo-
tide–nucleotide BLAST 2.4.0þ [Camacho et al. 2009]).
Starting with a randomly selected sequence, all sequences
that had a significant hit were grouped as part of the same
family and considered a single data point for the analyses.
After grouping into paralogous families, 1,919 data points
remained. For analyses, either the median value for sequences
that are members of the same family was taken or one mem-
ber selected at random to represent the family. Where one
member was selected at random, the analysis was repeated
multiple times to avoid biases resulting from the random
family member chosen.

Intergenic GENCODE lncRNA sequences reannotated by
RNA Capture Long Seq from heart, testes, liver, brain, human
K562, and human HeLa cells were also used (Lagarde et al.
2017). Sequence IDs corresponding strictly and exclusively to
lncRNA were obtained from Lagarde et al. (2017, supplemen-
tary data set 1) (although annotated as lncRNA, these
sequences are intergenic and therefore appropriate). A proc-
essed bed file containing only entries for full-length transcripts

whose 50 end is supported by FANTOM5 CAGE transcription
start site data and 30 is polyadenylated (cage þ
polyASupported) was downloaded from the GEO database
accession GSE93848 (last accessed May 24, 2019). Only entries
corresponding to the exclusive lncRNA IDs were retained.
From these, the full-length multiexonic transcripts containing
only canonical nucleotides were built, retaining only those
longer than 200 nucleotides to leave 11,083 transcript
sequences. These were then subject to clustering into paral-
ogous families as before, leaving 456 multiexon data points for
analyses. No sequences were identical to sequences from
Cabili et al. (2011). The exons of single-exon lincRNAs were
also extracted (N¼ 2,972) and clustered into paralogous fam-
ilies, leaving 877 single-exon data points.

Retrieval and Filtering of Protein-Coding Sequences
Protein-coding sequences were retrieved using similar proto-
cols to Savisaar and Hurst (2016). To extract genome features,
both the genome sequence and genome features were down-
loaded from the Ensembl database (Zerbino et al., 2018;
Release 94, ftp://ftp.ensembl.org/pub/release-94/, last
accessed October 25, 2018). The genome features were que-
ried and only those labeled as “CDS” and “protein-coding”
were retained. From these features, the full CDS was con-
structed leaving 98,382 CDSs in the data set. This data set
was filtered to remove CDSs that contained noncanonical
bases, were not of a length divisible by 3, did not start with
ATG, and did not end with a stop codon or contained in-
frame stop codons. If more than one transcript per gene was
present, the longest was retained; if two with the same length
per gene were present, the first to be queried was retained.

The genome sequence and features for the Macaca
mulatta genome were also obtained from the Ensembl data-
base (Zerbino et al. 2018; Release 94, ftp://ftp.ensembl.org/
pub/release-94/, last accessed November 5, 2018). Orthologs
for all human genes remaining after the filtering steps de-
scribed above were obtained via an Ensembl Biomart query
using the Pybiomart Python package (https://github.com/
jrderuiter/pybiomart, last accessed November 14, 2018). The
orthologous CDSs of Macaca mulatta that corresponded to
the remaining filtered human genes were extracted in the
same process as for human CDSs and filtered according to
the previous criteria. Both the human and macaque CDSs
were translated to protein sequences and aligned using
MUSCLE v3.8.31 (Edgar 2004) via the Biopython wrapper.
Once aligned, the sequences were converted back to the
corresponding DNA sequences. The dS and dN/dS scores of
the human/macaque alignments were calculated using PAML
codeml (Yang 2007) using the Bio.Pyhlo module (Talevich
et al. 2012) from the Biopython wrapper, with the settings
seqtype ¼ 1, runmode ¼ 0, model ¼ 0, Nsites ¼ [] and an
arbitrary tree. Only CDSs that produced a dS score of>0.2 or
a dN/dS score of >0.5 were retained to minimize the risk of
pseudogene contamination (Savisaar and Hurst 2016). After
this filtering, 13,187 multiexon sequences remained.

Sequences were then grouped as before into paralogous
families. Single-exon sequences (1,036) were also extracted
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and grouped into paralogous families. 50 UTR sequences of
both multi- and single-exon sequences were obtained by
constructing the full-length mature transcript and querying
for the index for where the CDS starts. The 50 UTR was de-
fined as all nucleotides up to this index point. Introns of the
sequences were extracted from the genome sequence using
the coordinates from the relevant exon entries.

Motif Sets
The INT3 motif was downloaded from the supplement of
Caceres and Hurst (2013). Other ESE motif sets except
Ke400 were obtained as described in Caceres and Hurst
(2013) and Savisaar and Hurst (2018). ISEs were obtained
from the supplement of Wang, Ma, et al. (2012). ISS motifs
were obtained from the supplement of Wang et al. (2013).
RBP motifs were obtained from the supplement of Savisaar
and Hurst (2017). For RBP motifs, those that had significant
enrichment P values were considered CDS binding and those
with significant depletion P values were considered non-CDS
binding. We provide a brief overview of each ESE motif set
below:

RESCUE. Motifs were derived computationally (Fairbrother
et al. 2002; Fairbrother, Yeo, et al. 2004), on the assumption
that ESEs should be enriched in constitutively spliced exons
and avoided in flanking introns and be more frequently when
splice sites are weak. Internal exons and flanking introns were
queried. Results were experimentally validated and compared
with prior data.

Ke400. A systematic experimental analysis (Ke et al. 2011)
where all 4,096 hexamers were substituted at five positions in
two internal exons in minigene constructs. These constructs
were transfected to human cells with the splice promoting
ability of each motif reported. The top 400 most potent splice
modifying hexamers were retained for the Ke400 data set.

ESR. Motifs were derived computationally (Goren et al.
2006), searching human–mouse orthologous exons with
the same lengths, shorter than 250 nucleotides and with clas-
sical GT-AG splice sites. Two expected metrics were used to
query dicodon frequencies, assuming the two codons appear
independently. The first, expected conservation rate, multi-
plied the probability of codon 1 to be conserved between
human and mouse, the probability of codon 2 to be con-
served between human and mouse, and the number of times
the dicodon appeared conserved between human and
mouse. For each dicodon, this reflects the expected frequency
of observing a conserved human–mouse dicodon. The sec-
ond, expected observation rate, multiplied the number of
times the pair of amino acids encoded by the dicodon was
detected in the data. These numbers were compared with the
real frequency of conserved and occurred dicodons. Only
dicodons that were statistically significantly overrepresented
and highly conserved at synonymous sites were considered.

PESE. Computationally derived motifs (Zhang and Chasin
2004) comparing frequencies of octamers overrepresented in
constitutively spliced noncoding exons versus unspliced pseu-
doexons and 50 UTRs of intronless genes, assuming ESEs are
not frequently in pseudoexons and UTRs are devoid of ESE

activity. Experimental confirmation of many ESEs subse-
quently provided (Zhang et al. 2005).

INT3. The motifs that appear in at least three of the
RESCUE, Ke400, ESR, and PESE data sets (Caceres and Hurst
2013). Considered a “gold-standard” set and designed to have
a low false-positive rate.

Generating Compositionally Matched Codon Sets
All permutations of three unique codons were generated
(N¼ 64� 63� 62¼ 249,984), including stop codons
(fig. 1A). However, 3! ¼ 6 permutations of the same three
codons exist (e.g., the set {ATC, GAC, TCA} is equivalent to
{GAC, TCA, ATC}) and so redundant sets were removed,
leaving N¼ 249,984/6¼ 41,664 codon sets (fig. 1B). To con-
trol for the net GC content of stop codons (fig. 1C), we filtered
the remaining codon sets to retain only those with identical
net GC content as the stop codon set, GC content of a codon
set being defined as the sum of the number of G and C
residues of the three codons divided by 9 (the number of
nucleotides). For example, the tricodon set {AGT, AAT, GAT}
has GC content of 0.222, the same as the stop codon set.
There are 2,879 tricodon sets with net G and C content
identical to the stop codon set.

A purine-matched subset (N¼ 6,856) was also derived by
taking all sets with identical purine content as the set of stop
codons (net purine content¼ 0.667). Note the size of the GC-
and purine-matched codon sets differs as a result of the GC
content (0.222) being more extreme than the purine content
(0.666), with the smallest groupings of codon sets being those
with the most extreme content, following binomial principles.

The intersection of these two groupings of tricodon sets
contained those tricodon sets with both equal GC and purine
content to the stop codons (N¼ 473). We performed further
restrictions to generate sets with identical GC content but
that contained no stop codons (N¼ 2,121) and with identical
GC content but in which no codon could overlap with any
others from the same set (N¼ 131).

Generating Dinucleotide-Matched Motif Sets
Sequences within a motif set (e.g., INT3) were scanned for
every dinucleotide in both reading frames (e.g., the motif
GAAGTA contains the dinucleotides GA, AG, TA, AA, GT).
The frequencies for each dinucleotide were totaled for all
motifs in the data set. Then, for each simulation iteration,
for each real motif (typically six nucleotides) a pseudo-motif
of the same length was generated by randomly sampling
dinucleotides with probabilities defined by the true dinucle-
otide frequencies calculated (i.e., for a real motif of length six,
three dinucleotides were randomly sampled). If a motif was
not of even length, a random nucleotide was sampled using
the distribution of nucleotides in the true motif set and
appended pseudo-motif. If the new pseudo-motif had already
been generated in that iteration, it was removed and the
process restarted. Each simulation iteration therefore con-
tained an identical number of pseudo-motifs as the number
in the true set.
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Density Calculations
We calculated density as outlined in the Introduction section.
If a query motif overlapped another, overlapping nucleotides
were only counted once. For example, for the query motif set
{CCT, GGG} in the sequence TGATAGGGGA, we only con-
sider the four nucleotides that match the query motifs.

Although we refer to this metric as “codon density” or
“motif density,” this term can be slightly misleading as we
count the number of nucleotides matching the motif/codon,
not the number of matching motifs/codons per se. This den-
sity metric, however, does enable us to control for varying
query motif or queried sequence lengths. The metric there-
fore describes how much of a particular sequence comprises
by the query motifs (a codon, ESE, etc.) and therefore has a
minimum of 0 (the sequence contains no nucleotides match-
ing the query motifs) and maximum of 1 (all nucleotides in
the sequences match one or more of the query motifs).

Calculating FE Scores
We employ a FE metric in several cases to describe the devia-
tions of true measures of abundance from that expected
given underlying nucleotide distributions. Null expectations
were obtained via iterated simulations. We provide an exam-
ple below of calculating codon set density in ESE hexamers,
but the same method is applied to calculating SCD in full-
length lincRNA sequences, SCD in individual exons, and
pORF lengths in the lincRNA sequences.

To calculate the FE of any given codon set in the INT3 ESEs,
we first calculated the raw density of the codon set (as de-
tailed above) within the true INT3 ESE hexamers. Second,
having generated randomized sets of pseudo-ESE motifs (as
detailed above; for other calculations, these are sets of ran-
domized shuffled sequences), we calculated the density of the
codon set in each iteration of the randomized pseudo-ESE
motif sets. This provided us with a density score for the codon
set in the real ESE motifs and distribution of density scores
from the simulated motifs. FE was then calculated using the
formula FE ¼ O�E

E , where O is the observed density of the
codon set motifs in true motifs and E is the mean density
of the codon set motifs in the simulant motifs.

FE as a metric has the benefit that FE< 0 implies a relative
depletion given underlying nucleotide content, FE > 0 a rel-
ative enrichment, and FE � 0 as expected given underlying
nucleotide content.

Calculating Z Scores
Z scores for pORF lengths were calculated similarly to FE
scores. First, the longest pORF in any frame in the true se-
quence was calculated. Then, the longest pORF was calcu-
lated for each randomization of the lincRNA sequences. The Z
score for each sequence was then defined as the real longest
pORF length minus the mean of the group of simulated
longest pORFs, divided by the standard deviation of the sim-
ulated longest pORFs, taking the median Z score for sequen-
ces that are members of a paralogous family.

Predicting Hits to Motifs in Sequences
Regular expressions were used to predict hits to motifs in
sequences using the standard built-in Python package. For
each sequence, the indices for the hits to each motif were
stored. Any subsequent hits to a motif were appended to this
list. For each sequence, the list of indices was then filtered
such that each index could only appear once. In this way, if
two motifs overlapped, we would only consider the nucleo-
tides that matched both only once in our calculations.

Removal of Sequence Matching ESEs
To interrogate sequence that featured no ESEs given a par-
ticular ESE set, hits were first predicted to the ESEs for each
query sequence. The index of each nucleotide hit that over-
lapped an ESE for each sequence was stored, and only once all
motifs had been queried were these indices further consid-
ered. In this way, all overlapping motifs were identified. For
each sequence, the positions corresponding to indices that
were not stored were calculated and the corresponding se-
quence parts extracted. Sequence parts interrupted by a pre-
dicted ESE were treated as separate sequence parts. This
prevents unexpected motifs being generated by concatenat-
ing the remaining sequence. For example, querying the se-
quence ACTACTTTTTAGA for the motif TTT would have
resulted in two unmatched parts, ACTAC and AGA. Analyses
were then performed on these remaining sequences
individually.

Identifying Potential ORFs
Potential ORFs were identified by scanning each sequence for
every ATG in every frame. For each ATG, downstream codons
in the matching frame were then queried in order until a stop
codon was identified. The nucleotide distance to the stop
codon was stored and once all ATGs had been queried, the
longest ORF was retained. Seven of the lincRNA sequences
contained no potential ORF and so were excluded from the
analysis.

Calculating Empirical P Values
Empirical P values were calculated using outputs from the
simulations using the formula P � mþ1

nþ1 , where m is the
total number of simulants scoring less than or equal to the
real value and n is the total number of simulants. If the di-
rection of the one-tailed test was in the opposite direction, m
is the total number of simulants scoring greater than or equal
to the real value.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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