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Application of novel 
nanomagnetic metal–organic 
frameworks as a catalyst 
for the synthesis of new pyridines 
and 1,4‑dihydropyridines 
via a cooperative vinylogous 
anomeric based oxidation
Hassan Sepehrmansourie1, Mahmoud Zarei1*, Mohammad Ali Zolfigol1*, Saeed Babaee1 & 
Sadegh Rostamnia2,3*

Herein, a new magnetic metal–organic frameworks based on  Fe3O4 (NMMOFs) with porous and high 
surface area materials were synthesized. Then, NMMOFs were characterized by FT‑IR, XRD, SEM, 
elemental mapping, energy dispersive X‑ray (EDS), TG, DTG, VSM, and  N2 adsorption–desorption 
isotherms (BET).  Fe3O4@Co(BDC)‑NH2 as a magnetic porous catalyst was applied for synthesis of 
novel fused pyridines and 1,4‑dihydropyridines with pyrazole and pyrimidine moieties as suitable drug 
candidates under ultrasonic irradiation. The significant advantages of the presented methodology 
are mild, facile workup, high yields, short reaction times, high thermal stability, and reusability of the 
described NMMOFs catalyst.

Catalysis under ultrasonic irradiation has been widely applied for the preparation of organic compounds and 
 catalysis1–3. On the other hand, hybrid organic–inorganic catalysts such as metal–organic frameworks (MOFs) 
as a new class of porous materials have high attention in chemical processes. Porous and magnetic materials have 
been widely used in biotechnology, magnetic resonance imaging (MRI), catalysis, adsorption, gas separation, 
and purification, optics, drug delivery, etc.4–6. However, metal–organic frameworks (MOFs) are a widespread 
strategy for the expansion of new porous materials to reach with the higher surface area. By selecting a suitable 
plan, reactants and reaction conditions can be correctly controlled by the porosity and structure of desired 
 materials7–13. Magnetic catalysts have been used for the synthesis of a good range of pharmaceutical and chemical 
compounds, due to their easy removal and convenient  separation14–16. The reported catalysts can be easily isolated 
from the reaction mixture with an external magnetic  field17–19. Therefore magnetic metal–organic frameworks 
(MMOFs) have been used for various purposes due to their exciting  properties20–23, such as high thermal stability 
and application at the hard reaction  conditions24–26. The chemistry of magnetic metal–organic frameworks and 
their corresponding applications comprehensively have been  reviewed27–29.

Fused N-heterocycles compounds with pyrazole and pyridines have shown a broad spectrum of biological 
and agricultural activities such as antitumor, cardiotonic hepatoprotactive, antihypertensive, antibronchitic, 
and antifungal  activity30–33. Therefore, research and develop the new strategy are necessary for the synthesis of 
pyridines with pyrazole moieties. Pyridine derivatives are the central core of natural products such as NADP, 
clivimine, kedarcidin, and promothiocin A (Fig. 1)34.
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Synthesis of composites of MOF and nano-magnetic  Fe3O4 is our great research interest. With this aim, 
we have decided to synthesize nano-magnetic metal–organic frameworks  Fe3O4@Co(BDC)-NH2 as a porous 
and magnetic catalyst under ultrasonic irradiation condition. This nanomagnetic metal–organic frameworks 
(NMMOFs) was applied in the synthesis of novel fused pyridines and 1,4-dihydropyridines with pyrazole and 
pyrimidine moieties by using the corresponding precursors in DMF (5 mL) as solvent under ultrasonic irradia-
tion (Scheme 1).

Figure 1.  Structure of pyridine as natural products.

Scheme 1.  Preparation of novel fused pyridines and 1,4-dihydropyridines with pyrazole and pyrimidine 
moieties by using  Fe3O4@Co(BDC)-NH2 as the catalyst.
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Experimental
Materials and methods. All chemicals were purchased from Merck Chemical Company. The known 
products were identified by comparison of their melting points and spectral data with those reported in the 
literature. To scrutinize the progress of the reaction silica gel SIL G/UV 254 plates were used. From the model 
of the BRUKER Ultra shield, NMR spectrometer (δ in ppm) was recorded 1H NMR (400 MHz) and 13C NMR 
(100 MHz). Recorded on a Büchi B-545 apparatus in open capillary tubes were melting points. The PerkinElmer 
PE-1600-FTIR device was registered for the infrared spectra of compounds. SEM was performed using a scan-
ning electron microscope for field publishing made by TE-SCAN. Thermal gravimetry (TG), differential thermal 
gravimetric (DTG) and differential thermal (DTA) were analyzed by a Perkin Elmer (Model: Pyris 1). The analy-
sis 25–1000 °C, temperature increase rate of 10 °C  min−1.

General procedure for the synthesis of  Fe3O4@CH2CO2H. Fe3O4 was prepared according to the pre-
viously reported  literature35,36. Then, in a 25 mL round-bottomed flask, a mixture of  Fe3O4 (1 g),  HSCH2CO2H 
(10.0 mmol, 1.38 g), and EtOH (30 mL) were added and refluxed for 24 h. After this time, a dark brown pre-
cipitate was appeared, which it is isolated by using a magnet. The obtained  Fe3O4@CH2CO2H (1.95 g) was dried 
under  vacuum23.

General procedure for the synthesis of  Fe3O4@Co(BDC)‑NH2. At first, a solution of 45.0 mM of 
Co(NO3)2·6H2O (2.34 g in 180 mL DMF) (solution I) and 45.0 mM of  H2BDC-NH2 (1.46 g in 180 mL DMF) 
(solution II) were prepared respectively. In a 25 mL glass vials, a mixture of  Fe3O4@CH2CO2H (0.5 g) and 10 mL 
of solution I were sonicated for 20 min. Then, this mixture was separated by a permanent magnet and washed 
with DMF as step I. Then, a mixture of step I and 10 mL of solution II were sonicated for 45 min. The produced 
solid was separated by a permanent magnet and washed with EtOH as step II. In continued, two strategies (a 
mixture of step I and step II) were repeated 18 times, respectively. Finally,  Fe3O4@Co(BDC)-NH2 (0.8 g) was 
dried under vacuum for 2 h (Scheme 2).

General procedure for the synthesis of novel fused pyridines and 1,4‑dihydropyridines. In 
a 10  mL round-bottomed, a mixture of aldehyde (1.0  mmol), pyrimidine (1,3-dimethylpyrimidine-
2,4,6(1H,3H,5H)-trione or pyrimidine-2,4,6(1H,3H,5H)-trione) and pyrazole-5-amine (3-methyl-1H-pyrazole-
5-amine or 3-methyl-1-phenyl-1H-pyrazole-5-amine) derivatives] and  Fe3O4@Co(BDC)-NH2 (10  mg) as a 
catalyst were mixed in DMF (5 mL) as solvent under ultrasonic irradiation. After completion of the reaction 
(monitor by TLC n-hexane/ethyl acetate; 4:6), the catalyst was separated by an external magnet. Finally, the 
mixture was poured into  H2O and filtered off its precipitate. The obtained residue was washed with warm ethanol 
and dried at 100 °C (Scheme 1).

Result and discussion
The systematic study of the stereoelectronic effects in target molecules, allows for the design of synthetic strategies 
based on a nomerically driven stereoselective reactions, or highly biased equilibria among isomeric products. To 
the best of our knowledge, many biological processes involve the oxidation–reduction of substrates by  NAD+/
NADH,  respectively37–41. The key feature of the oxidation mechanism is hydride transfer from carbon via ste-
reoelectronic interactions. Thus the development of stereoelectronic effects leads to knowledge-based designing 

Scheme 2.  Synthesis of  Fe3O4@Co(BDC)-NH2 as a nanomagnetic metal–organic frameworks.
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of biomimetic reactions. The obtained results from this research will be supporting the idea of rational designs, 
syntheses, and applications of tasked-specific catalysts and molecules for the development of stereoelectronic 
effects in the course of organic synthesis. With this aim, a nanomagnetic metal–organic frameworks (NMMOFs) 
was designed, characterized and applied for the preparation of pyridines fused with pyrazole and pyrimidine 
under ultrasonic irradiation.

At first, nanomagnetic metal–organic frameworks (NMMOFs) were synthesized (Scheme 2). Its schematic 
synthesis is showed in Fig. 2. The synthesized  Fe3O4@Co(BDC)-NH2 fully characterized by applying FT-IR, 
XRD, SEM, elemental mapping, energy dispersive X-ray (EDS), TG, DTG, VSM and  N2 adsorption–desorption 
isotherms (BET).

FT-IR spectrum of  H2BDC-NH2,  Fe3O4,  Fe3O4@CH2CO2H, and  Fe3O4@Co(BDC)-NH2 are shown in Figure S1 
(see supporting information). The absorption bands at 670  cm−1 linked to the stretching vibrational modes of 
Fe–O groups in  Fe3O4. The absorption bands at 1741, 2924, and 3426  cm−1 related to C=O, C–H and, O–H 
stretching respectively in  Fe3O4@CH2CO2H. Also, the absorption bands at 633  cm−1 and 3318–3448  cm−1 are 
related to Co–O and N–H2 stretching respectively, of  Fe3O4@Co(BDC)-NH2. Finally, the differences between 
 H2BC-NH2,  Fe3O4,  Fe3O4@CH2CO2H, and  Fe3O4@Co(BDC)-NH2 in the FT-IR spectrum were confirmed the 
synthesis of  Fe3O4@Co(BDC)-NH2.

The particle size and shape, as well as the morphology of  Fe3O4@CH2CO2H,  Fe3O4, MOF-Co(BDC)-NH2, 
Co(NO3)3·6H2O and  Fe3O4@Co(BDC)-NH2 were studied by XRD (Fig. 3), and SEM (Fig. 4). The comparison 
XRD pattern of JCPDS (red line),  Fe3O4 (black line), Co(NO3)3·6H2O (purple line), Simulated XRD (orange 
line), MOF-Co(BDC)-NH2 (green line),  Fe3O4@CH2CO2H (brown line) and  Fe3O4@Co(BDC)-NH2 (blue line) 
is assembled according to the liturture servey at the range of 5°–80° in Fig. 342. The phase of Co oxide and  Fe3O4 
in  Fe3O4@Co(BDC)-NH2 as standard brown line (ICDD Card: 80-1540) of Co and pinks standard line (JCP2: 
75-449) of  Fe3O4 in the standard references. Also, Peaks of  Fe3O4@Co(BDC)-NH2 exhibited 2θ = 18.3°, 30.2°, 
35.6°, 43.3°, 53.6°, 57.3°, 62.8° and 74.2° corresponding to diffraction lines (111), (220), (311), (400), (422), (511), 
(440) and (533). Then, the averaged interlunar distance and sizes of crystal were calculated by the Scherer equa-
tion and Bragg equation, which are determined 0.67 nm (single peak at 12.8 and 17.5–37.5 nm range (Table S1 
see in supporting information)43,44.

For comparison, structure and elementals in the synthesis of step by step  Fe3O4@CH2CO2H and  Fe3O4@
Co(BDC)-NH2 were also studied with energy dispersive X-ray analysis (EDX) analysis (Figure S2 see support-
ing information). The structures of  Fe3O4@Co(BDC)-NH2 and  Fe3O4@CH2CO2H were verified with existence 
of Fe, Co, N, C, O and Fe, C, O, and S atoms respectively 45. Then, elementals dispersed over the surface of the 
catalyst, and step  Fe3O4@Co(BDC)-NH2 was checked out by SEM-elemental mapping (Figure S3 see support-
ing information). The images in Figure S3 shows that all kinds of elements are well dispersed over the surface of 
 Fe3O4@Co(BDC)-NH2. The difference between EDX analysis and SEM-elemental mapping is confirmed by the 
structure of  Fe3O4@Co(BDC)-NH2.

In another investigation, the particle size and shape, as well as the morphology of  Fe3O4@Co(BDC)-NH2 were 
examined by scanning electron microscope (SEM) (Fig. 4). As shown in Fig. 4, nano-spherical particles of the 
nanomagnetic metal–organic frameworks (NMMOFs) are in the nanoscale, as the particles are quite overlapped 
with different crystallite size as observed in SEM Transmission electron microcopy (TEM) images of  Fe3O4@
Co(BDC)-NH2 catalyst reveal that the particles shape is spherical and the particle size is up to 50 nm (Fig. 5).
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Figure 2.  Stepwise synthesis of the nanomagnetic metal–organic frameworks (NMMOFs) system.
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Figure 3.  Comparison XRD pattern of JCPDS (red line),  Fe3O4 (black line), Co(NO3)3·6H2O (purple line), 
Simulated XRD (orange line), MOF-Co(BDC)-NH2 (green line),  Fe3O4@CH2CO2H (brown line) and  Fe3O4@
Co(BDC)-NH2 (blue line).

Figure 4.  Scanning electron microscope (SEM) images of  Fe3O4@Co(BDC)-NH2.
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The magnetic measurement of  Fe3O4,  Fe3O4@CH2CO2H, and  Fe3O4@Co(BDC)-NH2 are shown in Fig. 6. 
Based on Fig. 6, the vibrating sample magnetometer (VSM) of  Fe3O4,  Fe3O4@CH2CO2H, and  Fe3O4@Co(BDC)-
NH2 were examined and reduced from 64.4, 60.1 up to 54.3 μg−1 respectively. Therefore, these decreases are the 
result of coating with its corresponding layers.

In another investigation, the structural and thermal stability of  Fe3O4@Co(BDC)-NH2 was also determined 
using the technique of the thermal gravimetric (TG), derivative thermal gravimetric (DTG), as well as the dif-
ferential thermal analysis (DTA) (Figure S4 see in supporting information). First stage weight loss is about 100 °C, 
associated with the removal of possible solvents (organic and water), which was used in the course of catalyst 
preparation. Then, twice a step of weight loss has occurred at about 300 °C, which is the onset of the structural 
degradation of the catalyst.

For the determination of surface structural parameters, the N2 adsorption/desorption technique was used. 
The results of N2 adsorption/desorption were plotted in Fig. 7. The obtained surface area based on BET isotherm 
is 22.35  m2  g−1. The total pore volume of the catalyst is 0.02  cm3  g−1. Also, for studying the textural properties 
of MOF-Co(BDC)-NH2 the  N2 adsorption–desorption isotherms were used (Fig. 7). The adsorption isotherm 
is type III and the appearance of hysteresis loop shows the presence of mesopores in the sample. The calculated 
surface areas based on BET equation and total pore volumes are 86  m2  g−1 and 0.36  cm3  g−1 respectively. The 
pore size distribution of MOF-Co(BDC)-NH2 based on BJH method is shown (Figure S5 see in supporting 

Figure 5.  Transmission electron microscopy (TEM) images of  Fe3O4@Co(BDC)-NH2.

Figure 6.  Vibrating sample magnetometer (VSM) of  Fe3O4,  Fe3O4@CH2CO2H, and  Fe3O4@Co(BDC)-NH2.



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5279  | https://doi.org/10.1038/s41598-021-84005-2

www.nature.com/scientificreports/

information). This plot clearly shows presence of micropores (size < 2 nm) and mesopores (2 < size < 50 nm) in 
the sample, however the micropores are more abundant.

After the synthesis and characterization of  Fe3O4@Co(BDC)-NH2, it was applied for the synthesis of novel 
mono, bis and tris novel fused pyridines and 1,4-dihydropyridines with pyrazole and pyrimidine moieties 
by using the corresponding precursors such as 3-methyl-1,4-diphenyl-1,8-dihydro-5H-pyrazolo[4′,3′:5,6]
pyrido[2,3-d]pyrimidine-5,7(6H)-dione and 3-methyl-4-phenyl-1,4,8,9-tetrahydro-5H-pyrazolo[4′,3′:5,6]
pyrido[2,3-d]pyrimidine-5,7(6H)-dione. The above mentioned products were obtained by reaction of 4-nitro 
benzaldehyde (1.0 mmol, 0.151 g), 3-methyl-1-phenyl-1H-pyrazole-5-amine (1.0 mmol, 0.174 g) and pyrimi-
dine-2,4,6(1H,3H,5H)-trione (1.0 mmol, 0.128 g) as a model for the optimization the reaction conditions. The 
optimized data is listed in Table 1. As shown in Table 1, the best of choice for the synthesis of 3-methyl-1,4-di-
phenyl-1,8-dihydro-5H-pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidine-5,7(6H)-dione was achieved in the presence 
of 10 mg  Fe3O4@Co(BDC)-NH2 in DMF (5 mL) as solvent under ultrasonic irradiation (entry 4, Table 1). The 
model reaction was also studied by using several solvents such as  H2O,  CH3CN, n-hexane,  CHCl3, MeOH, EtOH, 
 CH2Cl2, EtOAc (5 mL) and solvent-free condition in the presence of 10 mg of  Fe3O4@Co(BDC)-NH2. The results 
of the reaction did not improve (Table 1, entries 6–13). Also, the model reaction was also studied in the magnetic 
stirrer condition at room temperature under the solvent-free reaction (Table 1, entry 14).

After optimizing the reaction conditions,  Fe3O4@Co(BDC)-NH2(10 mg) is applied to synthesis a good range of 
novel biological and pharmacological candidate compounds using various aromatic aldehydes (trephetaldehyde, 
iso-trephetaldehyde, tris-aldehyde, bearing electron-donating and electron-withdrawing groups), pyrimidine 
(1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione, pyrimidine-2,4,6(1H,3H,5H)-trione) and pyrazole-5-amine 
(3-methyl-1H-pyrazole-5-amine, 3-methyl-1-phenyl-1H-pyrazole-5-amine) derivatives. As shown in Table 2, 
the obtained results indicated that  Fe3O4@Co(BDC)-NH2 is appropriate for the preparation of target molecules 
in high to excellent yields (65–90%) with in relatively short reaction times (20–40 min). Furthermore, the model 
reaction is tested by the reaction of 3-methyl-1H-pyrazole-5-amine, and 3-methyl-1H-pyrazole-5-amine to give 
a mixture of the corresponding pyridine and 1,4-dihydropyridine respectively.

In the proposed mechanism, the aldehyde is activated by  Fe3O4@Co(BDC)-NH2. In the initial step, inter-
mediate (I) is produced by the reaction of pyrimidine  (R2 = H, Me) and activated aldehyde. In the next step, 
intermediate (II) is prepared with losing one molecule of  H2O. In the third step, pyrazole-5-amine  (R1 = H, Ph) 
derivatives react with intermediate (II) to gives intermediate (IV) after tautomerization. Then, intermediate (IV) 
gives intermediate (V) after intramolecular cyclization and losing another molecule of  H2O. In the last step, the 
lone pair electrons of N atoms of 1,4-dihydropyridine (VI) interacts through C–C double bonds with a vacant 
anti-bonding orbital of C–H bond  (nN→ σC–H

* and πC=C→ σC–H
*) and weaken it, so that is favoring for hydride 

transfer and  H2 releasing from intermediate VI to generate its corresponding pyridinium salt. The achieved data 
from the optimization of described reaction under argon and nitrogen atmospheres verified our suggestion for 
oxidation and aromatization of intermediate VI. On the other hand, 1,4-dihydropyridine (VI) is converted to 
its corresponding pyridinium intermediate (VII), via a cooperative vinylogous anomeric based oxidation and 
releasing a hydrogen molecule (–H2)47–55. Finally, the desired pyridine fused with pyrazole and pyrimidine moiety 
(B) is obtained via removing a proton from the pyridinium intermediate (VII). When, 3-methyl-1H-pyrazole-5-
amine was used instead of 3-methyl-1-phenyl-1H-pyrazole-5-amine after intramolecular cyclization and losing 
a molecule of water, intermediate (VI) is converted to product (A) (Scheme 3). Interestingly, the 1,4-dihydro-
pyridines (A) did not convert to their corresponding pyridines.

The reusability of  Fe3O4@Co(BDC)-NH2 was also investigated. The reaction of 4-nitro benzalde-
hyde (1.0 mmol, 0.151 g), 3-methyl-1-phenyl-1H-pyrazole-5-amine (1.0 mmol, 0.174 g) and pyrimidine-
2,4,6(1H,3H,5H)-trione (1.0 mmol, 0.128 g) was selected as a model reaction under ultrasonic irradiation. The 

Figure 7.  Nitrogen adsorption–desorption isotherm (BET) of  Fe3O4@Co(BDC)-NH2 and MOF-
Co(BDC)-NH2.
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nanomagnetic metal–organic frameworks (NMMOFs) catalyst was separated by an external magnet, washed with 
DMF and dried. The results indicated that the catalyst could be utilized for nine runs without any significant loss 
of its initial catalytic activity, which can be ascribed to the high stability of the synthesized catalyst (Fig. 8). Then, 
the reused catalyst was also characterized by FT-IR spectrum (Figure S6 see supporting information), N2 adsorp-
tion–desorption isotherm (BET) and scanning electron microscope (SEM) images. The obtained spectra are as 
same as the corresponding spectra of fresh catalyst (Figures S7, S8 see supporting information), Furthermore, 
to compare the performance of nanomagnetic metal–organic frameworks (NMMOFs) catalyst for the synthesis 
of desired fused pyridines and 1,4-dihydropyridines with pyrazole and pyrimidine moieties via a cooperative 
vinylogous anomeric based oxidation, we have used various organic and inorganic acid catalysts for condensation 
reaction between 4-nitro benzaldehyde (1.0 mmol, 0.151 g), 3-methyl-1-phenyl-1H-pyrazole-5-amine (1.0 mmol, 
0.174 g) and pyrimidine-2,4,6(1H,3H,5H)-trione (1.0 mmol, 0.128 g). As Table 3 indicates,  Fe3O4@Co(BDC)-
NH2 is the best of choice for the synthesis of pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidine-5,7(6H)-dione (Table 3).

Conclusion
In summary, a novel core–shell nanomagnetic metal–organic frameworks  Fe3O4@Co(BDC)-NH2 as a new cata-
lyst was prepared and fully characterized. This catalyst was applied for the synthesis of a range of novel fused 
pyridines and 1,4-dihydropyridines with pyrazole and pyrimidine moieties with good yields via a cooperative 
vinylogous anomeric based oxidation mechanism under ultrasonic irradiation. The obtained biological-based 
compounds are suitable candidates for biological studies. The described catalyst is reusable and easily separated 
by an external magnet.

Table 1.  Effect of different amounts of catalysts and solvent (5 mL) in the synthesis of novel fused pyridines 
and 1,4-dihydropyridines with pyrazole and pyrimidine moieties by using the corresponding precursors under 
ultrasonic irradiation. Reaction conditions: 3-methyl-1-phenyl-1H-pyrazole-5-amine (1.0 mmol, 0.174 g), 
pyrimidine-2,4,6(1H,3H,5H)-trione (1.0 mmol, 0.128 g) and 4-nitrobenzaldehyde (1.0 mmol, 0.151 g).

Entry Solvent Cat. (mg) Sonication (min) Yield (%)

1 DMF – 120 Trace

2 DMF 5 75 25

3 DMF 7.5 60 45

4 DMF 10 50 72

5 DMF 15 50 72

6 H2O 10 60 35

7 n-Hexane 10 60 25

8 EtOH 10 60 Trace

9 CH2Cl2 10 60 Trace

10 CHCl3 10 60 28

11 EtOAc 10 60 46

12 CH3CN 10 60 54

13 MeOH 10 60 Trace

14 – 10 60 15
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46 46

Table 2.  (continued)
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Table 2.  Synthesis of (a) 3-methyl-1,4-diphenyl-1,8-dihydro-5H-pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidine-
5,7(6H)-dione derivatives, (b) 3-Methyl-4-phenyl-1,4,8,9-tetrahydro-5H-pyrazolo[4′,3′:5,6]pyrido[2,3-d]
pyrimidine-5,7(6H)-dione derivatives, (c) Bis and tris 3-methyl-1,4-diphenyl-1,8-dihydro-5H-pyrazolo[4′,3′:5,6]
pyrido[2,3-d]pyrimidine-5,7(6H)-dione derivatives using  Fe3O4@Co(BDC)-NH2 under ultrasonic irradiation.
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