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Heart failure (HF) is a globally prevalent cardiovascular disease, but effective drug targets and diagnostic models are still lacking.
This study was designed to investigate effective drug targets and diagnostic models for HF in terms of miRNA targets, hoping to
contribute to the understanding and treatment of HF. Using HF miRNA and gene expression profile data from the GEO database,
we analyzed differentially expressed miRNAs/gene identification in HF using Limma and predicted miRNA targets by the online
TargetScan database. Subsequently, gene set enrichment analysis and annotation were performed using WebGestaltR package.
Protein-protein interactions were identified using the STRING database. The proximity of drugs to treat HF was also
calculated and predicted for potential target therapeutic drug. In addition, further drug identification was performed by
molecular docking. Finally, diagnostic models were constructed based on differential miRNAs. The GEO dataset was used to
screen 66 differentially expressed miRNAs, incorporating 56 downregulated miRNAs and 10 upregulated miRNAs. The JAK-
STAT signaling pathway, MAPK signaling pathway, p53 signaling pathway, Prolactin signaling pathway, and TGF-beta
signaling pathway were enriched, as shown by KEGG enrichment analysis on the target genes. In addition, we found that 83
genes were upregulated and 92 genes were downregulated in HF patients vs. healthy individuals. Based on the inflammation-
related score, hypoxia-related score, and energy metabolism-related score, we identified key miRNA-mRNA pairs and
constructed an interaction network. Following that, TAP1, which had the highest expression and network connectivity in acute
HF with crystal and molecular docking studies, was selected as a key candidate gene in the network. And the compound
DB04847 was selected to produce a large number of favorable interactions with TAP1 protein. Finally, we constructed two
diagnostic models based on the differential miRNAs hsa-miR-6785-5p and hsa-miR-4443. In conclusion, we identified TAP1, a
key candidate gene in the diagnosis and treatment of HF, and determined that compound DB04847 is highly likely to be a
potential inhibitor of TAP1. The TAP1 gene was also found to be regulated by hsa-miR-6785-5p and hsa-miR-4443, and a
diagnostic model was constructed. This provides a new promising direction to improve the diagnosis, prognosis, and treatment
outcome and guide more effective immunotherapy strategies of HF.

1. Introduction

Heart failure (HF) results from the dysfunction of diastolic
and/or the systolic function of the heart; insufficient blood
perfusion and blood stasis in the venous system in the arterial

system would occur if the venous return blood could not be
fully discharged from the heart, thereby causing cardiac circu-
latory disorder syndrome [1, 2]. Instead of an independent
disease, HF is a terminal stage in heart disease development.
A great number of HF begins with left HF, which first
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Figure 1: Continued.
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manifests as pulmonary circulation congestion. Advanced
interventions such as drug therapy, cardiac synchronization
therapy, andheart transplantationmainly focus on the control
of heart failure-related symptoms [3]Mortality inHF could be
reduced to some extent through these interventions [4]. Nev-
ertheless, the discovery of new drugs and newdiagnostic strat-
egies is still necessary to further reducemortality and improve
quality of life in the process of HF. Therefore, further research
and in-depth understanding of the biological mechanisms of
HF are urgently needed.

In a healthy heart, 90% of ATP production is produced
via mitochondrial oxidative phosphorylation, and 60–70%
of the energy was derived from lipid oxidation [5]. There-
fore, the heart is greatly dependent on the continuous supply
of fatty acids and oxygen. Moreover, under diverse and non-
optimal physiological conditions, the heart has great meta-
bolic plasticity and could maintain ATP production, using
other substrates such as amino acids, glucose, ketone bodies,
and lactate [6]. However, a combination of oxidative and
substrate level phosphorylation more evenly produces skele-
tal muscle ATP, allowing a relatively more flexibility in
terms of oxygen demand and substrate use [7]. A heart
deprived of oxygen shows a decreased ATP production and
mitochondrial respiration [8]. Under hypoxia, a significant

loss of mitochondrial density and skeletal muscle mass [9]
could be seen as an adaptive modification that lowers reac-
tive oxygen species (ROS) and reduces tissue’s demand for
low O2 [9].

At the posttranscriptional level, microRNAs (miRNAs)
with approximately 22 nucleotides regulate expression of
genes [10, 11]. Such a process involves binding to the com-
plementary sequence of messenger RNA (mRNA), subse-
quently resulting in degradation of the mRNA or
translational inhibition [12]. Study showed that miRNAs
play a role in multiple pathophysiological mechanisms,
including in HF development [13]. In the circulation, extra-
cellular miRNAs are measurable, and they have now been
increasingly regarded as prognostic and diagnostic biomark-
ers in various diseases [14]. As a new category of biomarkers,
studies have shown the potential of miRNAs in HF [15],
which are critical drivers of cardiac tissue remodeling and
can be used as therapeutic targets. For example, in cardiac
hypertrophic remodeling, miR-132 has been previously ver-
ified as a master switch [16] and is markedly increased in the
early hypertrophic phase of HF [17], and in genetic or phar-
macological studies, inhibition of miR-132 has the effect of
reversing or preventing the progression of HF [18]. Tran-
scription factor 3 (ATF3) expression was increased in
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Figure 1: Differentially expressed miRNA analysis on the GSE104150 dataset: (a) volcano plot of miRNA differential analysis; (b) heat map
of differential miRNA expression.
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human hypertrophic heart; ATF3 upregulation protects the
heart by suppressing Map2K3 expression and subsequent
p38-transforming growth factor-β signaling [19]. Therefore,
analysis and exploration of miRNAs-mRNA as potential
drug targets for the treatment of HF have great potential.

The heart, as a vital tissue that maintains blood circula-
tion, ensures the metabolic needs. And it is too hard to
obtain the tissue, especially in a healthy body. Based on the
above statements, this study is aimed at mining key drug tar-
gets in HF using the NCBI Gene Expression Omnibus
(GEO) dataset, including expression profiles of mRNAs
and miRNAs. Differential miRNA and differential gene
expression profiles of healthy controls and HF subjects were
analyzed with the “Limma” package in R software. After
that, we detected the key target gene of key miRNA, namely,
TAP1. Finally, a diagnostic model was constructed based on
the differential miRNAs. The current findings contributed to
the development of understanding novel molecular mecha-
nisms of HF pathogenesis, particularly the possible associa-
tion of dysregulated pathways of the TAP1 gene with HF
pathological processes, and ultimately predicted a new ther-
apeutic target drug DB04847 for HF patients.

2. Methods

2.1. Data Collection and Preprocessing. Expression profile
data were downloaded from the NCBI GEO database [20]

for miRNA number GSE104150, which contained a total of
2549 miRNAs from 7 healthy controls and 9 patients with
HF. mRNA expression profile data were downloaded from
the NCBI GEO database for mRNA number GSE21125,
which contained 9 patients with acute HF, 9 patients with
chronic HF, 9 patients at risk of HF, 9 patients with left ven-
tricular dysfunction, and 9 healthy controls. In this analysis,
we kept only 9 patients with acute HF, 9 patients with
chronic HF, and 9 healthy controls, for a total of 18 HF
patients, 9 healthy controls, and 20,295 genes.

HF with other diseases was excluded, and HF with sur-
vival information was retained.

2.2. Analysis of Differentially Expressed miRNAs/Genes and
Functional Enrichment. Differentially expressed miRNAs
were analyzed using Limma [21] and filtered using the cri-
teria of jlog 2ðfold changeÞj > 1 and FDR ðfalse discovery
rateÞ < 0:05. Similarly, differentially expressed genes were
analyzed using Limma and filtered using the criteria of jlog
2ðfold changeÞj > 1 and P < 0:05. We performed Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis on miRNA target genes by the R software package
clusterProfiler, filtered at P value < 0.05.

We downloaded energy metabolism-related pathways
from the Gene Set Enrichment Analysis (GSEA) [22] website
for subsequent enrichment analysis and downloaded genes
related to Toll-like receptor signaling pathway, NF-kappa B
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Figure 2: Differentially expressed gene analysis on the GSE21125 dataset: (a) volcano plot of differential analysis of acute heart failure
patients vs. healthy individuals; (b) volcano plot of differential analysis of chronic heart failure patients vs. healthy individuals; (c)
volcano plot of differential analysis of heart failure patients vs. healthy individuals.
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signaling pathway, JAK-STAT signaling pathway, T-cell
receptor signaling pathway, INFLAMMATORY_
RESPONSE, B-cell receptor signaling pathway, and other
associated pathways. KEGG enrichment analysis of differen-
tial genes was performed by WebGestaltR package. The

enrichment scores of each pathway in the KEGG pathway
regarding the samples were calculated by the GSVA package,
and the correlation between genes and pathways was calcu-
lated by the rcorr function of the Hmisc package; here, we
used P < 0:05 and cor > 0:4 as the threshold. In addition,
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Figure 3: Functional enrichment analysis: (a) KEGG enrichment analysis of differential genes; (b) network plot of miRNA interactions with
differential target genes, where blue is miRNA, red is gene, and the size of the dot is degree, where the larger the dot, the closer the
connectivity with other nodes at that point, and the more important the dot is.
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Figure 4: Characterization of pathways abnormally regulated in heart failure: (a) heat map of enrichment scores of pathways significantly
different in heart failure patients and healthy group by GSVA (P < 0:05); (b) heat map of correlation analysis between related pathways and
differentially miRNA-regulated differential target genes; (c) heat map of correlation between energy metabolism, hypoxia score, and
inflammation-related pathways and differentially miRNA-regulated; (d) heat map of correlation analysis between energy metabolism,
hypoxia score, and inflammation-related pathways and differential miRNA-regulated target genes.
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Figure 5: Continued.
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we also performed single-sample gene set enrichment analy-
sis (ssGSEA) of KEGG-related pathways by the R language
GSVA package and analyzed pathways that were statistically
significant in HF patients and healthy individuals by t-test
(P < 0:05).

2.3. miRNA Target Analysis. The miRNA regulatory rela-
tionships were predicted from the online TargetScan [23]
(https://www.targetscan.org/vert_72/) regulatory database.
TargetScan is a software for predicting miRNA binding sites
in mammals. Before prediction of miRNA target genes, the
3′UTR region of the transcript needs to be determined first.
The TargetScan database identifies the corresponding 3′
UTR region of the transcript by a sequencing technique
called 3P-seq (miRNAs in mammals bind the 3′UTR region
of the transcript sequence to exert posttranscriptional regu-
lation) and provides a comprehensive sequence of the 3′
UTR region by combining the analysis results of this tech-
nique with the available 3′UTR annotations in NCBI.

2.4. Protein-Protein Interaction Network Construction. The
STRING (https://string-db.org/) database [24] supports the
search for known protein-protein interactions and predicted
protein-protein interactions (PPI). The PPI database can be
applied to 2031 species and contains 9.6 million proteins and
13.8 million types of protein. In addition to results predicted
using bioinformatics methods, it stores results of text mining
from PubMed abstracts and synthesis of data from other
databases as well as experimental data. Exploring interaction
networks among proteins helps to mine the core regulatory
genes. Though already many protein interaction databases
are available to us, STRING is one of them covering the most
species with the largest interaction information. We used
STRING web version (version v11.0, https://string-db.org/)
in this study, and based on the STRING database of protein
interaction relationships, we filtered the interaction score ≧
400, that is, medium confidence.

2.5. Prediction of Potential Target Therapeutic Agents. We
calculated the proximity of drugs and its effect on treating
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Figure 5: Screening analysis of correlated target genes: (a) box line plot of 24 genes expressed in acute, chronic heart failure and healthy
groups (ANOVA, ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001; and ∗∗∗∗P < 0:0001); (b) construction of diagnostic models for 11 key genes.
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Figure 6: Continued.
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HF. Here, we can give S (the gene set related to the treatment
of heart failure), T (the set of drug target genes), D (the
degree of the node of the related gene set in the PPI), and
the distance dðs, tÞ, which indicated the shortest path
between node t and node s (where s ∈ S, HF-related genes;
t ∈ T , drug target genes). The calculation was as shown
below:

d S, Tð Þ = 1
Tj j〠t∈T

mins∈S d s, tð Þ + ωð Þ, ð1Þ

where ω is the weight of the target gene. The calculation
method is ω = −ln ðD + 1Þ, otherwise if the target gene is a
gene in the HF-related gene set, ω = 0.

We calculated simulated reference distance distribution
corresponding to the drug. Protein nodes were randomly

seen as the simulated drug target in the network, with the
number of nodes keeping the same as the target scale
(denoted as R). The distance dðS, RÞ between these simulated
drug targets (representing simulated drugs) and the TAP1-
related gene set was then calculated, and after 10,000 ran-
dom repetitions, a simulated reference distribution was cal-
culated. Using both μd ðS, RÞ and σdðS, RÞ, the mean and
standard deviation of the corresponding actual observation
distance and the reference distribution were converted into
a standardized score, that is, the degree of proximity z:

z S, Tð Þ =
d S, Tð Þ − μd S,Rð Þ

σd S,Rð Þ
: ð2Þ

We found that whether we took the TAP1-related gene
set as the sample or our randomly selected gene set as the
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Figure 6: miRNA-mRNA relationship analysis: (a) miRNA-mRNA interaction relationship network; (b) diagnostic model of miRNA; (c)
distance density fractionation plot of drug to TAP1-related gene set.

Table 1: Molecular docking scores of compounds with TAP1 proteins and generated important interactions.

Compound AutoDock Vina score H-bond interactions Hydrophobic interactions

DB04847 -9.8 GLN195, SER344, GLN347 ALA229, TRP232, ALA302, ILE306, PHE343

DB01116 -8.7 GLN990 ALA229, TRP232, ILE306, LEU339, ILE340, PHE343

DB06412 -8.1 ASN721, GLN838 PHE303, TYR307, ALA987, VAL991

DB00480 -7.9 GLN990 TRP232, PHE343

DB08378 -7.6 TRP232, ASN721, GLY722, SER766, ASN842 PHE303, VAL991
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Figure 7: Continued.
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sample, in the location of central distribution of the drug
distance, we performed multiple hypothesis tests with the
random data obtained in the reference and selected drug
with short distance and FDR < 0:001; a candidate drug set
related to the TAP1-related gene set was obtained as an
analysis.

2.6. Molecular Docking. AutoDock Vina software [25] was
used for molecular docking. Firstly, to prepare all the input
files, AutoDockTools 1.5.6 was used. The PDB files of the
proteins were downloaded from the Protein Data Bank
(PDB ID: 6SUK). All protein B chains, water molecules,
and potassium ions were removed, and polar hydrogens
were added to the system. The charge of the zinc ion in
the PDBQT file of the receptor protein was changed to
+2.0. The coordinates of the grid in each XYZ direction dur-
ing molecular docking were 20.2Å, -46.5Å, and 15.2Å. The
lengths in each XYZ direction were 20Å. To identify the
most binding mode of the ligand molecule, the Lamarckian
algorithm was introduced. The maximum number of con-

formations of output was set to 10, the exhaustiveness was
set to 8, and the maximum energy range allowed was set to
3 kcal/mol. The processing of the result maps was performed
using PyMOL.

The following are used for conditional screening: (1)
Homo sapiens, (2) resolution: 1.75Å, (3) ligand: dual inhib-
itor of omapatrilat metalloproteinases ACE and NEP with Ki
values of 0.64 nM and 0.45 nM, respectively, and (4) omapa-
trilat is a relatively mature NEP inhibitor, and the resolution
of the crystal is 1.75, which is relatively low.

2.7. Statistical Analysis. ANOVA was conducted in compar-
ing different groups containing multiple subgroups. P < 0:05
was considered as significant.

3. Results

3.1. Identification of Key miRNAs. First, we identified 66 dif-
ferentially expressed miRNAs, of which 10 miRNA expres-
sions were downregulated and 56 miRNA expressions were

Interactions
Conventional hydrogen bond

Carbon hydrogen bond

Pi-Pi stacked

Pi-Alkyl

(b)

Figure 7: Binding pattern map of TAP1 protein with compound DB04847: (a) 3D binding pattern map of compound DB04847 with TAP1
protein; (b) 2D analysis map of detailed interaction generated by compound DB04847 with TAP1 protein, in which the α-helix of the
protein backbone is shown as a cyan band and the β-fold is shown as a magenta band. Compound DB04847 is shown as a plum-red
stick, the amino acid residues that produce the interaction are shown as cyan sticks, and the colors of the heteroatoms in the compound
and amino acid residues are shown by element type. Hydrogen bonds are shown as green dashed lines, π-π stacked interactions are
shown as magenta dashed lines, and π-Alkyl interactions are shown as pink dashed lines.
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upregulated (Figure 1(a)). Then, we looked at the clustering
of the 66 differentially expressed miRNAs and found that the
HF group showed significantly different miRNA expression
patterns than the control group (Figure 1(b)). To further
investigate the functions of the 66 differential miRNAs, we
obtained 66 miRNA key target genes, among which hsa-
miR-126-3p did not have a corresponding target gene.
KEGG enrichment analysis on the target genes showed that
the target genes were enriched to the MAPK signaling path-
way, TGF-beta signaling pathway, p53 signaling pathway,
Prolactin signaling pathway, and JAK-STAT signaling path-
way (Supplementary Figure 1).

3.2. Identification of Key Target Genes of Key miRNAs. To
identify key genes associated with HF, we performed differ-
ential analysis of mRNA expression profile data (HF patients
vs. healthy individuals). First, the differential analysis was
performed for acute HF patients/chronic HF patients/HF
patients vs. healthy individuals, respectively, and we found
that 64 genes with downregulated expression and 36 genes
with upregulated expression were obtained from the acute
HF patients vs. the healthy group (Figure 2(a)); 17 genes
with downregulated expression and 48 genes with upregu-
lated expression were obtained from the chronic HF patients

vs. the healthy group (Figure 2(b)). After combining chronic
HF/acute HF patients with the healthy group for differential
analysis, 38 genes with downregulated expression and 10
genes with upregulated expression were finally screened
(Figure 2(c)). By combining these differential genes of three
groups, we finally found 83 genes upregulated and 92 genes
downregulated in HF patients vs. healthy individuals. Next,
we performed KEGG enrichment analysis on 175 differential
genes (P < 0:05). These genes were enriched to a total of two
pathways (Figure 3(a)), including amino sugar and nucleo-
tide sugar metabolism, pantothenate, and CoA biosynthesis.
Combined with the 66 key differentially expressed miRNAs
screened in the above analysis, we found that only 68 of
these 175 differential genes were the target genes of these
key miRNAs, and subsequently, we constructed a miRNA-
mRNA regulatory network, which included 46 miRNAs
such as hsa-miR-4505, hsa-miR-6124, and hsa-miR-4459
and 64 miRNAs such as RBM28, DCPS, SRD5A1, and
HSPA6 mRNAs (Figure 3(b)).

3.3. Pathway Characteristics of Abnormal HF Regulation. To
further understand the abnormal regulatory pathways in the
organism triggered by HF, we performed ssGSEA of KEGG-
related pathways and found that 23 pathway scores were
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Figure 8: Pathway analysis of aberrant regulation of TAP1 gene: (a) heat map of aberrantly regulated pathway enrichment scores; (b)
difference in aberrantly regulated pathway enrichment scores between the high- and low-expression groups of the TAP1 gene; (c) point
bar graph of correlation between aberrantly regulated pathway enrichment scores and TAP1 gene expression, where color is significance
and size of point is strength of correlation; (d) correlation between TAP1 expression and hypoxia, energy metabolism, and
inflammation-related pathways in a correlation heat map.
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significantly different between HF patients and healthy
groups (Figure 4(a)), including TIGHT_JUNCTION,
PATHOGENIC_ESCHERICHIA_COLI_ INFECTION,
ABC_TRANSPORTERS, BIOSYNTHESIS_OF_UNSATU-
RATED_FATTY_ACIDS, and MATURITY_ONSET_DIA-
BETES_OF_THE_YOUNG. To further investigate the
pathways potentially regulated by the differential target
genes of these differential miRNAs, we performed Pearson
correlation analysis using the rcorr function of Hmisc pack-
age on the expression of these target genes and the 23 path-
ways (Figure 4(b)). We found that most of the target genes
were significantly associated with ECM_RECEPTOR_
INTERACTION, ABC_ TRANSPORTERS, HOMOLO-
GOUS_RECOMBINATION, and BETA_ALANINE_
METABOLISM.

HF leads to hypoxia [26, 27]; therefore, we calculated the
hypoxic score of each sample in the GSE21125 dataset by the
ssGSEA method using genes in the HALLMARK_HYP-
OXIA pathway as hypoxic key genes, and the correlation
between target genes and hypoxic score was determined by
Pearson’s method. The results revealed that the FTSJ1 gene
and TBC1D7 gene were significantly and positively corre-
lated with hypoxia score and that MS4A2 and SRD5A1
genes were significantly and negatively correlated with hyp-
oxia score.

HF not only leads to hypoxia but also may affect the pro-
cess of energy metabolism of the body. The corresponding
scores of genes in these pathways SULFUR_METABOLISM,
OXIDATIVE_PHOSPHORYLATION, and NITROGEN_
METABOLISM were calculated by ssGSEA, the mean of
which was taken as the score to indicate energy metabolism.
We found a significant positive correlation between AGTR1
and energy metabolism and a significant negative correlation
between EGR4 and PSD2 genes and energy metabolism by
the correlation analysis.

Further, we analyzed HF and inflammation [28].
Inflammation-related pathways are Toll-like receptor
(TLR) pathway, T cell receptor signaling, NF-κB signaling,
Jak/Stat signaling, B cell receptor signaling, and IL-6 recep-
tor family. For the genes in the above related pathways, we
calculated their related pathway scores by the ssGSEA
method and found that a total of 24 genes were significantly
associated with inflammation-related scores, hypoxia-related
scores, and energy metabolism-related scores by correlation
analysis (Figure 4(c)). These 24 genes were AGMAT,
AGTR1, CPNE7, CSPG5, DAXX, EGR4, FTSJ1, GAGE1,
GPR173, HK1, KRTAP2-4, MS4A2, MTM1, NDST3,
PNLIPRP3, PSD2, RANBP9, SRD5A1, TAP1 TP53INP2,
TREML1, UGT2B15, ZDHHC9, and ZNF473.

Through the previous analysis, we found a total of 24
genes significantly associated with inflammation-related
scores, hypoxia-related scores, and energy metabolism-
related scores. First, we looked at the expression of these
24 genes in HF and healthy groups. The expression of 11
genes, AGMAT, AGTR1, DAXX, GPR173, HK1, NDST3,
PNLIPRP3, PSD2, TAP1, TP53INP2, and ZDHHC9, was
significantly different between the acute and chronic and
healthy groups, while their expression was significantly dif-
ferent in acute-chronic-normal with gradual increase/

decrease (Figure 5(a)). We then constructed diagnostic
models for these 11 genes and found that the AUC of all
the 11 genes reached above 0.7 (Figure 5(b)).

3.4. Identification of Key miRNA-mRNA. We constructed
miRNA-mRNA interaction network based on the 11 key tar-
get genes, and through using Cytoscape software [29], it has
been found that these 11 target genes had closely related
interactions with 32 miRNAs in the miRNA-mRNA net-
work (Figure 6(a)). Among them, four genes were highly
expressed in the disease group, namely, ZDHHC9, PSD2,
HK1, and TAP1. Next, we explored the crystal structures
of the proteins corresponding to these four genes, among
which ZDHHC9 and PSD2 showed no crystal structures,
HK1 had complete crystals but no one has performed
molecular docking on this protein with small molecules so
far, and TAP1 had crystals [30, 31], and there are articles
on its molecular docking [32]. Therefore, we selected the
TAP1 gene as a candidate gene, which had the highest
expression in acute HF, followed by chronic HF, and the
lowest expression in the healthy group.

Then, based on the miRNA-mRNA interaction network
analyzed above, it could be seen that the TAP1 gene was reg-
ulated by two miRNAs, hsa-miR-6785-5p and hsa-miR-
4443. Next, we constructed diagnostic models for these two
miRNAs based on the pROC package and found that the
AUC of these two miRNAs reached above 0.9 (Figure 6(b)).

3.5. Prediction of TAP1-Related Gene Set and Potential
Target Therapeutic Agents. We performed correlation analy-
sis of the genes in the GSE21125 dataset by the rcorr func-
tion of the Hmisc package and obtained a total of 119
genes that were highly significantly associated with the
TAP1 gene after screening the genes with a correlation
greater than 0.4 (P < 0:001). We concluded that the above
TAP1-related gene sets were important genes for the treat-
ment of HF and that drugs targeting these genes could have
a greater impact on HF treatment development. Based on
the drug target pairs in DrugBank and the predicted PPI
interactions, we calculated the proximity of drugs and the
effect on treating HF (Figure 6(c)) and then analyzed the
obtained TAP1-related gene set of relevant drug candidates.

We analyzed the potential target compounds by molecu-
lar docking and observed that five compounds with TAP1
scored high molecular docking (Table 1) and generated
more favorable interactions. Notably, DB04847 had the
highest molecular docking score of -9.8 kcal/mol. DB04847
bound in the active site of the TAP1 protein and produced
hydrogen bonding interactions with GLN195, SER344, and
GLN347 in the binding pocket and generated π-Alkyl inter-
actions with ALA229, ALA302, and ILE306 and π-π stacked
interactions with TRP232 and PHE343 (Figures 7(a) and
7(b)). The relatively high molecular docking score and the
ability of compound DB04847 to produce so many favorable
interactions with TAP1 protein suggested that this com-
pound was highly likely to be a potential inhibitor of TAP1.

3.6. Pathways Abnormally Regulated by the TAP1 Gene. To
better investigate the pathways potentially regulated by the
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TAP1 gene, we screened a total of 22 TAP1 aberrantly regu-
lated pathways by enrichment score and TAP1-pathway cor-
relation (Figure 8(a)), and we also divided the TAP1 gene
into high- and low-expression groups by median value. It
has been found that 14 of these 22 aberrantly regulated path-
ways (64%) were significantly different in the high- and low-
expression groups (t-test. Figure 8(b)). We further looked at
the correlation of these 22 aberrantly regulated enrichment
scores with TAP1 expression (Figure 8(c)). SYSTEMIC_
LUPUS_ERYTHEMATOSUS, ASTHMA, CARDIAC_
MUSCLE_CONTRACTION and BIOSYNTHESIS_OF_
UNSATURATED_ FATTY_ACIDS, LEISHMANIA_
INFECTION, and ABC_TRANSPORTERS pathways had
enrichment scores positively correlated with TAP1 expres-
sion, and NEUROACTIVE_LIGAND_RECEPTOR_
INTERACTION, RIG_LIKE_RECEPTOR_SIGNALING,
and TYROSINE_METABOLISH had enrichment scores
negatively correlated with TAP1 expression. In addition,
correlation analysis of energy metabolism, hypoxia, and
inflammation-related pathways with TAP1 expression
showed a significant positive correlation between TAP1
and hypoxia pathway and a significant negative correlation
with Toll-like receptor signaling pathway (Figure 8(d)).
The above data indicated that TAP1 was closely correlated
with classic cell growth pathways.

4. Discussion

HF is a globally common clinical syndrome characterized by
structural damage to the heart and/or cardiac dysfunction
leading to fatigue at rest and dyspnea [33]. HF is a multifac-
torial disease, the development of which is associated with
complex regulation. Despite numerous studies [34, 35], the
exact mechanisms of HF remain to be elucidated in order
to facilitate the discovery of key drug targets in HF [36]. In
this study, we screened miRNAs associated with HF by dif-
ferential analysis and obtained miRNA-regulated mRNAs
(genes) and explored the pathway characteristics of abnor-
mal regulation of HF by enrichment analysis of miRNA tar-
get genes.

Our analysis revealed a significant positive correlation
between TAP1 and hypoxia score, which is closely associated
with HF [26, 27]. TAP1 belongs to the ATP binding cassette
(ABC) transporter protein superfamily [37]. The existence of
ABC_TRANSPORTERS in the regulatory pathways
involved in the differential target genes of HF-related miR-
NAs is consistent with the above results. Moreover, TAP1
is mainly involved in transporting antigen from the cyto-
plasm to the endoplasmic reticulum, binding to major histo-
compatibility complex (MHC) class I molecules, and acting
as a molecular scaffold for the final stage of MHC class I
folding, that is, peptide binding [38]. Thus, TAP1 can per-
form antigen-presenting functions and regulate adaptive
immunity [39]. TAP1 has been reported to be associated
with tumor immune escape, and high-expressed TAP1 has
been seen as a poor prognostic factor in stage I/II colorectal
cancer patients [40]. In the present study, TAP1 was highly
expressed in HF patients, which also suggests that high
TAP1 expression is an unfavorable factor in the disease of

HF. There is no reported association of TAP1 with the
mechanism or prognosis of HF other than the present study,
much less a study reporting TAP1 as an important gene for
HF treatment. Therefore, for the first time, this study
revealed the important function of TAP1 in HF manage-
ment, and molecular docking verified that DB04847 was a
potential inhibitor of TAP1.

Two key miRNAs, hsa-miR-4443 and hsa-miR-6785-5p,
were recruited into the diagnostic model of miRNAs regulat-
ing TAP1 gene constructed in this study. hsa-miR-6785-5p
was reported to be a novel target for diagnosis of advanced
bladder cancer and its prognosis. It has been reported that
LINC01929, which is highly expressed in advanced bladder
cancer, upregulates the expression level of ADAMTS12
through competitive adsorption of miR-6875-5p, and based
on this molecular mechanism, overexpressed miR-6875-5p
inhibits the progression of bladder cancer [41]. However,
there are no reports on hsa-miR-6785-5p in HF. Some other
studies showed that miR-4443 can inhibit metastasis and
energy metabolism of papillary thyroid cancer through tar-
geting TRIM14 [42]. Most importantly, it has been reported
that hsa-miR-4443 is implicated in atrial fibrillation regula-
tion; that is, in atrial fibrillation, hsa-miR-4443 regulates
TGF-β1/α-SMA/collagen signaling via targeting THBS1,
thereby inhibiting cardiac fibroblast proliferation [43]. This
study supported the involvement of hsa-miR-4443 as a
potentially important miRNA in HF and as a potential target
for HF therapy.

Although many adequate analyses have been conducted
earlier in this paper, our study still has several limitations.
First, the sample size of the current work was small; there-
fore, a larger cohort to further validate these results is
required. Secondly, the specific biological functions of miR-
NAs in diagnostic models are still unclear, and whether
these miRNAs could exert regulatory effects on pathways
implicated in HF requires future exploration. Because HF
is a heterogeneous syndrome that mainly affects patients suf-
fering from multiple comorbidities, it is not uncommon that
there are some overlaps in the mechanisms of other diseases;
thus, the pathways identified in this study could be as well
important in associated comorbidities. For further overcom-
ing the limitations of this study, we are planning to re-collect
and expand the clinical sample in subsequent work and will
validate the accuracy of this drug target and model through
additional external experiments.

Our analysis of the GEO dataset provided drug targets
and diagnostic models for HF management. The drug target
and model provide a comprehensive perspective to study the
prognostic features and treatment of HF, and the newly dis-
covered TAP1-mediated miRNA-regulated diagnostic model
may provide new insights into the current knowledge of the
mechanisms of HF initiation and progression as well as a
new idea and basis for further study of HF treatment
options.

5. Conclusion

In the treatment of HF, we identified TAP1 as a potential
target and predicted that DB04847 drug is highly likely to
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be a potential inhibitor of TAP1. In addition, two miRNAs
(hsa-miR-6785-5p and hsa-miR-4443) that regulate TAP1
targets have a potential diagnostic value.
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