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Abstract Many decisions require trade-offs between sensory evidence and internal preferences.

Potential neural substrates include the frontal eye field (FEF) and caudate nucleus, but their distinct

roles are not understood. Previously we showed that monkeys’ decisions on a direction-

discrimination task with asymmetric rewards reflected a biased accumulate-to-bound decision

process (Fan et al., 2018) that was affected by caudate microstimulation (Doi et al., 2020). Here we

compared single-neuron activity in FEF and caudate to each other and to accumulate-to-bound

model predictions derived from behavior. Task-dependent neural modulations were similar in both

regions. However, choice-selective neurons in FEF, but not caudate, encoded behaviorally derived

biases in the accumulation process. Baseline activity in both regions was sensitive to reward

context, but this sensitivity was not reliably associated with behavioral biases. These results imply

distinct contributions of FEF and caudate neurons to reward-biased decision-making and put

experimental constraints on the neural implementation of accumulation-to-bound-like

computations.

Introduction
Complex decisions often require interpreting external sensory inputs in the context of outcome

expectations and preferences. This kind of decision-making is pervasive in our daily lives, balancing

what we observe with what we desire. Under controlled task conditions, both humans and non-

human animals tend to achieve this balance in a roughly normative manner. Specifically, when the

sensory evidence strongly supports a particular option, decision-makers tend to choose that option

independent of alternative expectations and preferences. Conversely, when the sensory evidence is

weak, decision-makers tend to make more and faster choices to options with preferred, expected

outcomes (Maddox and Bohil, 1998; Voss et al., 2004; Diederich and Busemeyer, 2006;

Liston and Stone, 2008; Whiteley and Sahani, 2008; Feng et al., 2009; Summerfield and Koech-

lin, 2010; Teichert and Ferrera, 2010; Gao et al., 2011; Leite, 2012; Mulder et al., 2012;

Blank et al., 2013; Fan et al., 2018; Waiblinger et al., 2019). However, exactly how and where in

the brain the computations needed for these flexible decision processes are implemented is not well

understood.

The observed patterns of choices and reaction times (RTs) for these kinds of tasks are often con-

sistent with an accumulate-to-bound (drift-diffusion) decision process (Ratcliff, 1978; Maddox and

Bohil, 1998; Gold and Shadlen, 2002; Voss et al., 2004; Bogacz et al., 2006; Diederich and Buse-

meyer, 2006; Bogacz, 2007; Feng et al., 2009; Simen et al., 2009; Krajbich et al., 2010;

Summerfield and Koechlin, 2010; Gao et al., 2011; Leite, 2012; Mulder et al., 2012; Blank et al.,

2013; Fan et al., 2018). Within this framework, asymmetric reward-choice associations (reward con-

texts) induce biases in the evidence-accumulation process, the decision bounds for different choice

options, or both. The relative contributions of these different forms of reward context-dependent
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bias likely reflect specific adaptive strategies and can vary by task design, subject, and testing days

(Fan et al., 2018).

How does single-neuron activity relate to the computations required for incorporating reward

and visual information to form decisions? Previously we trained monkeys to perform an asymmetric-

reward direction-discrimination task (Figure 1A), in which the monkeys report their perception of

the global motion direction of a noisy stimulus with eye movements under different reward contexts.

We showed that activity of some caudate neurons was sensitive to both reward context and motion

stimulus. In addition, caudate microstimulation affected the monkeys’ reward biases in a manner

that reflected coordinated changes in drift rates and relative bound heights in a drift-diffusion deci-

sion framework (Doi et al., 2020).

To provide additional insights into the neural implementation of these decision computations in

multiple brain regions, we examined both the caudate nucleus and one of its major cortical input

sources, the frontal eye field (FEF) of the lateral prefrontal cortex. Neurons in these two regions con-

tribute to perceptual and reward-based decision making along with reward-modulated motor per-

formance (for a very limited sample, see Thompson et al., 1996; Thompson et al., 1997;

Kawagoe et al., 1998; Kim and Shadlen, 1999; Freedman et al., 2001; Schall, 2001; Coe et al.,

2002; Kobayashi et al., 2002; Lauwereyns et al., 2002b; Lauwereyns et al., 2002a; Roesch and

Olson, 2003; Heekeren et al., 2004; Samejima et al., 2005; Ding and Hikosaka, 2006;

Nakamura and Hikosaka, 2006a; Nakamura and Hikosaka, 2006b; Boettiger et al., 2007;

Lau and Glimcher, 2007; Lau and Glimcher, 2008; Pan et al., 2008; Ferrera et al., 2009;

Basten et al., 2010; Ding and Gold, 2010; Cai et al., 2011; Ding and Gold, 2012c; Ding and

Gold, 2012a; Heitz and Schall, 2012; Seo et al., 2012; Kim and Hikosaka, 2013; Teichert et al.,

2014; Yanike and Ferrera, 2014b; Ding, 2015; Hanks et al., 2015; Santacruz et al., 2017;

Amemori et al., 2018; Schall, 2019). Functional imaging and modeling studies also suggest that the

two regions are involved in complex decisions that balance visual evidence and reward expectation

to guide appropriate movements (Rao, 2010; Summerfield and Koechlin, 2010; Chen et al.,

2015). However, their specific computational roles in these decisions, represented at the single-neu-

ron level, remain largely speculative.

In this study, we focused on three questions: (1) How do FEF and caudate neurons encode key

task factors including choice, motion strength, reward context, and reaction times (RT)? (2) Do any

of these task-related modulations in either brain area reflect the monkeys’ behaviorally derived

biases in drift rates? (3) Do any of these task-related modulations in either brain area reflect the

behaviorally derived biases in relative bound heights?

Results
We recorded from 149 FEF neurons from three monkeys (n = 85, 24 and 40 from monkeys A, C and

F, respectively) and, in separate sessions, from 140 caudate neurons from the same monkeys

(n = 18, 49, and 73 from monkeys A, C and F, respectively) performing the asymmetric-reward direc-

tion-discrimination task. As we reported previously (Fan et al., 2018), the monkeys’ choices and RTs

tended to reflect the strength (coherence) and direction of the visual motion stimulus but with a bias

toward the large-reward option (Figure 1B,C).

Diverse task-relevant sensory and reward encoding in both brain
regions
Individual neurons in both the FEF and caudate showed a diversity of task-driven responses (several

examples are illustrated in Figure 2; population summaries are shown in Figure 2—figure supple-

ment 1 and Figure 3). The FEF neuron in Figure 2A responded to choice target presentation with

phasic (transient) and tonic (sustained) activation, showed a dip in activity after motion onset, then

had gradually increasing activity (more for trials resulting in a contralateral choice) during motion

viewing until a saccade-related burst for the contraversive saccade and a return to baseline activity

for the other saccade. The FEF neuron in Figure 2B was activated after target onset, with higher

activation when the contralateral choice was paired with large reward (red curves > green curves).
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Figure 1. Monkeys biased toward choices associated with large reward. (A) Task design and timeline. Monkeys

reported the perceived motion direction with a saccade to one of the two choice targets. The motion stimulus was

turned off upon detection of the saccade. Correct trials were rewarded based on the reward context. Error trials

were not rewarded. The color bars in the timeline indicate epoch definitions for the regression analysis of neural

firing rates in Equation 1. (B) Average choice (top) and RT (bottom) behavior of three monkeys for sessions with

FEF and caudate recordings. The FEF dataset (black) included 16,561 trials from 33 sessions for monkey F, 7924

trials from 23 sessions for monkey C, and 24,419 trials from 69 sessions for monkey A. The caudate dataset (red)

included 26,614 trials from 69 sessions for monkey F, 21,076 trials from 44 sessions for monkey C, and 6309 trials

Figure 1 continued on next page
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This modulation by reward context persisted during a gradual ramp in activity during motion viewing

(more for trials with the contralateral choice and for blocks when the contralateral choice was paired

with large reward; t-test for H0: regression coefficient for reward context = 0, p<0.05 for all epochs

1–8). This neuron also showed a saccade-related burst for the contraversive saccade. The FEF neuron

in Figure 2C showed phasic activation by choice targets and motion onset, with activity that

decreased during motion viewing, more gradually for the contralateral choice and higher coherences

(compare curves with different shades), until reaching a saccade-related suppression.

The caudate neuron in Figure 2D did not respond to target onset but was activated after motion

onset, with higher activity for the contralateral choice, at higher coherence, and in blocks when the

contralateral choice was paired with large reward. These coherence and reward-context modulations

persisted through saccade onset, with no convergence before saccade onset. The caudate neuron in

Figure 2E also did not respond to target onset but was activated after motion onset for both

choices, with a preference for ipsilateral choices that were paired with the small reward. After an ini-

tial large activation, this neuron gradually reduced firing toward saccade onset, largely maintaining

reward-context and coherence modulation until after saccade onset.

These diverse trends were apparent across the populations of recorded FEF and caudate neu-

rons. Most neurons in our sample had responses that were modulated, on average, over multiple

time points during each trial, albeit with differences across neurons and brain areas. FEF neurons

typically had elevated responses that began just after target onset and then persisted through

motion viewing until the saccadic response (Figure 2—figure supplement 1A; for most neurons,

spike rate increased just after target onset). Caudate neurons typically did not respond strongly to

target onset but then had elevated responses during motion viewing and through the saccadic

response (Figure 2—figure supplement 1B). Both regions included neurons with activity that

increased and/or decreased relative to baseline at various time points during each trial.

To assess how these responses were modulated by choice, coherence, reward context, expected

reward size for a given choice, and reaction time (RT), we first used linear regression applied to neu-

ral data in pre-defined task epochs in Figure 1A (Figure 3A–D). Because neurons in both brain areas

represent a coherence- and time-dependent decision process (Kim and Shadlen, 1999; Ding and

Gold, 2010; Ding and Gold, 2012c) that can conflate the effects of those two factors on neural

responses, and because RT was modulated strongly by reward context in the current task, we con-

ducted two sets of analyses: (1) using all of the factors listed above including coherence but not RT

(Figure 3A,B), and (2) using all of the factors listed above including normalized RT (normalized sepa-

rately for each reward context x choice combination) but not coherence (Figure 3C,D).

These epoch-based analyses showed several differences between the FEF and caudate popula-

tions, including: (1) a larger fraction of FEF neurons showed choice selectivity around and after sac-

cade onset (Figure 3A and C, first column); (2) although selectivity for reward context emerged

before motion onset in both populations and persisted through a trial, a larger fraction of caudate

neurons showed such selectivity during motion viewing (second column); (3) a larger fraction of cau-

date neurons showed selectivity for reward size (third column); and (4) both populations showed sig-

nificant coherence selectivity after motion onset, but a larger fraction of caudate neurons remained

coherence-selective after a saccade was made (Figure 3A, fourth column). The caudate, but not

FEF, population showed above-chance fractions of neurons with joint modulation by both reward

and motion coherence (Figure 3B). Activity in both regions was related to the RT in similar fashions

(Figure 3C and D). The RT-based regression also captured a larger variance of activity than the

coherence-based regression in both populations (t-test on the explained variance, p<0.0001 and

p=0.007 for FEF and caudate, respectively).

To examine these task-related modulations at a finer time resolution, we applied the RT-based

linear regression to neural data in sliding windows (Figure 3E–I). These analyses produced results

Figure 1 continued

from 17 sessions for monkey A. Filled and open circles: data from the two reward contexts. Similar results were

reported previously for sessions with caudate recordings (Doi et al., 2020). (C) Histograms of reward bias for all

sessions, estimated using logistic fits to choice data. Note that the bias magnitude varied in magnitude across

monkeys and sessions, depending on the large:small reward ratio, the motion-coherence levels used in a given

session, and the monkeys’ inherent perceptual sensitivity (Fan et al., 2018).
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Figure 2. Task-related activity in FEF and caudate neurons. (A-C) Activity of three example FEF neurons. For display purposes, average spike count was

measured for correct trials only and convolved with a Gaussian kernel (sd = 40 ms). Green colors: large reward was paired with the ipsilateral choice.

Red colors: large reward was paired with the contralateral choice. Shades: coherence levels. For alignment to motion onset, activity was truncated at

100 ms before the median reaction time. For alignment to saccade onset, activity was truncated at 200 ms after the median time for motion onset. (D-

E) Activity of two example caudate neurons. Same format as A.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Summary of activity patterns.
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regression coefficients in the multiple linear regression in Equation 2. Criterion: t-test, p<0.05. Dashed lines: chance level, adjusted for the number of

comparisons. Filled circles: the fraction was significantly greater than chance level (Chi-square test, p<0.05/72 (8 epochs x nine comparisons)).
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Figure 3 continued on next page
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that were consistent with the epoch-based analyses and showed further between-region differences

in the timing and direction of task-related activity modulations. Selectivity for choice tended to

increase during motion viewing until around the saccade, with stronger selectivity for contralateral/

upward choices in both regions but particularly in the FEF (Figure 3E). Selectivity for reward context

was evident before motion onset and continued toward saccade onset, with a mixture of preferences

for the two reward contexts (Figure 3F). For FEF neurons, a higher fraction preferred the contralat-

eral-Large Reward context before and during early motion viewing and similar fractions preferred

either contexts before saccade onset. Although this was also true for the caudate population, the

extent of the laterality was weaker. Selectivity for reward size, independent of the actual choice

made, was most evident for data aligned to the saccade, with similar fractions of neurons of the cau-

date population preferring large or small reward (Figure 3G). Very few FEF neurons showed reward-

size selectivity. Selectivity for RT was evident in both regions, with a dominant preference for short

RTs associated with contralateral choices (Figure 3H) and mixed preferences otherwise (Figure 3I).

These general patterns were present in the three monkeys for both FEF and caudate data (Fig-

ure 3—figure supplements 1–3).

To further characterize the modulation patterns, we applied the demixed principal component

analysis (dPCA) method for the two populations (Kobak et al., 2016). Although our sample size was

relatively small and trials were inherently unbalanced for different reward-choice-coherence combi-

nations for this method, the dPCA results corroborated several findings from the multiple linear

regression analysis (Figure 3—figure supplements 4–7), including: (1) choice-related components

tended to account for a larger portion of variance in FEF activity than caudate activity (panels B and

C in each figure, purple); (2) reward context-related components tended to account for a larger por-

tion of variance in caudate activity than FEF activity (orange), particularly for around saccade onset;

(3) coherence-related components tended to account for a larger portion of variance in FEF activity

around motion onset than for activity around saccade onset, while the opposite was true for caudate

activity (cyan); and (4) coherence and reward context or size interactions accounted for substantial

variance for both regions (dark and light green). Collectively, these results indicated that neurons in

both FEF and caudate represent a variety of task-relevant signals that could, in principle, support

reward-biased perceptual decisions, but with different prevalences and preferences.

Figure 3 continued

indicate epochs in which the fractions differed between FEF and caudate populations (Chi-square test, p<0.05/72). (B) Fraction of neurons with joint

modulation by coherence and reward-related terms. Same format as A. (C, D) Fractions of neurons showing significant regression coefficients in the

multiple linear regression in Equation 3. Same format as A and B. (E-I) Fractions of neurons showing significant non-zero regression coefficients for

different regressors (Equation 3). Results from RT-reward interaction terms were omitted because both regions showed near chance-level fractions.

Dashed horizontal lines: chance level. Only neurons tested with non-vertical motion stimuli were included (n = 126 and 136 for FEF and caudate,

respectively).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Source data for Figure 3A–D.

Source data 2. Source data for Figure 3E–I: FEF activity aligned to target onset.

Source data 3. Source data for Figure 3E–I: caudate activity aligned to target onset.

Source data 4. Source data for Figure 3E–I: FEF activity aligned to motion onset.

Source data 5. Source data for Figure 3E–I: caudate activity aligned to motion onset.

Source data 6. Source data for Figure 3E–I: FEF activity aligned to saccade onset.

Source data 7. Source data for Figure 3E–I: caudate activity aligned to saccade onset.

Figure supplement 1. Comparison of the time course of task-related modulation of FEF and caudate activity in monkey F.

Figure supplement 2. Comparison of the time course of task-related modulation of FEF and caudate activity in monkey C.

Figure supplement 3. Comparison of the time course of task-related modulation of FEF and caudate activity in monkey A.

Figure supplement 4. dPCA results for FEF activity aligned to motion onset.

Figure supplement 5. dPCA results for FEF activity aligned to saccade onset.

Figure supplement 6. dPCA results for caudate activity aligned to motion onset.

Figure supplement 7. dPCA results for caudate activity aligned to saccade onset.
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Predictions of the biased decision variable in a drift-diffusion
framework
As we showed previously, these monkeys’ patterns of choices and RTs on this task were consistent

with a drift-diffusion model (DDM; Fan et al., 2018). According to this model, a decision is formed

when accumulated motion evidence reaches one of two pre-defined (collapsing) decision bounds

(Figure 4A). The monkeys’ reward-driven biases arose from coordinated, reward context-dependent

adjustments of the rate of accumulation (drift rate, which scales with motion coherence) and relative

bound heights (Figure 4E; for more details see Fan et al., 2018). A bias in the drift rate (DDrift, cor-

responding to the me parameter in the DDM) can be implemented as a constant offset to the

momentary motion evidence (Figure 4B). A bias in the relative bound heights (DBound, correspond-

ing to the z parameter in DDM) can be implemented as an offset in the starting value of the accumu-

lation process (Figure 4C), an asymmetry in the absolute bound heights for the two choices

(Figure 4D), or a combination of the two.

These different ways of implementing reward-driven biases correspond to different predictions of

how and when the accumulating decision variable is modulated by reward context during a trial.

Specifically, in the presence of a bias in the drift rate, the slope of the decision variable would be

modulated by reward context during evidence viewing. In the presence of a bias in the starting

value, the baseline value of the decision variable would be modulated by reward context before evi-

dence onset. In the example in Figure 4C, the baseline value would be higher when the reward bias

favors the upper-bound choice. In the presence of a bias in the bound heights, the decision variable

would be modulated by reward context at the time of decision commitment. In the example in
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favoring the upper-bound choice. (B) Drift rates are biased by adding a constant positive value to the evidence,

resulting in steeper slopes for motion to the upper-bound choice and shallower slopes for motion to the lower-

bound choice. (C) The accumulation begins with a positive starting value. (D) The accumulation ends at a lower

absolute value for upper-bound choices than for lower-bound choices. (E) Summary of reward biases in drift and

bound terms from DDM fits for the three monkeys. Positive values indicate biases toward the large-reward choice.

Black and red data points represent sessions with FEF and caudate recordings, respectively.
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Figure 4D, the ending value would be closer to the starting point of the evidence accumulation

when the reward bias favors the upper-bound choice.

We examined whether FEF and caudate activity conform to these predictions. Given the asym-

metric effects of these predicted biases on the two choices, we focused on neurons with reliable

choice selectivity (Figure 5) and present results from other neurons as supplements when appropri-

ate. The ‘choice-selective’ neurons were identified as showing significant and consistent choice mod-

ulation through motion viewing (epoch #5 in Figure 1) and before saccade onset (epoch #6), based

on RT-based regression analysis results shown in Figure 3. The numbers of neurons meeting these

criteria for the three monkeys are shown in Table 1. The average activity of choice-selective and
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Figure 5. Average activity for neuron categories. (A) Average firing rates of neurons with significant and consistent

choice selectivity. See Table 1 for number of neurons in each category. Trials were grouped by choice (left and

right rows), reward context (magenta/green), and RT quintiles (shade). Activity was aligned to motion and saccade

onsets for the top and bottom rows, respectively. Only correct trials were included. For motion onset alignment,

firing rates were truncated at the median RT minus 100 ms for each group. For saccade onset alignment, firing

rates were truncated before median motion onset plus 200 ms for each group. For display purposes, firing rates

were convolved with a Gaussian kernel (sigma = 25 ms). (B) Average firing rates of other neurons. Same format as

A.
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other neurons is shown in Figure 5. Note that because different coherence levels were used for the

three monkeys, we grouped the trials by quintiles of RT for these plots.

Even using these common criteria for categorization, the average activity patterns of neurons in

the same category differed for FEF and caudate. First, consider the choice-selective subpopulations.

Whereas choice-selective FEF activity appeared to be roughly consistent with bound-crossing in the

DDM (i.e., reaching a fixed level of activity at the end of the decision process and before saccade

onset, regardless of the time it took to reach the decision), choice-selective caudate activity did not

(Ding and Gold, 2010; Ding and Gold, 2012b). For trials in which the monkey made the preferred

choice of the given neuron, the slope of FEF activity during motion viewing appeared to show more

separations than the slope of caudate activity, between reward contexts and RT groups. The base-

line FEF activity before motion onset appeared to differ more between reward contexts. The peri-

saccade activity for the preferred choice appeared to show opposite selectivity for reward context in

the two regions (the purple curves tended to be above and below the green curves for FEF and cau-

date, respectively).

Second, in the other subpopulations that did not exhibit consistent choice selectivity, the average

caudate activity appeared to maintain RT separation through saccade generation and onward,

whereas the average FEF activity appeared to converge around saccade onset (Figure 5B). These

apparent differences suggest that activity in the two regions may relate differently to the predictions

of the DDM, which we examine in more detail below.

FEF activity reflected behaviorally derived reward-driven drift-rate
biases
We first examined whether FEF and caudate activity reflected evidence accumulation with a reward-

driven bias in the drift rate. As illustrated in Figure 4B, such a signal is expected to show two fea-

tures in neural activity. First, the rate of accumulation depends on motion coherence. For individual

neurons, this dependence translates to motion-coherence modulation of the slope of firing rates dur-

ing motion viewing. Figure 6A and B illustrate our procedure for estimating the slope of change in

firing rates and its modulation by coherence, reward context, and their interaction. Second, the

reward-context modulation of the slope of change reflects the behavioral reward bias in drift rate. In

the model, the reward bias in drift rates is independent of coherence and the drift-rate scaling and

dependent only on reward context. The corresponding modulation of the (slope of) activity of indi-

vidual neurons is thus by reward context alone and not by the reward context-coherence interaction.

Because neurons showed substantial variations in their firing-rate ranges, we used each neuron’s

modulation by coherence to normalize its modulation by reward context. The second expectation

thus translates to a correlation between this normalized quantity and the behaviorally estimated bias

in drift rate across neurons/sessions.

Table 1. Summary of counts/percentages for neurons with task-modulated activity.

FEF Caudate

Monkey A Monkey C Monkey F Monkey A Monkey C Monkey F

Total 85 24 40 18 49 73

Consistently choice-selective 35 14 7 6 31 21

41% 58% 18% 33% 63% 29%

Coherence-modulated slope of
firing rate during motion viewing

44 12 26 10 33 41

52% 50% 65% 56% 67% 56%

Reward context-modulated slope
of firing rate during motion viewing

21 5 3 2 9 15

25% 21% 8% 11% 18% 21%

Reward context-modulated
activity before motion onset

38 12 19 15 34 39

45% 50% 48% 83% 69% 53%

Reward context-modulated
activity just before saccade onset

51 16 26 15 34 49

60% 67% 65% 83% 69% 67%
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Figure 6. Reward-context modulation of the rate of change in FEF more closely reflected reward bias in drift rates. (A) Illustration of measurements of

different modulations of the rate of change for a single neuron. Left: average firing rates of the example neuron in Figure 2B for its preferred choice

and aligned to motion onset. In 200 ms sliding windows, linear regressions were performed to estimate the slope of firing-rate changes as a function of

time, coherence, reward context and their combination. Right: slope values for the sliding window in the left panel. A multiple linear regression was

performed with coherence, reward context and their interaction as the regressors (lines). The offset between the two reward contexts at zero coherence

(filled triangles) represents the magnitude of reward-context modulation in the regression. (B) The regression coefficients of the linear regression for

different sliding windows for the example neuron. Filled circle: coefficient was significantly different from zero (t-test, p<0.05). For each neuron, the time

with the largest absolute coherence modulation was identified (arrow). For the alignment to motion onset, a minimum 100 ms visual latency was

imposed. (C) Coefficient values for FEF (top) and caudate (bottom) neurons with significant coherence-modulated slope values for trials with the

preferred choices. (D) Scatter plots of the ratio of regression coefficients for reward context and coherence modulation (abscissa) and the behavioral

bias in drift rates (from DDM fits, ordinate), for FEF (top) and caudate (bottom) neurons with significant coherence modulation. Preferred choice only.

Slope values were measured from activity aligned to motion (left) and saccade (right) onset. Line and shaded area: linear regression with significant

non-zero slope (t-test, p<0.05) and 95% confidence interval. Colors indicate neurons from the three monkeys.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Source data for Figure 6D: FEF activity aligned to motion onset.

Source data 2. Source data for Figure 6D: FEF activity aligned to saccade onset.

Source data 3. Source data for Figure 6D: caudate activity aligned to motion onset.

Source data 4. Source data for Figure 6D: caudate activity aligned to saccade onset.

Figure supplement 1. Slope measurements from trials with the non-preferred choices and from neurons without consistent choice selectivity.

Figure supplement 2. Results of correlation analysis as used in Figure 6D, for the three monkeys separately.
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We found that many neurons in both regions showed motion-coherence modulation of the slope

of firing rates (Figure 6, Table 1), consistent with an involvement of both regions in evidence accu-

mulation (Ding and Gold, 2010; Ding and Gold, 2012b). For choice-selective FEF neurons, the

slope of change tended to be greater for higher coherence for trials with the neurons’ preferred

choices (i.e., positive coefficients; Figure 6C). Many FEF neurons also showed opposite modulation

for trials with the null choices, but these effects were inconsistent, reflecting the lower reliability in

estimating slope values from low firing rates. For choice-selective caudate neurons, the slope of

change did not show a consistent relationship with coherence for either the preferred or null choices.

The overall magnitude of the coefficients tended to be smaller for caudate neurons, reflecting the

lower firing rates of caudate neurons.

FEF activity also aligned closely with the monkeys’ reward-driven bias in drift rates across sessions

and monkeys. All three monkeys tended to use positive reward biases in drift rates; that is toward

the large-reward choice (Figure 4E and Figure 6D). The ratios of regression coefficients for reward

context and coherence also tended to be positive for choice-selective neurons in the FEF

(Figure 6D, top row). Moreover, there was a significant correlation between the monkeys’ behavioral

bias in drift rates and the ratio measured from neural data (Pearson’s correlation coefficient: 0.55

and 0.48, p=0.0084 and 0.0077, for activity aligned to motion and saccade onset, respectively). As

expected given the smaller sample sizes, none of the per-monkey results was statistically significant

(Figure 6—figure supplement 2). These results indicated a close relationship between FEF neurons

and the neural implementation of reward biases in drift rates assessed across monkeys. In the cau-

date sample, the behavioral bias was mostly positive, but the neural ratio was more mixed, and the

two measurements did not exhibit a significant positive correlation (Figure 6D, bottom row; note

that there was a significant negative correlation for caudate activity aligned to motion onset, correla-

tion coefficient: �0.38, p=0.032). These results appeared inconsistent with a direct involvement of

caudate neurons in implementing the reward bias in drift rates (see Discussion for a potential sam-

pling bias).

Although the DDM does not provide predictions for neurons without consistent choice selectivity,

these neurons may participate in the other aspects of decision-making, such as decision evaluation,

that also uses information about the reward biases. We performed the same analysis for these neu-

rons. In the FEF, the reward-context modulation of the slope of the firing rates also covaried with

the monkeys’ reward biases for activity aligned to motion onset, regardless of choices (Figure 6—

figure supplement 1C; correlation coefficients: 0.55 and 0.38, p=0.003 and 0.018, for contralateral

and ipsilateral choices, respectively). There was also a significant correlation for these not-choice-

selective neurons in the caudate sample, for activity aligned to saccade onset in trials with ipsilateral

choices (Figure 6—figure supplement 1D; correlation coefficient: 0.37, p=0.0095). Thus, FEF and

caudate neurons might carry information about reward biases in drift rates for computations that are

not directly related to decision formation.

In addition, a small number of neurons showed significant modulation of the slope of firing rates

by the reward context-coherence interaction. In the DDM, such a modulation may relate to reward

context-dependent changes in the scaling factor, k. However, the small sample size precluded the

detection of any such relationship (data not shown).

Reward context-modulated baseline activity was inconsistent with
reward biases in relative bound heights
As we showed above, reward-driven biases in the relative bound heights of the DDM, ‘bound bias’

in short, can, in principle, be implemented as an offset to the beginning of the accumulation process

(Figure 4C), an offset to the end of the accumulation process (Figure 4D), or the combined effects

of the two. Neural activity reflecting such biases is expected to show three features. First, the neural

activity should be sensitive to reward context. Second, the sign of its reward-context modulation

should be congruent with the reward bias. For example, if the monkey uses the bound bias to favor

the large-reward choice, when its preferred choice is paired with the large reward, then the neuron

should increase its baseline firing before motion onset (as an offset to the beginning of the accumu-

lation) or decrease its firing before saccade onset (as an offset to the end of the accumulation).

Third, in consideration of our lack of knowledge of whether a neuron provides an excitatory or inhib-

itory role in the decision network, we can relax our expectation for sign congruency . However, we

may still expect that, on trials when the reward-context modulation of neural activity is strong, the
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monkey uses a larger bound bias. We tested these predictions on choice-selective neurons. Note

that similar predictions cannot be specified for neurons without choice selectivity.

We found that many choice-selective neurons showed reward context-modulated activity before

motion onset and/or before saccade onset in both regions (Figure 7A–D). We assessed the reward

context modulation in running windows covering two time periods around motion onset and before

saccade, respectively. Figure 7A–D shows heatmaps of regression coefficients for reward context

using Equation 3 (same as Figure 3F, but only for choice-selective neurons with significant non-zero

values in any time bins). A quick glance suggested that FEF neurons tended to show positive
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Figure 7. Reward-context modulation of neural activity did not conform to predictions of reward bias in relative bound heights. (A,B) Heatmaps of

normalized regression coefficients for choice-selective FEF (A) and caudate (B) neural activity before/around motion onset (Equation 3). Only neurons

with significant modulation in at least one time bin are shown (t-test, p<0.05). Neurons were sorted by bound bias values (color bar to the right),

measured with DDM fits. Coefficients were normalized by the maximal absolute value for each neuron for better visualization. For the heatmaps, warm

colors indicate stronger activity when the neuron’s preferred choice was paired with large reward, cool colors indicate stronger activity when the null

choice was paired with large reward, and gray indicates bins without significant reward context modulation. For the color bars, warm colors indicate

bound biases that favored the large-reward choice, cool colors indicate bound biases that favored the small-reward choice. (C,D) Heatmaps of

normalized regression coefficients for activity before saccade onset. Same format as A and B. (E-H) Fractions of neurons showing reward context

modulation that was congruent with the behaviorally measured bound bias for panels (A-D), respectively. Filled circles indicate fractions that were

significantly different from chance level (0.5; chi-square test, 0 < 0.05).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Reward-context modulation of neural activity did not conform to predictions of reward bias in relative bound heights.

Figure supplement 2. Reward-context modulation of neural activity in not-consistently-choice-selective neurons.
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coefficients before motion onset (Figure 7A; warm colors: higher activity when the neuron’s pre-

ferred choice was paired with large reward). The coefficients were more mixed in signs for FEF activ-

ity before saccade onset (Figure 7C) and for caudate activity (Figure 7B and D).

In contrast to the second expectation above, the signs of coefficients were not consistently con-

gruent with the monkeys’ behavioral bound biases. As illustrated by the color bars at the right of

each panel, the monkeys tended to use negative bound biases (favoring the small-reward choice). If

the neural activity reflected such biases, the heatmap should be dominated by cool colors for activity

before motion onset and by warm colors for activity before saccade onset. This appeared not to be

the case. We quantified the fraction of congruent sessions (Figure 7E–H). The only time points with

fractions that differed significantly from chance suggested incongruent neural modulation for FEF

activity before motion onset (Chi-square test, p=0.05, uncorrected for multiple comparisons to

reduce false negatives). We also performed running regression with coherence-based regressors

(Equation 2) and observed a similar lack of congruent modulation (Figure 7—figure supplement 1).

In addition to the discrepancy in signs, the magnitude of the reward-context modulation in neural

activity also did not co-vary with the magnitude of the reward bias in bound heights in either region.

For each neuron with significant reward-context modulation in their activity before motion onset

(epoch #3 in Figure 1), we split the trials into two groups with larger and smaller differences in activ-

ity between reward contexts, respectively (Figure 8A). If the activity reflects the bound bias, we

expected the former group to show a larger bound bias. We fitted the DDM to these two groups of

trials and found no consistent difference in their bound biases in either brain region (Figure 8B and

C). These results suggested that the reward context-modulated baseline activity in choice-selective

FEF and caudate neurons did not directly reflect the eventual bound bias that the monkeys used.

Discussion
Using a task with manipulations of visual stimuli and reward-choice associations, we found that a sub-

stantial fraction of neurons in both FEF and caudate were sensitive to both stimulus properties and

the reward-choice association. Despite these coarse similarities, we also identified inter-regional dif-

ferences in the prevalence and distribution of lateralized modulation by choice and reward context,

reminiscent of previous results using tasks with either stimulus or reward-context manipulations

(Ding and Hikosaka, 2006; Kobayashi et al., 2007; Ding and Gold, 2010; Ding and Gold, 2012c).
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reward context were split into two halves based on a neuron’s average activity before motion onset (epoch #3). Reward bias in relative bound heights

were measured for trials with large/small reward-context modulation of activity (dark gray/light gray). If the neural activity reflects the behavioral bias,
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heights between large and small-modulation trials and the bias measured from all trials for FEF (B) and caudate (C) neurons with consistent choice

selectivity and significant reward context modulation. P values are from t-test (H0: the mean difference of the x-axis values is zero).
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For choice-selective FEF neurons, their average activity profile followed an accumulation-to-bound-

like pattern (Thompson et al., 1996; Thompson et al., 1997; Kim and Shadlen, 1999;

Purcell et al., 2010; Ding and Gold, 2012c). Their reward-context modulations were consistent with

predictions of a reward-driven bias in drift rates, but not a reward-driven bias in relative bound

heights. For choice-selective caudate neurons, their average activity profile was consistent with evi-

dence accumulation, but not bound crossing (Ding and Gold, 2010). Their reward-context modula-

tions did not show a consistent link with either form of reward-driven biases. These differences

suggest that the two regions have distinct roles in implementing the computations required for this

task.

The closer link between FEF activity with biases in drift rate versus bound heights may appear to

be at odds with previous results implicating a more prominent role of the FEF and its rodent homo-

log in transforming the accumulated evidence into a categorical choice than in the evidence-accumu-

lation process itself (Freedman et al., 2001; Ferrera et al., 2009; Hanks et al., 2015). However,

these roles likely reflect the specific task and the subjects’ strategy for performing that task. For

example, for tasks involving manipulations of category definitions, FEF activity showed strong corre-

lates of decision rules (Freedman et al., 2001; Ferrera et al., 2009). For our task, the category defi-

nitions remained constant and monkeys tended to use consistent changes in drift rates to favor the

large-reward choice and variable changes in relative bound heights that can favor the large- or

small-reward choice, depending on the monkey and daily session (Fan et al., 2018). The propensity

of FEF neurons to encode the changes in drift rates may thus reflect the relative importance of those

particular biases to the decision process.

FEF shares many response properties with the lateral intraparietal area (LIP), particularly for deci-

sions based on random-dot motion stimulus (e.g., Shadlen and Newsome, 1996; Kim and Shadlen,

1999; Roitman and Shadlen, 2002; Ding and Gold, 2012c; Meister et al., 2013). Interestingly, a

previous study of monkey LIP activity for an asymmetric-reward motion discrimination task showed

opposite relationships with behavioral reward biases than what we found for FEF (Rorie et al.,

2010): LIP activity was consistent with an involvement in reward-biased bound heights but not drift

rates. The contrasts between that study and ours suggest two possible interpretations. One possibil-

ity is that LIP and FEF perform complementary roles by implementing reward biases in relative

bound heights and drift rate, respectively. Another possibility is that the two regions share similar

roles, and the apparent differences from the two studies reflect differences in their task designs.

Rorie and colleagues used a substantially different task design from ours, including experimenter-

versus subject-controlled motion viewing and trial- versus block-wise manipulations of reward con-

texts. In principle, these differences could influence not only what strategy monkeys use, but also

which brain regions are employed to implement the required computations through training. A

direct comparison between LIP and FEF neurons in the same monkeys performing the same decision

task would help disambiguate these possibilities.

The lack of a consistent link between caudate activity before motion onset and reward bias in rel-

ative bound heights was surprising. Previous studies using tasks with reward manipulations and

salient visual stimuli showed shared time courses between caudate activity before target onset and

reward biases in RT during reward-context transitions (Lauwereyns et al., 2002a) and with manipu-

lations of the timing of target onset (Ding and Hikosaka, 2007), as well as trial-by-trial correlations

between caudate activity and action values estimated from monkeys’ reward biases (Lau and

Glimcher, 2008). We also showed previously that caudate microstimulation evoked changes in rela-

tive bound for a symmetric-reward motion discrimination task (i.e., without reward-driven biases;

Ding and Gold, 2012a). These previous results naturally led to the hypothesis that the caudate activ-

ity preceding stimulus presentation helps to bias the starting value for evidence accumulation. Our

negative results here imply that, for this task, caudate activity does not directly set the starting value.

This finding is also consistent with our observation that, for the same asymmetric-reward motion dis-

crimination task, caudate microstimulation did not cause consistent changes in bound biases

(Doi et al., 2020). Taken together, we hypothesize that the caudate nucleus does not directly imple-

ment the bound bias, but rather coordinates the bound bias with the bias in drift rate. For simple

tasks in which bound biases alone are sufficient, caudate activity appears to be directly correlated

with bound bias. For complex tasks in which additional computations are involved, such a correlation

could be substantially weakened.
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For the lack of a relationship between caudate activity and the bias in drift rate, a caveat needs to

be considered. To detect a correlation between neural activity and the reward bias in drift rates (Fig-

ure 6), it requires a sample that is large enough and, equally as important, with sufficient variations

in behavioral biases. For practical reasons, our caudate samples were mostly from two monkeys (C

and F) that tended to use smaller and less variable drift-rate biases across sessions than the other

monkey (A). The more restricted ranges of drift-rate bias might have biased our results. Neverthe-

less, the negative correlation we observed in Figure 6D is consistent with our previous demonstra-

tion that caudate microstimulation tended to scale down reward biases in drift rates (Doi et al.,

2020).

Besides decision formation, both FEF and the caudate nucleus have other hypothesized decision-

related roles, including performance monitoring (Ding and Gold, 2010; Ding and Gold, 2012c;

Ding and Gold, 2013; Teichert et al., 2014; Yanike and Ferrera, 2014a). As we showed, reward

context-modulated neural activity was present in a substantial fraction of neurons that were not con-

sistently selective for choice. These activity patterns were sensitive to reward biases in drift rates dur-

ing motion viewing (Figure 6—figure supplement 1) or in the baseline firing before motion onset

and saccade onset (Figure 7—figure supplement 2). In addition, some choice-selective neurons

showed negative ratios of reward context and coherence coefficients (Figure 6D), which are not con-

sistent with the decision variable predicted by the DDM but could reflect a choice confidence signal

instead. It would be interesting to investigate further the exact functional roles of these activity pat-

terns for solving decision-making tasks.

For our task, neither FEF nor caudate activity represented the full, latent decision variable as pre-

dicted in the DDM framework. For example, in addition to the disconnect between bound bias and

reward context-modulated baseline activity, the example FEF neuron in Figure 6A showed a strong

modulation by the coherence-reward context interaction, which was not predicted by the DDM. A

striking observation for FEF was the relatively consistently opposite signs in the reward bias in bound

heights and the reward-context modulation of pre-motion baseline activity in choice-selective neu-

rons. This finding raises several possibilities, including: (1) the DDM framework does not accurately

capture the monkeys’ decision-related computations; (2) the reward-context modulation of pre-

motion baseline activity contributes to the reward bias in bound heights through an intermediary,

sign-reversing mechanism; and/or (3) such activity does not contribute to the reward bias in bound

heights. Relevant to the first possibility, we previously fitted the monkeys’ performance using two

model variants (fixed-bound and collapsing-bound) and two fitting procedures (Hierarchical DDM

using MCMC sampling and single-session DDM fits with multiple runs using maximum a posteriori)

(Fan et al., 2018; Doi et al., 2020). These different ways of model fitting resulted in similar patterns

of the signs of reward biases in bound heights and drift rates. These data argued against gross inac-

curacy in DDM fits of reward bias in bound heights, but it remains to be tested whether a non-DDM

framework could capture the monkey’s performance and predict modulations of decision variables

more in line with those observed in FEF activity.

Many other brain regions undoubtedly contribute to decisions that combine sensory and reward

information. These regions likely include the lateral intraparietal area (LIP), superior colliculus, and

the premotor cortex in monkeys, each of which has been shown to represent the basic patterns of

activity that are reminiscent of an accumulation-to-bound decision process (Roitman and Shadlen,

2002; Ratcliff et al., 2003; Thura and Cisek, 2016). Even more regions have shown reward-context

modulated pre-stimulus activity and saccade-related activity in monkeys performing tasks with

reward manipulations and salient visual stimuli, including those areas and many other nuclei in the

basal ganglia (Platt and Glimcher, 1999; Coe et al., 2002; Lauwereyns et al., 2002a; Sato and

Hikosaka, 2002; Ikeda and Hikosaka, 2003; Roesch and Olson, 2003; Isoda and Hikosaka, 2008).

Reward manipulations also likely affect the sensory representation itself, leading to biased drift rates

(Cicmil et al., 2015). More studies like ours that directly compare neural activity in different brain

regions under the same task conditions are needed to better understand their overlapping and dis-

tinct roles in these kinds of decisions. A particularly intriguing target of such studies would be the

superior colliculus, because of its convergent inputs from FEF, LIP, and the basal ganglia, as well as

its well-documented roles in attentional control that are likely closely related to reward modulation

(Krauzlis et al., 2018). The distribution of neural representations of biases in drift rates and relative

bound heights would also help us understand the dissociated effects of Parkinson’s Disease on these

two forms of bias (Perugini et al., 2016).
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To summarize, FEF and caudate activity showed modulations by choice, reward context, and

visual stimulus strength, in monkeys that combined reward context and visual input into categorical

saccade choices. These two regions shared certain features in their activity, but also showed distinct

patterns that implicated their different roles in complex decision making. It would be interesting to

examine how the relative contributions of FEF and caudate neurons develop over training

(Antzoulatos and Miller, 2011; Seo et al., 2012) and with induced changes in the subjects’ reward

bias strategy.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Software, algorithm MATLAB Mathworks RRID:SCR_001622 https://www.mathworks.com

Software, algorithm Python 3.5 Python Software
Foundation

RRID:SCR_008394 https://www.python.org/

Software, algorithm Psychophysics Toolbox Pelli, 1997; Kleiner, 2007 RRID:SCR_002881 http://psychtoolbox.org/

Software, algorithm Pandas v0.19.2 Python Data
Analysis Library

RRID:SCR_018214 https://pandas.pydata.org/

Software, algorithm Scikit-learn v0.18.1 scikit-learn.org RRID:SCR_002577 https://scikit-learn.org/stable/

Software, algorithm Statsmodels v0.8.0 Statsmodels.org RRID:SCR_016074 https://www.statsmodels.org/
stable/index.html

Software, algorithm Scipy v0.18.1 SciPy.org RRID:SCR_008058 https://docs.scipy.org/doc/
scipy/reference/stats.html

Software, algorithm PyMC 2.3.6 http://github.com/pymc-devs/pymc http://github.com/pymc-devs/pymc

Software, algorithm dPCA Kobak et al., 2016 https://github.com/machenslab/
dPCA/tree/master/matlab

Experimental model and subject details
All training and experimental procedures were in accordance with the National Institutes of Health

Guide for the Care and Use of Laboratory Animals and were approved by the University of Pennsyl-

vania Institutional Animal Care and Use Committee (protocol #804726). Details about monkey train-

ing, behavioral tasks, and caudate recording were reported previously (Fan et al., 2018; Doi et al.,

2020).

Neural recording
Each monkey was implanted with a head holder and recording cylinder that provided access to the

FEF (right for monkeys C and F, left for monkey A). The FEF was identified as the anterior bank of

the arcuate sulcus where saccades were evoked with microstimulation of <50 mA (70 ms trains of 300

Hz, 250-ms biphasic pulses) (Bruce and Goldberg, 1985; Ding and Gold, 2012b). Neural activity

was recorded using a combination of glass-coated tungsten electrodes (Alpha-Omega), epoxylite-

coated tungsten electrodes (FHC), and multi-contact electrodes (V-probe, Plexon, Inc; Multitrodes,

Thomas Recording), driven by a NaN microdrive (NAN Instruments, LTD). A memory-guided delayed

saccade task was used to estimate the response field of a neuron (Ding and Gold, 2012b). For the

motion discrimination task, one choice target was placed in the response field and the other was

placed symmetrically across the central fixation point. Motion directions were along the axis defined

by the choice targets.

Single-unit recordings were obtained for neurons that showed activity modulation during trials by

visual inspection and single-unit spikes were sorted offline (OfflineSorter, Plexon). Neurons with low

firing rates (peak firing rate <5 Hz) and few trials (<5 finished trials per choice � coherence � reward

context combination or <3 correct trials per combination) were excluded from analysis.
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Behavioral analysis
To quantify reward context-induced biases, a logistic function was fitted to the choice data for all tri-

als for each session:

Pcontra choice ¼
1

1þ e�Slope CohþBiasð Þ
; (1)

where Coh is the signed motion coherence,

Slope ¼ slope
0
þ slope

rew
�RewCont;

Bias ¼ bias
0
þ bias

rew
�RewCont;

RewCont¼ f1 for contralateral� large reward blocks;�1 for ipsilateral� large reward blocksg:

To infer the latent decision variable, we also fitted the choice and saccade reaction time (RT) data

simultaneously to a drift-diffusion model (DDM; Figure 4A), following previously established proce-

dures (Fan et al., 2018). We defined RT as the time from stimulus onset to saccade onset. Saccade

onset was identified offline with respect to velocity (>40˚/s) and acceleration (>8000˚/s2). The DDM

assumes that the latent decision variable (DV) is the time integral of evidence (E) and reward asym-

metry-induced fictive evidence (me), scaled by a constant (k).

E~N coherence; 1ð Þ and DV ¼

Z

k Eþmeð Þ dt

At each time point, the DV was compared with two collapsing choice bounds (Zylberberg et al.,

2016). The time course of the choice bounds was specified as a= 1þ eb alpha t�b dð Þ
� �

, where b alpha

and b d controlled the rate and onset of decay, respectively and a specified the maximal distance

between the two choice bounds. A bias-related parameter (z) specified the relative bound heights of

the two choice bounds, where z = 0.5 indicated equal bound heights for the two choices, z>0.5 indi-

cated that the upper bound was closer to the starting point of evidence accumulation than the lower

bound.

For sessions with neurons showing choice-selective activity during a pre-saccade period (see

below for epoch definitions), the upper bound was associated with the preferred choice and the

lower bound was associated with the null choice. In other words, if DV crossed the upper bound first,

a saccade was made to the target inside the neuron’s response field; if DV crossed the lower bound

first, a saccade was made to the other target.

DDM model fitting was performed, separately for each session, using the maximum a posteriori

estimate method (python v3.5.1, pymc 2.3.6) and prior distributions suitable for human and monkey

subjects (Wiecki et al., 2013). We performed at least five runs for each variant and used the run

with the highest likelihood for further analyses. Biases in drift and bound (Figure 5I) were computed

as the difference in the fitted me and z values between the two reward contexts, respectively. Posi-

tive values indicated biases toward the large reward choice.

Neural data analysis
We performed three regression analyses on the neural data. First, for each single unit, we computed

the average firing rates in eight task epochs (Figure 1A): three epochs before motion stimulus onset

(400 ms window beginning at target onset, variable window from target onset to dots onset, and

400 ms window ending at motion onset), two epochs during motion viewing (a fixed window from

100 ms after motion onset to 100 ms before median RT and a variable window from 100 ms after

motion onset to 100 ms before saccade onset), a pre-saccade 100 ms window, a peri-saccade 300

ms window beginning at 100 ms before saccade onset, and a post-saccade 400 ms window begin-

ning at saccade onset (before feedback and reward delivery). For each unit, a multiple linear regres-

sion was performed on the spike counts in correct trials, for each task epoch separately.
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Spike count¼ b0 þbChoice� IChoiceþbRewCont � IRewCont þbRewSize � IRewSize

þ bCoh�Contra � ICoh�Contra þ bCoh�Ipsi� ICoh�Ipsi

þ bRewCoh�Contra � ICoh�Contra � IRewSize þ bRewCoh�Ipsi� ICoh�Ipsi� IRewSize;

(2)

where

IChoice ¼ 1 for contralateral=up choice; � 1 for ipsilateral=down choicef g ;

IRewCont ¼ f1 for contralateral=up� large reward blocks ;�1for ipsilateral=down� largerewardblocksg;

IRewSize ¼ 1 if a large reward is expected for the choice; � 1 if a small reward is expectedf g;

ICoh�Contra ¼ coherence for contralateral=up choice; 0 for ipsilateral=down choicef g;

and

ICoh�Ipsi ¼ 0 for contralateral=up choice; coherence for ipsilateral=down choicef g:

Significance of non-zero coefficients was assessed using t-test (criterion: p=0.05).

Second, for each single unit, we also performed running regressions using Equation 2 on the

spike counts within 150 ms windows every 10 ms. These running regressions were performed on

activity aligned to target, motion, and saccade onsets separately. Only correct trials were included.

Time windows with fewer than 10 correct trials were excluded.

Third, for these neurons, the following multiple linear regressions was performed in epochs and

running windows defined above:

Spike count¼ b0 þbChoice� IChoiceþbRewCont � IRewCont þbRewSize � IRewSize

þ bRT�Contra �RTContra þ bRT�Ipsi�RTIpsi

þ bRewRT�Contra �RTContra� IRewSize þ bRewRT�Ipsi�RTIpsi� IRewSize

(3)

where

RTContra ¼ RT for the contralaeteral=up choice; 0 for the ipsilateral=down choicef g;

and

RTIpsi ¼ 0 for the ipsilateral=down choice; RT for the contralateral=up choicef g:

To control for reward context or choice-dependent modulation of RT, the RT values used in the

regressions were the mean-subtracted values, with the mean values measured for the corresponding

reward context-choice combinations. Significance of non-zero coefficients was assessed using t-test

(criterion: p=0.05).

Because reward context was alternated in blocks in our task, we examined whether the significant

coefficients for reward context in these regressions were simply due to serial correlation of the

reward context values (Elber-Dorozko and Loewenstein, 2018). To assess the potential effect of

serial correlation on our results, we focused on the epoch-based regressions. For each neuron x

epoch combination with a significant coefficient for reward context, we estimated the null distribu-

tion of the coefficient by performing 100 regressions using random, unmatched reward-context val-

ues. To obtain these unmatched values, we concatenated the reward-context values from all

neurons and randomly picked a segment for each regression. We performed one-tailed comparisons

between the null distributions and the coefficients obtained using real data and updated the p-val-

ues for the reward-context coefficient accordingly. To gain another perspective of the task-related

modulation patterns in each population, we performed demixed principal component analysis on

spike activity (Kobak et al., 2016), using the publicly available source code (https://github.com/

machenslab/dPCA/tree/master/matlab). We focused on two epochs for activity aligned to motion

and saccade onset, respectively (Figure 3—figure supplements 4–7) and used only correct trials for

this analysis. To mitigate the unbalance inherent in our data set (e.g., there were fewer correct trials
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for low coherence or when the choice led to small reward; different coherence levels were used for

the three monkeys), we used the four highest coherence levels for each session as equivalent condi-

tions across monkeys/sessions.

Measuring the slope of change in firing rates
Only correct trials were included for this analysis. Spike trains were aligned to motion onset and

grouped by coherence x reward context combinations. The average firing rates were computed for

each combination, truncated at median RT for the combination, and convolved with a Gaussian ker-

nel (s = 20 ms). The slope of change was measured from 200 ms running windows (in 20 ms steps)

of the smoothed firing rates for each combination, using a linear regression with time as the inde-

pendent variable. For each running window, a multiple linear regression was performed, using coher-

ence, reward context, and their interaction as the independent variable and the slopes of change as

the dependent variable. Significance for individual regressors was assessed using t-test (criterion:

p=0.05).

Splitting trials based on baseline activity before motion onset
This analysis was performed on neurons with significant reward-context modulation of average firing

rates during epoch #3 (a 400 ms window before motion onset), as identified using the regression in

Equation 3. For each neuron, trials were divided into two halves based on the average firing rate in

epoch #3, separately for each reward context. This resulted in four combinations of trials: high/low

firing rates and two reward contexts (Figure 8A). The ‘large modulation’ trials comprised of high-fir-

ing-rates trials in the neuron’s preferred reward context and low-firing-rates trials in the other con-

text. Conversely, the ‘small modulation’ trials comprised of low-firing-rates trials in the neuron’s

preferred reward context and high-firing-rates trials in the other context. If the neural activity is

closely linked to the reward bias in relative bound heights, the trials with large modulation were

expected to show a larger reward bias. These two types of trials were fitted by DDM separately and

their estimated reward bias in relative bound heights were compared (Figure 8B and C).
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