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Abstract: Taking representative Tamarix chinensis forest in the national-level special protection zone
for ocean ecology of Changyi city in Shandong province of China as the objective, this research
studied how to use remote sensing technology to evaluate natural eco-environment and analyze
spatiotemporal variation. In the process of constructing the index system of ecological environment
effect evaluation based on RSEI (Remote Sensing Ecological Index) model, AOD (Aerosol Optical
Depth), Salinity, Greenness, Wetness, Heat and Dryness, which can represent the ecological environ-
ment of the reserve, were selected as the corresponding indexes. In order to accurately obtain the
value of the RSEI of the study area and to retain the information of the original indexes to the greatest
extent, the SPCA (spatial principal components analysis) method was applied in this research. Finally,
the RSEI was applied to evaluate the ecological and environmental effects and to analyze the spatial
characteristics and spatiotemporal evolution of the study area. The results not only provide scientific
evidence and technical guidance for the protection, transformation and management of the Tamarix
chinensis forest in the protection zone but also push the development of the universal model of the
ecological environment quality with a remote sensing evaluation index system at a regional scale.

Keywords: remote sensing; tamarix forest; eco-environment effect; comprehensive evaluation; spatial
analysis; Changyi; Shandong; China

1. Introduction

With the continuous development of society, there is gradually more attention on
natural eco-environment quality and higher requirements on the timeliness, continuance,
standard, scale and technical specification of the eco-environment quality monitoring and
evaluation. Without doubt, this also offers opportunities for the application of remote
sensing technology in the eco-environment quality monitoring and evaluation [1]. Until
now, the objectives of the environmental quality monitoring and evaluation most belong
to large to medium scale, but less on small scale, which regards the partial area as a unit.
Simultaneously, the index of existing eco-environment evaluation is always goal-oriented
and has regional characteristics, making it hard to promote this evaluation. In addition, the
traditional monitoring and evaluation system, in most cases, takes advantage of one value
to represent the ecological situation of the entire research region, so it lacks continuance and
visibility, finally making it hard to deeply understand and analyze the spatial difference
and dynamic change of regional ecological quality [2]. Remote sensing technology has
the characteristics of rapid, dynamic, continuous, quantitative, repeatable and objective
monitoring. Besides, it is of the ability to express the results of eco-environment monitoring
and evaluation in the form of visualizing, modeling and forecasting of spatiotemporal
variation on the basis of GIS or RS processing platforms [3]. In recent years, remote sensing
technology has been applied to eco-environmental factor extraction, ecological landscape
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variation analysis, ecological risk evaluation, eco-environmental evolvement and driving
factor analysis [4].

Tamarix chinensis belongs to the shrub or dungarunga of tamarix (Tamaricaceae) and
has some biological characteristics of strong salt tolerance, drought resistance and flood
resistance. Now, it is widely distributed in inland saline land, northern coastal wetland
and beach land of China. Tamarix chinensis plays a significant role in the construction of
ecology and forestry. According to a previous study, it is indispensable in eco-environment
maintenance, water conservation, remediation of saline-alkali soil, and the greening of
saline-alkali land [5]. In 2005, through a forestry investigation into the coastal area of
Laizhou Bay, the forestry bureau of Changyi city in Shandong province of China found
the natural Tamarix chinensis forest, which had different distribution densities, the biggest
continuous area, typical structure and complete preservation, in the northern coastal area
of Changyi city. In October 2007, the State Oceanic Administration of China approved
the establishment of Shandong Changyi’s national marine ecological special reserve (here-
inafter referred to as a ‘protection zone’ in the following). Now, the protection zone is the
only national-level special one for ocean ecology that takes Tamarix chinensis as the main
protection objective, so it is representative to select its Tamarix chinensis forest for study.

By referring to relevant literature, it was found that there was little research on how to
apply remote sensing technology to the eco-environment monitoring and analysis of the
Tamarix chinensis forest or its adjacent area of the protection zone. Hence, this research took
the Tamarix chinensis forest in the protection zone as the study area, to study the way of
how to use remote sensing technology for the evaluation and the spatiotemporal variation
analysis of the natural eco-environment. The obtained results not only provide scientific
evidence and technical guidance to the protection, transformation and management of
the Tamarix chinensis forest in the protection zone but also push the development of the
universal model of the eco-environment quality with a remote sensing evaluation index
system at a regional scale.

2. Study Area and Data

The Tamarix chinensis forest in the study area starts from a damp-proof dam of National
Defence University’s salt field in the east, extends to the Di River along the embankment
in the west, reaches the branch of the Di River along the embankment in the south, and
shares a border with the shallow seaside area in the north. The research area, approximately
1548 hm2, is 5 km wide from east to west and 7 km long from north to south [6]. The
geographical location of the study area is shown in Figure 1.
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For reflecting more comprehensive and high-accuracy of the spatial distribution char-
acteristics and the current condition of the eco-environment of the protection zone, this
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research chose the Senitnel-2A-MSI (L1C) image, which was taken in September 2019 and
had high spatial resolution and an abundant spectrum. At the same time, it also selected the
HJ1-CCD remote sensing image data to reflect the spatial distribution of AOD in the protec-
tion zone. Additionally, four historical remote sensing images of the Landsat series, which
were taken from September to October with small cloud coverage coefficients, demonstrate
the eco-environment situation during the crucial periods and the related dynamic change
trend of the last 20 years in the protection zone. In Table 1, it lists time points and selects
reasons for the selected images.

Table 1. Time, category and basis of remote sensing image selection.

Time Image Category Basis of Image Selection

9/2000 Landsat-4/5-TM Original state of the reserve

9/2007 Landsat-5-TM In 2007, the State Oceanic Administration
approved the establishment of the reserve

9/2014 Landsat-8-OLI/TIRS The begins of ecological restoration in
reserve with large scale

9/2019 Landsat-8-OLI/TIRS More than 200 hm2 Tamarix forest repaired
9/2019 HJ1-CCD AOD inversion
9/2019 Sentinel/2A/MSIL1C RSEI of current reserve

3. The Construction of Remote Sensing Index System of Eco-Environment Evaluation

In 2006, the State Environmental Protection Administration of China (SEPA) issued
Technical Specification for Eco-environment Condition (HJ/T 192-2006) (referred to as
‘specification’ in the following) in the form of an industry-standard and proposed ecological
index (EI) based on remote sensing technology. Later, after the amendment in 2015, the
specification added special eco-environment evaluation factors and calculation methods
towards ecological function area, city/city cluster and natural protection zone, aiming
to provide a type of annual comprehensive eco-environment evaluation standard for the
region at no less than the county level. The specification mainly contains the following five
eco-environment evaluation factors: biological abundance, vegetation fractional coverage
(VFC), water network density, environmental quality and land degradation. The final
regional eco-environment index was built through the weighted summation of these
five factors.

From specification, EI is appropriate for the evaluation of the region at no less than
the county level but restricted to smaller regions, such as towns, small watersheds and
natural protection zones. Besides, affected by the data collection of environmental quality
factors, evaluation is carried out only once per year, leading to obviously limited timeliness.
To avoid this limitation and carry out an eco-environmental evaluation of the protection
zone with remote sensing technology as the core, this research proposed six factors to
construct the remote sensing ecological evaluation index system. These six factors were the
following: Aerosol Optical Depth (AOD), Salinity, Greenness, Wetness, Heat and Dryness.
These six factors had near timeliness and the ability to represent the eco-environment of
the protection zone. Among them, the last four factors are not only important factors
of natural ecological quality but also are closely related to human activities. Therefore,
these four factors are also important factors for humans to evaluate the quality of the
ecological environment [7]. In addition, the protection zone belongs to the coastal Tamarix
chinensis wetland, and its land cover is of forest type. So, the factors of salinity and AOD
were selected as the evaluation index systems [8]. In terms of data acquirement, it is
possible to directly or indirectly extract these six factors from remote sensing images with
the fast development and gradual maturity of remote sensing technology. Therefore, the
constituted RSEI in this research was scientific and reasonable, and RSEI can be regarded
as the function of these six factors, namely, RSEI = F (AOD, Salinity, Greenness, Wetness,
Heat, Dryness).
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3.1. AOD

Aerosol, a suspension of liquid or solid particles dispersed in air or gas, circulates
in many atmospheric chemical cycles and is an important component of the atmospheric
environment. In addition, aerosols have obvious atmospheric environmental effects, with
an example of PM2.5 aerosol, which has an extinction effect on light. Because of eco-
environment deterioration, there are more and more haze events in the local area caused by
PM2.5 pollution [9]. PM10 aerosol is regarded as a carrier and catalyst for many pollutants,
so it is seriously harmful to human health [10]. As one of the most fundamental optical
characteristics of aerosol, AOD becomes a significant parameter for studying atmospheric
turbidity and is capable of reflecting aerosol distribution change to some extent. In practice,
AOD distribution is affected by the geographical environment, population density and
industrial distribution, so it can display atmospheric turbidity and pollution [11]. When
AOD increases, the optical thickness of aerosol grows and the atmospheric transmissivity
decreases; otherwise, optical thickness decreases and transmissivity grows. In addition, a
previous study has demonstrated that the AOD of forest and grassland with high vegetation
coverage is lower than that of cities and towns where human activities are frequent, which
means that forest is able to reduce AOD [12].

It is difficult for traditional observation to reflect the spatial distribution and change of
aerosol. By contrast, aerosol monitoring based on remote sensing technology is featured by
low cost, a wide range and the capability of reflecting spatial distribution and change, so it
has become an important method in aerosol monitoring [13]. Thus, this research inversed
AOD spatial distribution by remote sensing technology and analyzed the atmospheric
environmental effects of the Tamarix chinensis forest in the protection zone.

3.1.1. The Theory of Dense Dark Vegetation Method

With the help of optical remote sensing satellites, there are two common algorithms
used to inverse the optical thickness of terrestrial aerosol. The two methods are the dense
dark vegetation (DDV) method and the deep blue algorithm, respectively. The DDV method
takes advantage of the low surface reflectivity of dense vegetation in the red band and
blue band to constitute the linear relationship of dark pixels in these two bands. Then, the
surface reflection contribution is removed from the satellite observation signal for aerosol
information extraction [14]. In the consideration of the actual situation in the protection
zone, this research selected the DDV method to inverse AOD.

Through a large number of experimental data, Kaufman concluded that, in areas of
dense vegetation, there was a strong correlation between the surface reflectivity of middle-
infrared at 2.1 µm and the surface reflectivity (ρ) of the blue band and red band at 0.47 µm
and 0.66 µm, respectively [15]. As shown in the following:

ρ0.66 =
1
2

× ρ2.1 (1)

ρ0.47 =
1
4

× ρ2.1 (2)

Moreover, because the middle-infrared band at 2.1 µm is seldom affected by atmospheric
aerosol, apparent reflectivity (ρ∗2.1) is approximately equal to surface reflectivity (ρ2.1).

ρ0.66 =
1
2
× ρ2.1 =

1
2

× ρ∗2.1 (3)

On the assumption that the surface of the target observed by satellite is the uniform
Lambert surface and gas absorption is ignored, the apparent reflectivity observed by
satellite is as follows:

ρ∗(θs, θv, ) = ρa(θs, θv, ) +
ρ

1 − S ∗ ρ
× T (4)
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In Equation (4), θs, θv and refer to Solor Zenith, Satellite Zenith and Azimuthal Angel
Difference, respectively.

Hence, ρ∗ is the function of not only AOD but also underlying surface reflectivity.
Through the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) atmospheric
radiation transmission model, it is possible to calculate the corresponding ρα (reflectivity
of atmospheric molecules and aerosols), S (atmospheric spherical albedo) and T (total
atmospheric transmissivity) under different AOD. Therefore, after confirming the surface
reflectivity of the visible light channel and reasonably assuming the aerosol model, it is
possible to obtain the 6S model and then calculate the apparent reflectivity of this channel.
Under the comparison of the 6S models’ apparent reflectivity with remote sensing images,
it is able to inversely deduce the actual AOD [16]. The theory of using the 6S model to
inverse AOD can be found in Figure 2.
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In short, the inversion process of aerosol can be divided into the following three parts:
the data acquisition and preprocessing of the satellite image, the construction of the lookup
table used for aerosol inversion, and the inversion and analysis of AOD distribution in
terms of the 6S model.

3.1.2. Data Acquisition and Data Preprocessing of HJ1-CCD

This research took HJ1-CCD data as source data in the AOD inversion. During
preprocessing, the radiometric calibration of the image was performed according to the
calibration coefficient from the experiment, then the digital number (DN) of the image was
transformed into radiant brightness. Next, the solar elevation angle and imaging time were
read from the metadata information of the image data and finally, apparent reflectivity
was calculated.

3.1.3. Lookup Table Construction

In the actual inversion process, the lookup table solves atmospheric radiation by
means of the radiation transmission model. In general, the first is to confirm atmospheric
parameters, secondly, it is to select different AODs according to solar incident angles and
satellite observation angles.

It should be added that, in Table 2, θs, θv and refers to Solar Zenith, Satellite Zenith
and Azimuthal Angel Difference, respectively. The specific values of each parameter in this
research are as follows:

Solar Zenith: 0◦, 5◦, 10◦, 15◦, 20◦, 25◦, 30◦, 35◦, 40◦, 45◦, 50◦, 55◦, 60◦, 65◦ and 70◦.
Satellite Zenith: 0◦, 5◦, 10◦, 15◦, 20◦, 25◦, 30◦, 35◦ and 40◦.
Relative Azimuth: 0◦, 12◦, 24◦, 36◦, 48◦, 60◦, 72◦, 84◦, 96◦, 108◦, 120◦, 132◦, 144◦, 156◦,

168◦ and 180◦.
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Table 2. The lookup table of AOD for HJ-1-CCD data(part).

ρα T S Solar Zenith/θs Satellite Zenith/θv Relative Azimuth/Ø AOD-τ

0.13766 0.83489 0.06554 0 0 0 0.00010
0.13766 0.83489 0.06554 0 0 12 0.00010
0.13766 0.83489 0.06554 0 0 24 0.00010
0.13766 0.83489 0.06554 0 0 36 0.00010
0.17874 0.73011 0.08739 6 3 48 0.25
0.17874 0.73011 0.08706 6 3 60 0.25
0.17874 0.73011 0.08671 6 3 72 0.25
0.17874 0.73011 0.08637 6 3 84 0.25
0.26870 0.28913 0.17870 24 30 96 1.50
0.26870 0.28913 0.17731 24 30 108 1.50
0.26870 0.28913 0.17640 24 30 120 1.50
0.26870 0.28913 0.17588 24 30 132 1.50
0.28252 0.12120 0.32403 60 60 144 1.95
0.28252 0.12120 0.33546 60 60 156 1.95
0.28252 0.12120 0.34339 60 60 168 1.95
0.28252 0.12120 0.34623 60 60 180 1.95

Lastly, the 6S model is used to calculate the reflectivity received by satellites under
various conditions and to make the lookup table used for AOD inversion. Based on the
atmospheric model, aerosol type, the geometric parameters of satellite observation and
AOD, it is able to construct a lookup table corresponding to different sensors, which is
composed of S, ρα, and T. The lookup table for this research is shown in Table 2.

3.1.4. The Calculation and Output of AOD

In the application of the DDV method, it is able to confirm dark pixels through setting
the NDVI threshold. This research obtained NDVI by calculating the atmospheric correction
image and setting the pixel under the condition of NDVI > 0.3 as a dark one according
to the actual condition of the protection zone [17]. In terms of an atmospheric model,
aerosol type, solar zenith angle and other parameters, the constructed lookup table was
interpolated. Additionally, we could obtain the three atmospheric parameters (S, ρα and
T) of the dark pixel in the red band and blue band under different AOD values. Next,
the research put the three parameters and the apparent reflectivity of the top atmosphere
into formula (4) to obtain the surface reflectivity at the red band and blue band under
different AOD values. Because there was no band at 2.1 µm in the HJ1-CCD sensor, it was
necessary to respectively compare the ratio between the surface reflectivity of the red band
and the surface reflectivity of the blue band with the set ratio (k) for the corresponding
sensors. The minimum difference (absolute value) corresponded to the inversed AOD.
When the HJ1-CCD sensor was selected, k was set to 1.60 [18]. After computing the AOD
of dark pixels, the research used interpolation to calculate the AOD of the non-dark pixels
through the distance weighted average method, then processed the computed results by
smooth effect and finally output the AOD result of the protection zone after adding the
projection information.

3.1.5. AOD Result and Analysis

Through the analysis of Figure 3, it can be seen that the inversed AOD has a highly
precise spatial resolution of 30 m. In the protection zone, the AOD value of the Tamarix
chinensis forest ranges from 0.50 to 1.43, and the AOD in the marginal area is distinctly
higher than that in the middle area. In accordance with inversion results, AOD was
relatively high in September 2019. According to on-site research, we analyzed that AOD
value was related to urbanization, industrial construction development, population density
and the poor eco-environment in the protection zone and its surroundings [19].
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3.2. Salinity

A field investigation found that the soil in the protection zone was saline soil. Prac-
tically, it plays an important role in the management of saline soil, the prevention of soil
deterioration and ecologically sustainable development to obtain real-time and reliable
information about the property, range, area, geographical distribution and salinization
degree of saline soil. Now, due to the macro, comprehensive, dynamic, fast and other
features of remote sensing technology, it has become an emerging method to monitor soil
salinization [20].

On the basis of the remote sensing data from Sentinel-2A on 9 September 2019 and
the field sampling data, which were synchronous with the remote sensing time of the
satellite, this research built the inversion model of the correlation between the spectrum
information and soil salinity. In this research, the soluble salt content of soils was used to
denote soil salinity.

3.2.1. Characteristic Bands Selection

To select the characteristic bands which could quantitatively inverse the soil salt
content in the protection zone, after the preprocessing of clipping, atmospheric radiation
correction and geometric accurate calibration, the measured data, including the reflectivity
of each band and the test data of the soluble salt content of soils of 10 training sample
points, were processed with correlation and discreteness analyses.

From Table 3, the soluble salt content of soils is positively correlated with the reflectiv-
ity of the Sentinel-2A remote sensing image in the blue, green and red bands of visible light
and SWIR band. However, the correlation is negative between the reflectivity of vegetation
in the red edge band, the NIR band and the soluble salt content of soils. Especially in the
bands of 6, 7, 8 and 8A, the reflectivity has a better correlation with the soluble salt content
of soils than that in the other bands. In addition, the mean square deviation is relatively
small in the blue, green and red bands of visible light and the shortest B5 band of vegetation
at the red edge.

In order to further study the sensitivity between the reflectivity of different bands
and the soluble salt content of soils, the diagnosis index (Di) was introduced into this
research [22]. For the differences in sensitivity between the reflectivity from the Sentinel-2A
satellite multispectrum sensor and the soluble salt content of soils, the calculation formula
of Di is as follows:

Di = 100 × σi × Ri (5)

where, σi is the mean square deviation of the reflectivity at the i band, and Ri refers to the
correlation coefficient between the reflectivity at the i band and the soluble salt content
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of soils. When the diagnosis index is relatively large, the corresponding band represents
the diagnosis and characteristic band of soil salt content. Detailed results are shown in
Table 4. In Table 4, the diagnosis index is larger at 2, 6, 7, 8 and 8A bands than the others
in the Sentinel-2A multispectrum remote sensing image, which means higher sensitivity
between the reflectivity at these five bands and soil salt content. Thus, the reflectivity at
these five bands is the best choice to inverse the water-soluble salt content of saline soil in
the protection zone.

Table 3. Correlation coefficient between reflectivity (Sentinel-2A) and salinity.

Sentinel-2A
Bands Band 2-Blue Band 3-Green Band 4-Red Band 5-Vegetation

Red Edge
Band 6-Vegetation

Red Edge

Central wavelength/µm 0.49 0.56 0.665 0.705 0.74
Correlation coefficient/Ri 0.22 0.09 0.38 0.03 −0.59
Mean square deviation/σi 107.28 144.97 268.45 224.85 302.28

Sentinel-2A
Bands

Band 7-Vegetation
Red Edge Band Band 8-NIR Band

Band
8A-Vegetation Red

Edge Band
Band 11-SWIR Band Band 12-SWIR Band

Central wavelength/µm 0.783 0.842 0.865 1.61 2.19
Correlation coefficient/Ri −0.59 −0.59 −0.61 0.31 0.46
Mean square deviation/σi 330.19 312.58 365.47 402.60 463.91

Note: Band 1, Band 9 and Band 10 are aerosol monitoring band, water vapor monitoring band an ocean current
monitoring band, respectively. Because these three bands are low in resolution, so there does not exist correlation
calculation between reflectivity of these bands and the soluble salt content of soils [21].

Table 4. Diagnostic index of reflectivity with each band (Sentinel-2A).

Band Band
2

Band
3

Band
4

Band
5

Band
6

Band
7

Band
8

Band
8A

Band
11

Band
12

|Di| 0.20 0.06 0.14 0.01 0.20 0.18 0.19 |−0.17| 0.08 0.10

3.2.2. Multiple Linear Regression Model

As a traditional scientific method with a strong application, regression analysis can
be used to confirm the interdependently quantitative relationship among two or more
variables. Now, it has been widely applied in various scientific fields. In practice, one
phenomenon is always related to multiple elements, so there emerges the most optimal
combination of multiple independent variables for the prediction or measurement of
dependent variables. By contrast, this is more effective and more practical than the method,
which only takes advantage of one independent variable [23]. Therefore, this research
adopted a multiple linear regression model to simulate the correlation between the soluble
salt content of soils at 10 training sample points and the reflectivity of synchronous remote
sensing images at sensitive bands on basis of SPSS software. Finally, the obtained regression
formula is shown in the following:

y = 23.25 × B2 − 119.43 × B6 + 375.46 × B7 − 123.36 × B8 − 237.96 × B8A + 31.20 (6)

where, y means the soluble salt content of soils, and B2, B6, B7, B8 and B8A, respectively
represent the reflectivity at 2, 6, 7, 8 and 8A bands.

3.2.3. BP Neural Network Inversion Model

The soil spectrum is the result of many factors, and the inversion of the soluble salt
content of soils is complex. As a technology developed in recent years, the BP neural
network has a strong nonlinear mapping ability. Therefore, in this research, a BP neural
network model was used to inverse the soluble salt content of soils in the reserve, and the
results were compared with the results of the multiple linear regression model.
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Such as the multiple linear regression model, the reflectance of Band 2, Band 3 and
Band 4 of 10 bands pretreated Sentinel-2A-MSI images is used as the input of the BP neural
network model. Additionally, the soluble salt content of soils of 10 training samples is used
as the output of the neural network. Before the network training, the input and output
data of the neural network are normalized and standardized, and the expected error is set
to 0.001.

Considering the practical problems of this research, a single hidden layer model is
used in the design of the BP neural network. In this research, the number of hidden layer
nodes is determined by the step-by-step method. That is, the number of hidden layer
elements is set to two first, and if it does not meet the requirements, the number of hidden
layer nodes is gradually increased until it is appropriate. Through repeated experiments,
the final number of nodes in the hidden layer was determined to be 14. The simulation
results of the neural network model are shown in Table 5.

Table 5. Verification of the inversion results of soluble salt content of soils by multiple linear regression
model and BP neural network model.

No.
Soluble Salt Content

of Soils-Measured
g/Kg

Multiple Linear Regression Model BP Neural Network Inversion Model

Soluble Salt Content
of Soils-Inversion

g/Kg

Error
g/Kg

Relative
Error

%

Soluble Salt Content
of Soils-Inversion

g/Kg

Error
g/Kg

Relative
Error

%

1 8.18 14.70 6.52 44.34 8.771 0.735 8.99
2 1.53 10.96 9.43 86.04 1.490 0.068 4.47
3 12.4 6.89 −5.51 −79.95 1.660 1.592 12.84
4 0.08 3.12 3.04 97.43 0.077 −0.003 −4.00
5 0.22 4.60 4.38 95.22 0.129 −0.091 −41.59
6 0.14 3.26 3.12 95.71 0.151 0.011 7.78
7 0.07 4.37 4.30 98.40 0.134 0.057 80.90
8 0.04 3.56 3.52 98.88 0.008 0.014 34.27
9 0.06 2.98 2.92 97.99 0.027 −0.017 −28.92

10 0.08 3.61 3.53 97.78 0.042 −0.038 −47.44

3.2.4. Salinity Result and Analysis

In this study, the model accuracy is analyzed with the soluble salt content of soil data
of the other 10 samples. In Table 5, among prediction results provided by the multiple linear
regression model, relative error ranges from 44.34% to 98.88%. In this way, it is convenient
to the inverse soluble salt content of soils through the established multiple linear regression
model on the basis of Sentinel-2A remote sensing images, but the precision of the inversion
result is still at a low level. However, the maximum relative error of the soluble salt content
of soils inversed by the BP neural network model is 80.90%, and the minimum relative error
is −4.00%. Compared with the multiple linear regression model, the inversion accuracy of
the BP neural network model has been significantly improved.

Figure 4 demonstrates the distribution consequence of the soluble salt content of soils
through the inversion in the study area based on a multiple linear regression model and
the BP neural network inversion. From the figure, the soluble salt content of soils increases
along the direction of land to sea, which is in line with the real situation. This shows that it
is feasible based on an appropriate inversion model and Sentinel-2A multispectral images
to inverse the soluble salt content of soils.
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3.3. Wetness
3.3.1. Tasseled Cap Transformation

The tasseled cap transformation, also named the Kauth–Thomas transformation, is a
linear transformation method where coordinate space rotation happens. Through multi-
dimensional rotation, the method can generate new components, but only the first three
of them have clear physical significance [24,25]. The first component is brightness, which
reflects the comprehensive effect of the overall reflectance and is only related to the physi-
cal process that affects the overall reflectance, mainly reflecting the radiation level in the
infrared band. The second is greenness. It is a kind of comprehensive response to the
absorption of plant photosynthesis in the visible light band and the strong plant reflection
in the near-infrared band, so it has a close relationship with vegetation coverage, leaf area
index and biomass. For the third, it is wetness. It is the difference between the total reflec-
tion energy of the visible light band and the near-infrared band and the reflected energy
in the short-wave infrared band. Thus, the third component displays ground moisture
conditions, especially the moisture state of the soil.

Currently, the components of brightness, greenness and wetness obtained through
tasseled cap transformation have been widely utilized in eco-environment monitoring.
For wetness, it can reflect the moisture of vegetation and soil, so it is closely related to
eco-environment conditions. Therefore, the wetness index in this research was represented
by the third component provided through the tasseled cap transformation of the remote
sensing image [26].

The following shows the tasseled cap transformation formulas of the Sentinel-2A
satellite and Landsat satellite for wetness component calculation.

Wetness(Sentinel-2A) = 0.1509 × B2 + 0.1973 × B3 + 0.3279 × B4 + 0.3406 × B8 −
0.7112 × B11 − 0.4572 × B12

(7)

Wetness(Landsat) = 0.1509 × BBlue + 0.1973 × BGreen + 0.3279 × BRed +
0.3406×BNearInfrared − 0.7112 × BSWIR-1 − 0.4572 × BSWIR-2

(8)

In Formulas (7) and (8), the coefficients correspond to the reflectivity values at 2, 3, 4,
8, 11 and 12 bands of Sentinel-2A satellite and the atmospheric apparent reflectivity of the
Landsat satellite, respectively.

3.3.2. Wetness Result Analysis

Figure 5 demonstrates the wetness distribution characteristic of the protection zone
using the remote sensing data of the Sentinel-2A satellite. Wetness in the protection zone
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is within the range from −0.15 to 0.062. The region with high vegetation coverage has
higher wetness in the Tamarix chinensis forest besides special coverage areas of the marginal
areas of coastal beach and internal pool. The region with low wetness is the low-coverage
Tamarix chinensis area. On the whole, the spatial distribution characteristics of wetness were
consistent with the spatial distribution characteristics of vegetation coverage.
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3.4. Dryness

Surface drought is one of the main factors causing eco-environment deterioration in
the protection zone [27]. Therefore, in this study, the dryness of RSEI is represented by the
bare soil index (SI), which can characterize the bare surface condition [28]. The SI formula
is shown in the following:

SI =
(ρ11 + ρ4) (ρ8 + ρ2)

(ρ11 + ρ4) + (ρ8 + ρ2)
(9)

where, ρ2, ρ3, ρ4, ρ8 and ρ11, respectively, point to the reflectivity of the Sentinel-2A remote
sensing image at 2, 3, 4, 8 and 11 bands. Figure 6 shows the dryness distribution character-
istic of the protection zone. Dryness is exactly inverse to wetness in the spatial distribution
characteristic. That is to say, high dryness is found in the north, the northeast and the west
of the Tamarix chinensis forest, which is low in vegetation coverage. Furthermore, low dry-
ness appears in the coastal area of Tamarix chinensis forest, internal pools, the surrounding
southern water system and the highly covered Tamarix chinensis area.
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3.5. Greenness

The normalized difference vegetation index (NDVI) is a well-known broad-band
greenness index, which is often used in vegetation productivity modeling. In addition, as
the most widely used vegetation index, NDVI is closely related to plant biomass, leaf area
index and vegetation coverage [29]. Therefore, it was selected to represent the greenness
of the RSEI evaluation system in this research. In Figure 7, which contains the greenness
distribution in the protection zone, NDVI is high in most regions, lower in roads and the
marginal region, and the lowest in the northeast area and the near beach area.
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3.6. Heat

This research chose surface temperature as the heat index in the RSEI evaluation
system. Until now, the surface temperature inversion algorithms, depending on the ther-
mal infrared remote sensing, have included a single algorithm (including an atmospheric
correction algorithm based on the radiation transfer equation), a multichannel algorithm,
a multiangle algorithm, a multitemporal algorithm and a hyperspectral inversion algo-
rithm [30]. To realize the surface temperature inversion in the protection zone, this research
took advantage of the atmospheric correlation algorithm based on the real detection data
of the atmospheric profile. Since the Sentinel-2A remote sensing image does not have a
thermal infrared band. This research selected the thermal infrared band of the Landsat8-
TIRS image, similar to the Sentinel-2A image in imaging time, to calculate the heat index of
the protection zone. In order to match the 10 m resolution of the Sentinel-2A image and
improve the evaluation results, the temperature results with the Landsat8-TIRS image at
30 m resolution were resampled to 10 m resolution. It should be noted that, during radiation
calibration of the Landsat8-TIRS image, Band 11 was sensitive to error, which caused a
larger deviation. Thus, this research chose Band 10 to extract the surface temperature of the
protection zone [31].

In Figure 8, the temperature in the protection zone ranges from 24.55 ◦C to 30.15 ◦C
at 10:00 a.m. on 26 September 2019. Moreover, the surface temperature is low in the
middle region with highly covered Tamarix chinensis and is high in the south and the north.
Especially in the north, the surface temperature is relatively higher because most of the
area is the region of resource recovery, and its Tamarix chinensis is low in density.
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4. Comprehensive Evaluation of Eco-Environment in Protection Zone
4.1. Ecological Factor Normalization

Through the above methods or models, it is possible to obtain the result of a single
evaluation index used for the eco-environment evaluation in the protection zone. However,
because factors have different dimensions, it is hard to directly couple factors to compre-
hensively evaluate the eco-environment. To avoid the weight imbalance caused by different
dimensional units, it is essential to normalize all factors and then calculate and analyze
the comprehensive ecological index of the protection zone [32]. In the consideration of
unavoidable noise in remote sensing images, the statistical maximum and minimum are not
necessarily effective. That is the reason why this research first set 2% confidence intervals
in the pixel histogram of the statistical evaluation index, and then all ecological factors
were normalized by the normalization formula.

4.2. The Analysis Evaluation Method of Eco-Environment Quality-SPCA

Among many evaluation methods for natural eco-environments, spatial principal
component analysis (SPCA) transforms related multivariable spatial data into a few com-
prehensive factors, among which the correlation is low. The SPCA is based on the rotation
of spatial coordinate axes of the characteristic spectrum and the orthogonal linear variation
of multiple variables. This method can maximize the retention of the initial information
with fewer comprehensive factors [33]. Therefore, it is not necessary for SPCA to make sure
of the weight of every index; therefore, deviation of the result can be prevented from the set
weight by different expers and methods. The impact of each index on RSEI is completely
determined by the raw data of index parameters. Therefore, the obtained RSEI ecological
index can reflect the ecological environment of the whole region.

In this study, the standardized data in the evaluation index system, including AOD,
greenness, wetness, dryness, heat, and salinity, was processed by SPCA. The RSEI of
the study area was calculated, and the spatial characteristics and the spatiotemporal
evolvement of the eco-environment were analyzed.

4.3. The Eco-Environment Quality Analysis of Protection Zone Based on RSEI (September 2019)

Table 6 includes the statistical and calculation results of the mean value, the standard
deviation of all factors and RESI in September 2019. From the table, the mean RESI is
0.61, which proves that the overall eco-environment quality is at a good level (Please
see the following Section 4.4 for the reason why this value is a good level). In terms of
the contribution of all factors to PC1 (RESI) in Table 7, greenness and wetness, which
are positively related to the eco-environment, are positive values. However, dryness,
temperature, AOD and salinity, which are negatively related to the eco-environment, are
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negative values. This is consistent with the positive effect of greenness and wetness and the
negative effect of dryness and heat on the eco-environment in practice. At the same time, it
also illustrates that vegetation restoration is able to increase the greenness and wetness of
eco-environment quality in protection zones [34].

Table 6. The statistics of mean, standard deviation and RESI for study area.

Index Mean Standard Deviation

Greenness 0.32 0.11
Wetness −0.046 0.029
Dryness −0.064 0.069

Temperature 26.60 0.82
Salinity 6.72 4.26

AOD 0.14 0.23
RSEI 0.61 0.21

Table 7. The analysis result by SPCA in study area.

Index
PCA

PC1 PC2 PC3 PC4 PC5 PC6

Greenness 0.31 0.27 0.53 0.33 0.26 0.61
Wetness 0.65 0.35 −0.34 0.37 0.10 −0.44
Dryness −0.31 0.44 0.34 −0.25 0.57 −0.45

Temperature −0.06 −0.48 −0.38 0.02 0.77 0.17
Salinity −0.45 0.20 −0.12 −0.83 0.00 0.24

AOD −0.42 −0.58 0.58 −0.11 −0.02 −0.38
Eigenvalue 0.30 0.13 0.04 0.04 0.01 0.00

Contribution rate of
eigenvalue/% 56.95 24.70 7.95 7.27 2.42 0.70

Through further analysis in Table 7, it is found that the contribution of the characteristic
value of PC1, PC2 and PC3 accounts for 56.95%, 24.7% and 7.95%, respectively, among
the RESI statistical results on the basis of the PCA model. The cumulative contribution
rate of these three characteristic values reached 89.6%, more than 85%. This explains
that the correspondingly representative information of principal components is able to
represent most eco-environment quality information, and it is reasonable to evaluate eco-
environment with RSEI through SPCA. Thus, it is possible to use RSEI and the derived
statistical information for the follow-up eco-environmental evaluation and analysis in the
protection zone [35].

This research analyzed the correlations among six factors and the correlations between
these factors and RSEI. As reported in Table 8, the correlation between greenness and
the other factors appears to be the strongest correlation, with a mean coefficient of 0.51.
Additionally, the mean correlation between RSEI and the other factors is 0.62, 19.60% higher
than the strongest correlation of the former. Thus, it can be seen that RSEI integrates each
component’s information well and can more comprehensively reflect the eco-environment
condition of the protection area [36].

The spatial distribution of the eco-environment quality of the protection zone in
September 2019 is shown in Figure 9, where the south is better than the north, and the
middle is superior to the surroundings. In detail, the obviously excellent eco-environment
quality appears in the middle protection zone, and the worst is mainly located in the
western environmental management area and the northern resource recovery area. To
clearly demonstrate the spatial distribution of eco-environment quality, the research divided
the values of RSEI in September 2019 into five grades at an internal of 0.2. According to
RSEI values from large to small, the five grades corresponded to excellent, good, medium,
worse and worst. After statistics, their proportions were respectively 22.62%, 32.23%,
22.95%, 16.68% and 2.62%, and the excellent and good rate was 54.89%. In this way, the
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result proved that the overall eco-environment quality of the protection zone is generally at
a good level.

Table 8. Correlation matrix of each factor and RSEI.

Index Greenness Wetness Dryness Salinity AOD Temperature RSEI

Greenness 1.00 0.64 −0.39 −0.26 −0.41 −0.34 0.28
Wetness 0.64 1.00 −0.01 −0.01 −0.01 −0.01 0.39
Dryness −0.39 −0.01 1.00 0.00 0.01 0.01 −0.93
Salinity −0.26 −0.01 0.00 1.00 0.01 0.00 −0.47

AOD −0.41 −0.01 0.01 0.01 1.00 0.01 −0.34
Temperature −0.34 −0.01 0.01 0.00 0.01 1.00 −0.96

Mean 0.51 0.28 0.24 0.21 0.24 0.23 0.62

Note: the mean value of correlation coefficient is calculated by the absolute value of the correlation between one
index and other indexes.
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4.4. The Evolvement Analysis of Spatiotemporal Pattern of RSEI (2000–2019)

To quantitatively reflect the spatiotemporal pattern evolvement of eco-environment in
protection zone from 2000 to 2019, this research selected four time nodes, when represen-
tative events (see Table 1) happened, respectively in 2000, 2007, 2014 and 2019. Because
there was a limitation to acquiring and verifying the historical remote sensing data of AOD
and salinity, these two factors were not contained in the analysis of spatiotemporal pattern
evolvement. This research also obtained PC1 and the mean RSEI of the eco-environment
quality index in the protection zone at the above four time nodes through the same
method. In Table 9, the mean RSEI of the protection zone shows an increasing trend, from
0.33 in 2000 to 0.58 in 2019. It is worth noting that RSEI grew by 0.16 during 2007–2014 and
0.10 during 2014–2019.

Table 9. PC1 and RSEI (Mean) of 4 nodes in study area.

Year
PC1

RSEI/Mean
Greenness Wetness Dryness Temperature

2000 0.44 0.73 −0.16 0.50 0.33
2007 0.65 0.24 −0.43 0.58 0.32
2014 0.60 0.32 0.59 −0.43 0.48
2019 0.55 0.77 0.09 0.31 0.58
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To more intuitively show the advantages and disadvantages of the eco-environment in
the protection zone, the RSEI values at those four time nodes were divided into five grades
at an internal of 0.2. According to values from large to small, the five grades corresponded
to excellent, good, medium, worse and worst. From the area statistics of five grades in
Table 10, it could be found that the excellent and good rate was 4.05% in 2000, 4.55% in
2007, 49.42% in 2014 and 55.33% in 2019. Besides, the excellent and good rates increased by
44.87% from 2007 to 2014, meaning the significant effect of ecological restoration during
this period.

Table 10. The area/km2 and ratio/% of ecological grade in study area.

RSEI Grade
2000 2007 2014 2019

Area Ratio Area Ratio Area Ratio Area Ratio

Worst (0–0.2) 2.15 13.91 3.77 24.34 0.04 0.27 1.26 8.17
Worse (0.2–0.4) 8.99 58.07 7.06 45.61 1.37 8.86 2.40 15.49

Medium (0.4–0.6) 3.71 23.98 3.95 25.50 6.42 41.44 3.25 21.01
Good (0.6–0.8) 0.47 3.03 0.66 4.27 5.83 37.66 5.57 35.96

Excellent (0.8–1.0) 0.16 1.02 0.04 0.28 1.82 11.76 3.00 19.37
Total 15.48 100% 15.48 100% 15.48 100% 15.48 100%

Table 11 shows the dynamic change of RSEI corresponding to three different time
periods of the protection zone. During 2000–2007, RSEI showed a reducing trend. From
the perspective of dynamic changes in the eco-environment, the deteriorative area reached
7.42 km2, 47.93% of the protection zone area, but the improved area was only 3.22 km2.
From 2007–2014, the area with decreasing RSEI was only 2.90 km2, 18.75% of the protection
zone area, and by contrast, the area with improved ecological conditions was 11.29 km2,
72.94% of the protection zone area. From 2014–2019, the area with decreased RSEI reached
3.21 km2 and the area with increased RSEI was 9.17 km2, which respectively occupied
18.75% and 72.94% of the total area.

Table 11. The area/km2 and ratio/% of RSEI of dynamic change.

Time Range 2000–2007 2007–2014 2014–2019

Type Area Ratio Area Ratio Area Ratio

Worse (RSEI < −0.10) 7.42 47.93 2.90 18.75 3.21 20.71
Unchanged (0.10 ≥ RSEI ≥ 0.10) 4.84 31.26 1.29 8.31 3.10 20.02

Better (RSEI > 0.10) 3.22 20.81 11.29 72.94 9.17 59.27
Total 15.48 100.00 15.48 100.00 15.48 100.00

To intuitively and comprehensively demonstrate the spatiotemporal change of eco-
environment in the protection zone, the change detection was conducted towards the
RSEI images at those four time points by the image difference method. In Figure 10,
red represents the deteriorative ecological area (∆RESE < −0.1), blue represents the im-
proved ecological region (∆RESE > 0.1), and green represents the stable ecological region
(−0.1 ≤ ∆RESE ≤ 0.1). By analyzing Figure 10, during 2000–2007, the improved region is
mainly distributed in the east of the protection zone, and the deteriorative are scattered in
the protection zone on a large scale.

During the period of 2007–2014, the eco-environment gradually improved as a general
trend, and the deteriorative areas are mainly distributed in the northwest and dispersedly
distributed in the marginal region. During 2014–2019, eco-environment still keeps an
improving trend, especially, in the middle region, and the deteriorative region is in the
northwest in the comparison with the situation from 2007 to 2014. In general, the eco-
environment quality has been greatly improved through ecological restoration over the last
14 years.
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5. Conclusions

To monitor and evaluate the eco-environment effect of ecological restoration on the
Tamarix chinensis forest in the protection zone, this research built a set of comprehensive
evaluation systems for eco-environment quality by remote sensing technology. On the
method or model, DDV, multiple linear regression model, BP neural network inversion
model, tasseled cap transformation and atmospheric correction algorithm were applied in
this study. Finally, the conclusions are as follows:

(1) The RSEI system included AOD, salinity, greenness, wetness, heat and dryness,
respectively. Since the study area belongs to the coastal Tamarix chinensis wetland, and its
land cover is of forest type. The factors of salinity and AOD were selected as the evaluation
index systems. The last four factors are not only important factors of natural ecological
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quality but also are closely related to human activities. Therefore, the RSEI system was
scientific and reasonable;

(2) The correspondingly representative information of principal components is able
to represent most eco-environment quality information, and it is reasonable to evaluate
eco-environment with RSEI through SPCA;

(3) The spatial distribution of eco-environment quality of the protection zone in
September 2019 is that the south is better than the north, and the middle is superior to
the surroundings;

(4) The eco-environment quality of the protection zone shows an increasing trend from
2000 to 2019, especially from 2007 to 2014 and 0.10 during 2014–2019. This shows that the
ecological restoration of the protection zone is meaningful.
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