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Transition-metal-catalyzed cross-couplings have been extensively used in the pharmaceutical

and agrochemical industries for the construction of diverse C–C bonds. Conventional cross-

coupling reactions require reactive electrophilic coupling partners, such as organohalides or

sulfonates, which are not environmentally friendly and not naturally abundant. Another

disadvantage associated with these transformations is the need for an exogenous base to

facilitate the key transmetalation step, and this reagent inevitably induces side reactions and

limits the substrate scope. Here, we report an unconventional Suzuki-type approach to the

synthesis of biaryls, through nickel-catalyzed deformylative cross coupling of aldehydes with

organoboron reagents under base-free conditions. The transformation tolerates structurally

diverse (hetero)aryl substituents on both coupling partners and shows high reactivity and

excellent functional group tolerance. Furthermore, the protocol was carried out on gram scale

and successfully applied to the functionalization of complex biologically active molecules.

Mechanistic investigations support a catalytic cycle involving the oxidative addition of the

nickel into the aldehyde C(acyl)–H bond with subsequent hydride transfer, transmetalation,

decarbonylation and reductive elimination processes.
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The development of efficient methods for the selective
construction of C–C bonds is of great significance because
carbon skeletons exist in numerous biologically active

molecules, pharmaceuticals, and functional materials1. Since the
1970s, transition-metal-catalyzed cross-coupling reactions have
attracted increasing attention, and they have become indis-
pensable tools in the organic chemist’s arsenal2,3. Although the
cross coupling of aryl halides and sulfonates with a variety of
organometallic or main-group reagents has been successfully
applied in synthetic transformations, the generation of corrosive
halogen and sulfur containing waste is detrimental from syn-
thetic, as well as environmental perspectives. With the rapid
development of organometallic chemistry, impressive progress
has recently been achieved in the use of C–O, C–N and carbonyl
electrophiles as attractive alternative coupling partners (Fig. 1a,
left)4–8. However, challenges still exist with these electrophiles,
limiting the scope and applicability of their reactions. For
instance, protocols using C–O electrophiles are often hampered
by the “naphthalene problem” in which only π-extended aromatic
frameworks show high reactivity9,10; couplings of aromatic car-
boxylic acids to build biaryl species via decarboxylative pathways
are restricted to electron-withdrawing group-containing sub-
strates or a strong oxidant is required11,12; the synthesis of biaryl
species via the decarbonylative reaction of esters and amides is
limited to specific substrates (phenyl esters and twisted amides)
that require an additional step to be synthesized from carboxylic
acids13,14; and the use of an exogenous base may also limit the
scope of reagents and substrates15.

Based on the considerations mentioned above, an ideal syn-
thetic approach to construct C–C bonds would be to use cross-
coupling partners that are inexpensive, nontoxic, and readily
available under conditions that are highly tolerant of diverse
functional groups and are base free. Recently, the utilization of
aldehydes as coupling partners has attracted growing interest in
both academic and pharmaceutical laboratories16. Prompted by
the synthetic relevance of biaryl compounds, which are ubiqui-
tous in the skeletons of pharmaceuticals and organic materials1,
we questioned whether it would be possible to build biaryl units
through a formal deformylative pathway using aldehyde
precursors17,18. To date and to the best of our knowledge, a

general synthesis of biaryl species via the C–C cross-couplings of
aldehydes with organometallic reagents is unknown.

As part of our interest in developing viable protocols for the
activation of inert chemical bonds using transition-metal cata-
lysis19, we herein report the nickel-catalyzed Suzuki–Miyaura
cross coupling of aldehydes with organoboron compounds under
base-free conditions (Fig. 1a, right). The catalytic C–C bond
formation proceeds smoothly with various aromatic and hetero-
aromatic aldehydes, providing a useful synthetic strategy that uses
aldehydes as unconventional electrophilic coupling partners in
cross-coupling reactions that will inspire further exploration.

Results
Rational design. A description of our mechanistic concept is
outlined in Fig. 1b and shows the challenges that must be
addressed to develop the nickel-catalyzed biaryl coupling of
aldehydes. Our initial efforts sought to identify conditions that
avoid the undesired decarbonylation (I to II) of the acylnickel(II)

hydride species that arises from the oxidative addition of the C
(acyl)-H bond of the aldehyde to LnNi(0)20,21. Arylnickel(II)

hydride II preferentially undergoes very fast reductive elimination
(II to III) rather than transmetalation (II to V). Thus, to avoid
the undesired reductive coupling and formation of arene III22, we
envisioned that a key hydride abstraction or transfer from the
acylnickel(II) hydride to a suitable H-acceptor would enable the
transmetalation (I to IV) while suppressing the decarbonylation-
reductive coupling pathway. The subsequent aryl migration (IV
to V) and reductive elimination would provide the cross-coupling
product and regenerate the Ni catalyst. Based on these con-
siderations, the ideal H-acceptor needs to (i) be perfectly com-
patible; (ii) be readily available; and (iii) have dual functionality in
that it can both suppress reductive coupling through hydride
abstraction and simultaneously promote transmetalation to allow
base-free conditions (Fig. 1c). Therefore, ketones were considered
as possible H-acceptors because they would suit all of these
requirements (they are readily available, stable, compatible, and
good H-acceptors for the hydride-transfer step, and the formed
alcoholate is a good activator for the transmetalation of the
boronate). This hypothesis was corroborated by DFT studies
(Fig. 1c), which accompanied the experimental study and
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Fig. 1 Nickel-catalyzed deformylative Suzuki–Miyaura cross coupling and related DFT studies on the role of trifluoroacetophenone. a Previously reported
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revealed that the energy barriers for hydride transfer and base-
free transmetalation were significantly decreased (23.0 and 26.7
kcal/mol, respectively) by the presence of tri-
fluoroacetophenone23, while the same decreases were not seen
with other acceptors, such as benzophenone and acetophenone.

Optimization of the reaction conditions. Based on our
mechanistic design, we began our primary investigations. Nico-
tinaldehyde (1a) and phenylboronic acid neopentylglycol ester
(2a) were chosen as coupling partners in the presence of a nickel/
ligand catalytic system with the use of a ketone as a hydride
acceptor. After systematically evaluating the reaction parameters,
we found that a combination of Ni(cod)2 and trioctylphosphine
[P(Oct)3] afforded the biaryl product in 77% yield under base-free
conditions when trifluoroacetophenone (4a) was employed as the
hydride acceptor. Control experiments revealed that each reagent,
namely, the catalyst, ligand and hydride acceptor, were all critical
for the success of this reaction (Fig. 2a). Attempts under relatively
lower temperature (130 °C) gave moderate yield. To date, reac-
tions with other organoboron reagents have been less productive
(see Supplementary Table 1). Regarding the influence of the
ligand, replacement of trioctylphosphine with tri-n-propylpho-
sphine (PnPr3) or tri-n-butylphosphine (PnBu3) under identical
reaction conditions slightly decreased the yield, while the use of a
bidentate phosphine ligand (dcype) or N-heterocyclic carbene
ligand IPr•HCl gave unsatisfactory results (Fig. 2b). To facilitate
the key hydride-transfer process, we evaluated several ketones
(4a–e). However, for the reasons described, tri-
fluoroacetophenone (4a) was the most effective hydride acceptor
(Fig. 2c). Furthermore, commercially available and air-stable
nickel precatalyst, Ni(OAc)2.4H2O can be applied but results in
lower yields (see Supplementary Table 3).

Substrate scope. Encouraged by the initial results, we examined
the scope of the reaction with respect to various aromatic and
heteroaromatic boronic ester nucleophiles in combination with
nicotinaldehyde (1a) as the coupling partner. As shown in Fig. 3,
we found that with our catalytic system, various phenyl boronic

ester substrates, bearing either electron-donating or electron-
withdrawing functional groups, could be converted into the
corresponding biaryl products in good yields. The use of methyl-
substituted or tert-butyl-substituted phenylboronic esters
smoothly provided the corresponding products (3Ab–3Ad),
whereas the use of biphenyl boronic ester gave 3Ae in 64% yield.
Furthermore, not only naphthyl-derived substrates (3Af, 3Ag)
but also phenyl boronic ester derivatives possessing ethoxy (3Aj),
silyl (3Ak), amine (3Al), fluoro (3Am–3Ao), trifluoromethyl
(3Ap, 3Aq), trifluoromethoxy (3Ar), cyano (3As), ester (3At),
and amide (3Au) substituents are perfectly suitable for the
transformation and gave the desired products in good yields.
Importantly, our decarbonylative cross-coupling reaction could
be readily extended to heteroaromatic boronic esters derived from
(benzo)furan and (benzo)thiophene, affording the corresponding
biheteroaryl motifs 3Av–3Aaa. In addition, the two examples of
estrone and δ-tocopherol derivatives (3Abb and 3Acc) highlight
the applicability of this method for the late-stage modification of
complex molecules. We subsequently turned our attention to a
series of aldehydes as electrophilic coupling partners to determine
the scope of our method. Figure 3 also shows the excellent che-
moselectivity profile of the developed method; phenyl, naphthyl,
phenanthryl and fluorenyl aldehydes were suitable for this
transformation (3Ba–3Fa). Although nickel catalysts have been
successfully used for arylation reactions with boronic ester
nucleophiles through C–OMe11 or C–F24 cleavage, we found that,
in our case, these cleavage reactions did not compete with the
deformylative biaryl synthesis (3Ha–3Ka and 3Na). This che-
moselectivity is a general requirement for an applicable reaction
and is also important for retrosynthesis planning. In addition, the
chemoselectivity of this method was nicely illustrated by the fact
that functional groups such as dioxole (3La), trifluoromethyl
(3Oa and 3Pa), trifluoromethoxy (3Qa), and ester (3Ra) were
well tolerated under the present conditions. It was further
demonstrated that pyridine-derived, benzofuran-derived, ben-
zothiophene-derived, quinoline-derived, and furan-derived het-
erocyclic aldehydes (3Sa–3Wa) did not hinder the success of the
transformation. Regarding the mentioned chemoselectivity,
bioactive natural product compounds such as menthol, galactose,
cholesterol and pregnenolone were also suitable substrates for this
reaction, effectively providing the desired products 3Xa–3AAa.

Mechanistic studies. We conducted several experiments to elu-
cidate the reaction mechanism. We first performed an isotope-
labeling experiment with a deuterated benzaldehyde. The deu-
terium of [D1]-1b was shown to add to the carbonyl group of the
hydrogen acceptor (trifluoroacetophenone, 4a) to give
[D1]−2,2,2-trifluoro-1-phenylethan-1-ol (5) upon hydrolysis,
which provides direct evidence for the occurrence of a hydride-
transfer process during the cross-coupling reaction (Fig. 4a). To
determine whether this hydride-transfer step is the rate-
determining step of this cross-coupling process, we carried out
a KIE (kinetic isotope effect) experiment. A minor kinetic isotope
effect (kH/kD= 1.2) was found when using isotopically labeled
aldehyde substrate [D1]-1b. This observation indicates the C
(acyl)-H insertion and hydride-transfer processes are relatively
fast (Fig. 4b).

Furthermore, we performed detailed DFT calculations (Fig. 4
and Supplementary Discussion) to rationalize and support our
proposed mechanism for the nickel-catalyzed arylation of
aldehydes. As a model system, we investigated the reaction of
aldehyde 1b with phenylboronic ester 2a in the presence of Ni0

(PnPr3)2 (A) as the active catalyst. The reaction starts with the
oxidative addition of aldehyde 1b to the active catalyst, Ni0

(PnPr3)2 (A), which proceeds via adduct B and transition state
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[B–C]‡. The C(acyl)-H activation step has an energy barrier of
21.4 kcal/mol, while the barrier for C(aryl)-C(acyl) activation is
6.0 kcal/mol higher (Fig. S1). In the next step, resulting (acyl)NiII-
H species C binds 4a and undergoes hydride transfer via
transition state [D–E]‡, generating (acyl)NiII-alkoxide complex E.
Next, in the presence of aryl boronic ester 2a, transmetalation of
E occurs via transition state [F–G]‡. Upon liberation of
PhCF3CHOB(nep), NiII intermediate G is formed, which under-
goes a smooth CO migration to give NiII complex H. Finally,
decarbonylation and reductive elimination affords biaryl product
3Ba and regenerates active catalyst A, which coordinates to

aldehyde 1b to initiate the next catalytic cycle. Overall, the energy
profile reveals that the transmetalation is the rate-limiting step,
with an energy barrier of 26.7 kcal/mol. Notably, compound 4a
not only acts as an H-acceptor but also facilitates the
transmetalation step to allow the cross-coupling to proceed in
the absence of a base.

Discussion
In summary, we have developed a nickel-catalyzed dec-
arbonylative arylation reaction of aldehydes with boronic esters.
In contrast to classical cross-coupling reactions, this protocol
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allows the use of inexpensive, nontoxic, and readily available
aldehydes as unconventional coupling electrophiles. The high
reactivity, broad substrate scope, and scalability of this method
suggest that this protocol can be a powerful alternative to the
existing methodologies for the synthesis of structurally diverse
biaryls. Importantly, our developed protocol shows high che-
moselectivity, and functional groups, including C–OMe, C–F, and
C–CO2R, which can be reactive in nickel-catalyzed functional
group interconversions, are preserved. Moreover, mechanistic
studies based on control experiments and DFT calculations
revealed that the formation of biaryl products follows a reaction
pathway that includes the oxidative addition of the C(acyl)-H
bond of aldehyde to a Ni species with subsequent hydrogen
transfer, transmetalation, aryl migration, and reductive elimina-
tion. Based on the described strategy further C–C and C-
heteroatom bond forming reactions of aldehydes are expected.

Methods
General procedure for the deformylative coupling. In a nitrogen-filled glovebox,
a 10-mL oven-dried sealed tube containing a stirring bar was charged with the
corresponding aldehyde 1 (0.20 mmol, 1.0 equiv.), aryl/heteroaryl boronic ester 2
(0.40 mmol, 2.0 equiv.) and yellow Ni(cod)2 (5.5 mg, 10 mol%). Subsequently,
HPLC grade 1,4-dioxane (1.5 mL) was added, and then trioctylphosphine ligand
(18 μL, 20 mol%), and 2,2,2-trifluoroacetophenone (42 μL, 0.30 mmol, 1.5 equiv.)
were added, respectively, via microsyringe. The tube with the mixture was sealed

and removed from the glovebox. After stirring at 160 °C for 36 h, the mixture was
allowed to cool to room temperature, diluted with EtOAc (5 mL) and filtered
through a celite plug, eluting with additional EtOAc (15 mL). The filtrate was
concentrated and purified by column chromatography on silica gel to yield the title
product.

Computational details. All the geometries were optimized with the generalized
gradient approximation (GGA) method with Gaussian 09, Revision D.01,25 using
the long-range-corrected hybrid DFT functional ωB97xD26. The electronic con-
figuration of all the non-metal elements was described with the Ahlrichs split-
valance polarization basis function Def2-SVP while Ni is treated with the triple-ζ
valence basis set Def2-TZVP27,28. The geometries were optimized without any
symmetry constraints. Harmonic force constants were computed at the optimized
geometries to characterize the stationary points as minima or saddle points. All
transition states were optimized using the default Berny algorithm implemented in
the Gaussian09 code25. For transition state structures, IRC calculations were
undertaken to confirm the transition states which were connected to the correct
minima. For further validation of energetics, single-point calculations were per-
formed on the ωB97xD/Def2-TZVP(Ni)/Def2-SVP(non-metal) optimized geome-
tries using meta-hybrid-GGA functional M0629 employing a valence triple-ζ-type
of basis set Def2-TZVPP27,28 for all atoms. The solvent effects (1,4-dioxane, ε=
2.2099) were evaluated implicitly by a self-consistent reaction field (SCRF)
approach for all the intermediates and transitions states, using the SMD continuum
solvation model30. Unless specified otherwise, the ΔG was used throughout the
text. The ΔG value was obtained by augmenting the Eel energy terms at M06
(SMD)/Def2-TZVPP with the respective free energy corrections at the ωB97xD/
Def2-TZVP (Ni)/Def2-SVP (non-metal) level in gas phase. In all cases, the default
integral grid (Fine Grid) was employed. The simplified trialkyl-phosphine ligand
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Fig. 4 Mechanistic studies of the Ni-catalyzed deformylative Suzuki–Miyaura cross coupling. a Isotope-labeling experiment. b Kinetic isotope effect
experiment. c Full DFT-computed energy profile for the Ni-catalyzed deformylative Suzuki–Miyaura cross coupling with benzaldehyde (1b) and Ph-B(nep)
(2a) as reactants and PhC(O)CF3 (4a) as the hydride acceptor under the Ni(cod)2/PnPr3 catalytic system. Free energies in solution (in kcal/mol) at the
SMD (1,4-Dioxane)-M06/Def2-TZVPP//ωB97xD/Def2-TZVP(Ni)/Def2-SVP(non-metal) level are displayed. Selected DFT optimized geometries are
listed. Bond lengths are given in Å
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PnPr3 was used in the DFT calculation, which gave 53% yield (see Supplementary
Table 1, entry 4).

Data availability
Experimental details, characterization of compounds, copies of NMR data and details of
DFT calculations are available with the submitted manuscript.
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