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Abstract: Background: Platinum-based chemotherapy, cisplatin (DDP) specifically, is the main
strategy for treating lung cancer (LC). However, currently, there is a lack of predictive drug-resistance
markers, and there is increased interest in the development of a reliable and sensitive panels of
markers for DDP chemotherapy-effectiveness prediction. MicroRNAs represent a perspective pool
of markers for chemotherapy effectiveness. Objectives: Data on miRNAs associated with LC DDP
chemotherapy response are summarized and analyzed. Materials and methods: A comprehensive
review of the data in the literature and an analysis of bioinformatics resources were performed. The
gene targets of miRNAs, as well as their reciprocal relationships with miRNAs, were studied using
several databases. Results and Discussion: The complex analysis of bioinformatics resources and
the literature indicated that the expressions of 12 miRNAs have a high predictive potential for LC
DDP chemotherapy responses. The obtained information was discussed from the point of view
of the main mechanisms of LC chemoresistance. Conclusions: An overview of the published data
and bioinformatics resources, with respect to the predictive microRNA markers of chemotherapy
response, is presented in this review. The selected microRNAs and gene panel have a high potential for
predicting LC DDP sensitiveness or DDP resistance as well as for the development of a DDP co-therapy.

Keywords: lung cancer; non-small cell lung cancer; cisplatin; DDP; chemotherapy; chemosensitivity;
chemoresistance; therapeutic effectiveness markers; microRNA

1. Introduction

According to the GLOBOCAN data, lung cancer (LC) maintains its leading position
and ranks first among men in both morbidity and mortality [1]. In 2020, 2.2 million new
cases of lung cancer and 1.8 million deaths were registered. According to the modern
classification, there are two main types of lung cancer: non-small cell lung cancer (NSCLC)
which occurs in approximately 85% of patients and small cell lung cancer, which occurs in
approximately 15% of patients [2]. There are three main subtypes of NSCLCs: squamous
cell carcinoma (25% of lung cancers), adenocarcinoma (40% of lung cancers), and large
cell carcinoma (10% of lung cancers); the other types of NSCLCs include neuroendocrine
tumors and carcinomas with pleomorphic, sarcomatoid, or sarcomatous elements [2]. Lung
cancer is a severe disease that is difficult to treat. Currently, the most common treatment
strategies for LC include surgery, chemotherapy, radiotherapy, and combinations of these
treatments. The development of chemotherapy and radiotherapy resistance is a key issue in
the progression of LC. As a result, in most countries, the five-year survival rate of patients
with lung cancer is only about 10–20% [1].

2. Cisplatin and Lung Cancer Chemotherapy

The main method of LC treatment is chemotherapy. Platinum-based drugs are the
gold-standard first-line treatments (ASCO and NCCN). The use of platinum-based drugs
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(cisplatin and carboplatin), including in combination with other chemotherapy agents
(taxanes, pemetrexed, and antimetabolites), can achieve an overall survival for patients
of 8 to 10 months on average [3]. A large and randomized comparison of four co-therapy
regimens for stage IIIb and IV LC (cisplatin and paclitaxel, cisplatin and gemcitabine,
cisplatin and docetaxel, and carboplatin and paclitaxel), which are the most commonly
used regimens in clinical practice, showed that none of the used regimens had advantages
over the others. The overall survival for all the studied regimens was about 10 months, with
a one-year survival rate of 34% [4]. Patients with stage III LC undergo chemoradiotherapy
(sequentially or simultaneously). This chemotherapy regimen is based on the basic drugs
of the platinum group or their combination with other chemotherapy drugs, i.e., paclitaxel,
etoposide, and vinblastine. The median progression-free survival of patients treated
with chemoradiotherapy is poor (approximately eight months), with a five-year survival
rate of only 15% [5]. An option to improve the situation is to switch to other treatment
regimens, or example, treatment using the immunotherapy drug durvalumab, which is
an inhibitor of the PDL 1 ligand that mobilizes the effector link of the antitumor immune
system in a tumor microenvironment [6] or treatment of EGFR-positive LC patients using a
combination of chemotherapy and tyrosine kinase inhibitors (platina-based chemotherapy
and osemertinib) [7]. These chemotherapy schemes can achieve longer remission. However,
these treatments have some limitations: immunotherapy is not available in all countries [1]
and only about 15% of the general population of NSCLC patients have mutations in the
EGFR gene [1,8].

Thus, platinum-based chemotherapy continues to be the main strategy for treating
lung cancer [3,9]. Cisplatin (DDP) is the most widely used chemotherapy agent; it is an
alkylating agent that effects inter- and intra-strand DNA cross-links, leading to cell-cycle
arrest. However, drug resistance can develop, resulting in further development of a tumor
and side effects such as myelosuppression, drug nephritis, nausea, vomiting, hearing loss,
and polyneuropathy, which significantly reduce a patient’s quality of life [10]. Acquired
chemoresistance during treatment is a major problem for clinicians and is a major cause
of therapeutic failure [11]. Various mechanisms of tumor resistance to DDP have been de-
scribed, and, most recently, these mechanisms have been classified as follows: (1) pre-target
resistance (before cisplatin binds to DNA), (2) target resistance (directly associated with
DNA-cisplatin adducts), (3) post-target resistance (associated with apoptosis caused by
DDP-mediated DNA damage), and (4) off-target resistance (affecting molecular mecha-
nisms that do not present obvious links to DDP-induced signals) [11]. Regardless of the
resistance type, a tumor’s loss of sensitivity to DDP leaves a very short period of time for
therapy correction aimed at increased patient survival. Clinical outcomes in the treatment
of LC patients could be significantly improved through the introduction of non-invasive
biomarker assays to predict and monitor the effectiveness of therapy [12]. However, there
is a lack of reliable predictive drug-resistance markers and an urgent need to develop repro-
ducible and highly sensitive panels of predictive markers for DDP-effectiveness assessment.
Knowing a tumor’s response to cisplatin in advance would help clinicians, both before and
during treatments, to select effective drugs and to adjust chemotherapy programs from
one option to another in a timely manner. Efforts to identify such markers have primarily
focused on the mechanisms underlying DDP resistance. DDP-resistance regulation rep-
resents a complicated network of many factors and signaling pathways. Obviously, a set
of markers is needed to detect different types of tumors and, subsequently, to highlight
the typical principal or driving aberrations specific to a particular tumor. MicroRNAs
(miRNAs) could be promising candidate biomarkers for DDP resistance in LC, due to the
multiple mechanisms by which they regulate the expression, and vice versa, for different
target genes. Fortunately, there is considerable evidence on the association of aberrant
miRNAs expression with DDP resistance in tumor cells (Tables S1 and S2).
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3. MicroRNAs and Lung Cancer Chemotherapy

Since miRNAs regulate of a wide spectrum of physiological and pathological processes
in cells, they are secreted from cells and enter the extracellular medium and biological
fluids [13]. MicroRNAs have been shown to be rather stable in biological fluids, including
blood or bronchial lavage, in which they circulate in tight complexes with biopolymers or
are packed in membrane-coated vesicles [14,15] for review. Cell-free miRNAs (cfmiRNAs)
can be released from different tumor areas or tumor nodes, and, therefore, a cfmiRNA
profile reflects a patient’s generalized tumor phenotype. Considering the well-developed
protocols for cfmiRNA isolation and evaluation of their sets and concentrations, cfmiRNAs
could be promising diagnostic markers [16]. The availability of liquid media, such as
blood, sputum, and saliva, and methods that do not require invasive procedures have
provided an opportunity for using liquid biopsies in the diagnosis of cancers, including
LC [17]. The correlation between changes in miRNA expression and tumor development
during treatment (aggressiveness and chemoresistance) have prompted the development
of miRNA diagnostic panels and the emergence of prognostic and predictive markers for
monitoring cancer as well as the development of new strategic solutions for the treatment
of platinum-resistant LC ([18–20] for review). In fact, miRNA dysregulation in LC and
under LC chemotherapy is involved in the regulation of the genes crucial to chemoresis-
tance development: DNA repair, apoptosis, cell-cycle regulation, epithelial–mesenchymal
transition (EMT), hypoxia, autophagy, drug efflux, cancer stem-cells activation (CSCs),
etc. [20–22].

Numerous studies have aimed at identifying the miRNAs that mediate DDP re-
sponse by investigating miRNAs that induce resistance/sensitivity to DDP in tumor cells
or through comparative analyses of miRNA expressions in chemo-resistant and chemo-
sensitive samples (cell lines and the tissues or biofluids of DDP-resistant and -sensitive
LC patients). However, there are fewer studies that have aimed at exploring miRNAs
differentially expressed under DDP chemotherapy.

In the present study, we aim to propose a preliminary panel of miRNAs for predicting
the effectiveness of DDP chemotherapy via analysis of experimental data on the miRNAs’
involvement in DDP response and their cross analysis with the data of the bioinformatic
resources that describe miRNAs and genes mediating DDP-response interconnection.
Studies for analysis were selected from the PubMed and Science Direct databases based on
the selection criteria described below.

Inclusion Criteria
Studies that described an association between miRNA expression and responses

to DDP chemotherapy in lung adenocarcinoma and non-small cell lung cancer patients,
including liquid biopsy studies as well as in models of cultivated cells and xenografts, were
included for consideration.

The inclusion criteria were:

Studies that reported a change in miRNA expression in response to DDP chemotherapy
in NSCLC;
Studies that reported the influence of miRNA expression on resistance/sensitivity to DDP;
Studies that aimed to compare miRNA expression in DDP-resistant and DDP-sensitive
samples (tissues, serum of LC patients, cell lines, and xenograft models).

The exclusion criteria were:

• Studies published in languages other than English;
• Letters to the editor, case studies, or review articles;
• Bioinformatics data without experimental approval.

4. Comparison of miRNA Expression in DDP-Resistant and DDP-Sensitive Samples
from LC Patients, Cell Lines, and Xenograft Models

Comparative studies of miRNA expression in therapy-resistant and -sensitive cancer
cells of different origins represent a basic method of resistance markers’ identification.
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There are numerous such studies (Tables S1 and S2), however, only a few of these studies
have used large-scale methods such as NGS. Most studies have analyzed the expression
of a few miRNAs in LC DDP-sensitive and DDP-resistant cells and tumor-tissue samples
using RT-PCR; the RT-PCR approach presents limited information on individual miRNA-
expression differences (Tables S1 and S2), relationships with other miRNAs regulating the
same gene targets or pathways, and interconnections of the pathways involved in response
to DDP. In addition, there are only a few studies on cell-free miRNAs from blood plasma
and miRNAs circulating in blood exosomes [23,24] or exosomes from a cell culture [25–27].
MicroRNAs packed in microvesicles, including exosomes, represent a convenient source
of cell-free miRNAs for tumor diagnostics [28,29]. The miRNAs up- or downregulated in
resistant samples represent perspective markers of resistance/sensitivity, correspondingly,
however, they need to be additionally checked in this respect, for example, by directly
studying their effect on DDP resistance by in vitro/ex vivo models.

5. Direct Effects of miRNA Overexpression/Depletion on DDP Sensitivity
and Resistance

Changes in miRNA-expression levels in cells enable the direct evaluation of their
effects on sensitivity/resistance to DPP chemotherapy. The results of studies of this
type on sensitive and resistant cell lines and mice-xenograft models are presented in
Tables S1 and S2. Parameters of chemosensitivity, such as the half-maximal inhibitory
concentration (IC50), proliferation and apoptosis rates, cell-cycle arrest, cell viability, and
migration and colony-formation ability, as well as tumor volume and weight, are usually
assessed. Several miRNAs have been shown to be involved in DDP-resistance regulation
using this approach, and many of these studies have included the study of the expression
of the target genes that are crucial for a response to DDP (Tables S1 and S2) using luciferase
reporter assay, qRT-PCR, and Western blot analysis. These investigations have helped to
identify the network of miRNA–gene interactions involved in DDP-resistance development
and to identify the principal miRNA players in the response to DPP. These miRNA and
genes represent a valid set of preliminary prognostic markers.

6. Influence of DDP Chemotherapy on miRNA Expression

DDP chemotherapy, both as a powerful anticancer treatment and as a strong stressful
intervention in organisms, causes significant changes in miRNA expression in tumor cells,
as well as in many different normal cell types. However, until now, limited attention has
been given to the analysis of the effect of DDP chemotherapy on the expression of miRNAs
(Table 1).

Nevertheless, miRNAs deregulated by DDP therapy represent a pool of prospective
biomarkers for the development of a co-therapy, because they may reflect the develop-
ment of a secondary resistance to DDP, which, in turn, may be influenced by changes
in miRNA-expression levels. Liquid-biopsy studies [26] are of special interest, because
they allow continuous observation of changes in miRNA-expression levels during LC
therapy. However, such studies are only at their starting point and require normal-tissue
DDP-response filtering.

There are also some studies that have aimed to associate miRNA expression with
simultaneous resistance/sensitivity to different chemotherapies, including DDP (Table 2).
They include investigations of DDP and other platinum-based drugs, taxanes, cytostatic
vincristine, and cetuximab (IgG1 against epidermal growth factor, Table 2). The results of
such studies have indicated that miRNAs are involved in the regulation of drug resistance
via both common and different drug mechanisms, including multidrug resistance.
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Table 1. The effect of DDP on miRNA level in LC samples.

No. DDP R/DDP S
miRNA

Downstream Regulated Target In DDP R vs.
DDP S Samples

Effect of DDP on
miRNA Level

↑ of miRNA Expression→
Chemoresistance

↓ of miRNA
Expression→

Chemosensitivity

Model: R/S Cells;
Mice Xenografts ReferenceGene, Main

Function/Pathway Methods

1 miR-33b-3p P21
luciferase assay,

RT-PCR, Western
blot

↓ in cells
↑ cell viability, proliferation,
promoted G1/S transition,

DNA-damage response

↓ cell viability, G1
arrest,

S: A549
R: A549/DDP [30]

2 miR-425-3p AKT1, autophagy
luciferase

assay, qRT-PCR,
Western blot

↑ in cells, cells
exosomes

↑ in serum
exosomes, cell

exosomes

↑ cell viability, ↓ apoptosis in
S cells

↓ cell viability, ↑
apoptosis in R cells

S: A549
R: A549/DDP [26]

3 miR-3195 ↑ in cells, cell
exosomes S: A549

[25]

4 miR-3676-5p ↑ in cells, cell
exosomes S: A549

5 miR-4443 ↑ in cells, cell
exosomes S: A549

6
Let7 (let-7a,-7b,-

7c,-7d,-7e,
-7f,-7g,-7i)

LIN28A,B
luciferase assay,
IHC, RT-PCR,
Western blot

↓ in tissues, cells ↓ in cells ↓ cell viability in R cells ↑ cell viability in S
cells

S: A549 R:
A549/DDP [31]

7 miR-29c AKT2 RT-PCR ↓ in tissues ↑ in cells
↓ cell viability in S

↓ tumor volume, proliferation
(ki-67,AKT2) in X

↑ cell viability S: SPC-A-1, A549
X: A549 [32]

8 miR-32 TRIM29 ↓ in plasma ↑ in plasma [24]

9 miR-181a ↑ in cells

↑ percentage of A549 cells
with a G0-G1 DNA content
↑ proteolytic maturation of

caspase-9 and caspase-3
triggered by CDDP

↑ proapoptotic member of the
Bcl-2 family Bax

No effect S: A549 [11]

10 miR-1244 Bax, MEF2D, cyclin
D1, p53

qRT-PCR, Western
blot ↓ in cells ↓ proliferation, ↑ apoptosis S: A549, H522 [33]

DDP—cisplatin; DDP-S miRNA—miRNA associated with DDP sensitivity; DDP-R miRNA—miRNA associated with DDP resistance; R—chemotherapy-resistant cell line; S—
chemotherapy-sensitive cell line; X—mice xenograft based on LC cell lines.
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Table 2. miRNA and resistance to DDP and other chemotherapies.

No. DDP R/DDP S miRNA ↑ of miRNA Expression ↓ of miRNA Expression Model: (1) R/S Cells (2) Mice
Xenografts Drug Reference

1 miR-181a ↑migration, invasion, EMT in S ↓migration, invasion,
EMT in R cells

S: A549
R: A549/PTX, A549/DDP DDP, paclitaxel [34]

2 Let7f
miR-29a ↓ cell viability in S, R S: H2030 cells DDP, carboplatin [35]

3 miR-34c-3p ↓ cell viability, migration; ↑ apoptosis in cells
↓ tumor weight in X

S: A549, H1299
X: A549 mice DDP, taxol [36]

4 miR-137

↓ cell proliferation, migration, induced cell
apoptosis, arrested cell cycle in G1 phase and

reversed drug resistance in R cells;
↓ tumor volume, weight, VEGF (angiogenesis)

in X

↑ cell growth, migration,
cell survival, cell-cycle

G1/S transition,
resistance (CCK-8 assay)

in S cells

S: A549
R: A549/CDDP
X: A549/CDDP

DDP, paclitaxel [37]

5 miR-200c ↓ cell viability, proliferation invasion, EMT; ↑
apoptosis S: H1299, H596, and H522 DDP, cetuximab [38]

6 miR-202
↓ cell viability, IC50; ↑ apoptosis in S;

↓ tumor volume in X S: NCI-H441, A549
X: A549

DDP
[32]

↓ IC50 in S Oxaliplatin, carboplatin

7 miR-216b ↓ IC50; ↓ tumor weight in X ↑ IC50 S: A549, PC9 DDP, carboplatin,
oxaliplatin [39]

8 miR-495 ↓ cell viability, intracellular DDP accumulation
in S, R ↑ cell viability S: A549

R: A549/DDP

DDP, carboplatin,
trans-/-

diaminocyclohexaneoxala-
toplatinum

[40]

9 miR-497 ↓ cell viability, ↑ apoptosis in R ↑ cell viability in S S: A549
R: A549/DDP DDP, vincristine [41]

DDP—cisplatin; DDP-S miRNA—miRNA associated with DDP sensitivity; DDP-R miRNA—miRNA associated with DDP resistance; R—chemotherapy-resistant cell line; S—
chemotherapy-sensitive cell line; X—mice xenograft based on LC cell lines.
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7. Implication of miRNAs and Their Target Genes in Mechanisms of DDP
LC Resistance

Well-known mechanisms of chemotherapy resistance (including lung-cancer DDP re-
sistance) include apoptosis inhibition, cell-cycle progression, autophagy, drug transporta-
tion/detoxication (decreased drug uptake, activation of detoxification systems, and drug ef-
flux), response to hypoxia, DNA repair, epithelial–mesenchymal transition (EMT), and cancer
stem-cell (CSC) activation [42]. MicroRNAs have been shown to be involved in DDP-resistance
development as well as to play an essential role in all the above-mentioned mechanisms.

Autophagy implements the rearrangement of subcellular membranes for the subse-
quent autophagosome formation and lysosomal degradation of cytoplasmic contents and
organelles [43]. Autophagy plays a dual suppressive or promoting role, which depends
on the environmental context and the stage of tumorigenesis. During the early stages of
cancer development, autophagy mainly acts as a survival pathway and a quality-control
mechanism that may suppress cancer initiation and progression. At the late stage of cancer
and under environmental stresses (such as hypoxia, starvation, hypoxia, heat stress, and
accumulation of reactive oxygen species), autophagy promotes tumor survival, growth,
and aggressiveness via metastasis [44]. Autophagy contributes to the response of cancer
cells to chemotherapy agents: either as a protective mechanism for mediating resistance
in response to chemotherapy or, in contrast, by inducing autophagic cell death, leading
to sensitivity to chemotherapy [45]. However, when chemotherapy represents a strong
stress, according to the published data (Tables S1 and S2), autophagy is mainly involved
in DDP-resistance development. It has been shown that miRNAs, associated with the
response to DDP therapy, are involved in the regulation of genes, which is crucial for all
stages of autophagosome formation from initiation to maturation via autophagy-related
genes (ATG), SOX4, SOX2, BCL2, Beclin-1, ULK, CHOP, etc. (Figure 1). Chemotherapy,
both as a powerful anticancer treatment and as a strong stressful intervention in organisms,
causes significant changes in miRNA expression in tumor cells as well as in many different
normal cell types. However, until now, limited attention has been given to the analysis of
the effect of DDP chemotherapy on the expression of miRNAs (Table 1).

Figure 1. MicroRNAs and target genes implicated in LC DDP resistance via autophagy. Downregula-
tion is shown by red arrows, and upregulation is shown by blue arrows. Overexpressed miRNAs
and genes associated with DDP resistance (blue) and DDP sensitivity (red).

For example, autophagy activating kinase 1 (ULK1) takes part in the serine/threonine
protein kinase ULK1 complex, which is in the upstream position during phagophore
assembly [46]. Beclin-1 (regulated by miR-216b) participates in the regulation of the
formation of the autophagosomal membrane. Double-membrane autophagosomes are
assembled under the control of the Atg12 (regulated by miR-146a), Atg5 (regulated by
miR-30b), and Atg16 conjugation system and catalyzed by Atg7 (regulated by miR-138) and
Atg10 (regulated by SOX2). LC3-phosphatidylethanolamine conjugate (LC3-II) is recruited
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to autophagosomal membranes. SOX2, influenced by SOX4 (regulated by miR-130a and
miR-129), targets Atg10 to induce autophagy.

Although most of the interconnections (Figure 1) are clear and represent the summa-
tion of miRNA parallel and sequential effects, there are some uncertainties. On the one
hand, for example, SOX2 initiates autophagy by repressing mTOR. Then, the repressed
mTOR results in activation of the AMPK-ULK pathway. On the other hand, low expressions
of miR-100-5p and miR-497 result in enhancement of mTOR expression associated with
DDP-resistance development. The mechanistic target of rapamycin (mTOR, regulated
by miR-100-5p and miR-497) plays the role of the core inhibitor of autophagy and has
been shown to be regulated by miRNAs associated with DDP resistance. However, it
seems that mTOR has dual action with respect to DDP resistance, since it activates DDP-
resistance development via activation of cell proliferation and survival. It may reflect the
dual role of autophagy in DDP resistance, as mentioned earlier. This example indicates the
necessity for a complex analysis of miRNA-integrative effects that excludes ambiguous
potential markers.

The epithelial–mesenchymal transition is an important step for cancer metastasis. It is
a fundamental process in which epithelial cells gradually lose cell polarity and intercellular
junctions, and acquire mesenchymal-cell phenotypic traits. Snail (regulated by miR-27b)
is a significant EMT promoter in NSCLC [47]. The involvement of miRNAs in the DDP
response via EMT regulation includes the ERK signaling pathway (miR-103a-3p), the
PI3K/Akt signaling pathway, the TGF signaling pathway (miR-194, miR-181b, and miR-17),
the Wnt/β-catenin signaling pathway (miR-181c, miR-135b, miR-448, miR-218, miR-21,
and miR-140-5p), the Notch signaling pathway (miR-34c), the STAT signaling pathway
(miR-125, miR-195-5p, miR-454-3p, and miR-516b-5p), and the enhancement of expression
of EMT-related genes such as c-Myc (miR-214), ZEB2 (miR-203), EZH2 (miR-26a), AK4 (miR-
556) TWF1 (miR-486-5p), and ROCK2 (miR-101) (Figure 2). EMT has also been associated
with cancer stem cell (CSC) properties, for example, Myc (regulated by miR-214) mediates
both cancer stem cells and EMT changes [48]. Moreover, there are genes (for example,
BCL2 and c-Myc) that contribute to several key processes of DDP-resistance development
simultaneously (they are presented in several figures and are highlighted by underlining).
The miRNAs that affect such genes seem to have a synergetic effect and represent a very
prospective pool of DDP-resistance markers.

Figure 2. MicroRNAs and target genes implicated in LC DDP resistance via EMT. Downregulation is
shown by red arrows and upregulation is shown by blue arrows. Overexpressed miRNAs and genes
associated with DDP resistance (blue) and DDP sensitivity (red).



Int. J. Mol. Sci. 2022, 23, 7594 9 of 22

The inhibition of drug uptake, enhancement of drug efflux, and detoxification are other
key mediators of drug resistance. Transporters such as ATP7A and ATP7B contribute to the
sequestration and efflux of platinum compounds that mediate resistance to DDP. According
to the current data, miRNAs associated with DDP response act via several efflux-pump
classes: the ATP-binding cassette (ABC) superfamily, multidrug-resistance protein (MDR,
P-glycoprotein), and multidrug-resistance-associated proteins (MRPs, Figure 3).

Figure 3. MicroRNAs inhibiting drug uptake or enhancing drug efflux and drug detoxification in
DDP-resistant tumors. Downregulation is shown by red arrows, and upregulation is shown by blue
arrows. MicroRNAs and genes associated with DDP resistance (blue) and DDP sensitivity (red).

For example, MDR1 (regulated by miR-448, miR-106b, miR-202-5, miR-196a, and by
several miRNAs (miR-124, 295-5p, miR-454-3p, and miR-516b-5p) via STAT3) encodes
a multidrug efflux pump that plays a crucial role in the development of resistance to a
vast number of drugs, including platinum-based drugs and taxanes, and, thus, is con-
sidered to be a key molecular target for effectively attenuating drug resistance [49]. The
elevation of copper-transporting P-type adenosine triphosphatases ATP7A (regulated by
miR-495) has been associated with resistance to platinum drugs [50,51]; moreover, it has
been identified as a negative prognostic factor for patients with NSCLC with platinum-
based chemotherapy [51]. The expression of the ABC superfamily of transport proteins,
such as MRP1/ABCC1 (regulated by miR-7, miR-101, miR-145-5p, miR-185-5p, and miR-
196a), ABCCA1 (downregulated by miR-106a), and ABCB9 (downregulated by miR-31),
also correlates with DDP and multidrug resistance (Tables S1 and S2). Other miRNAs
(miR-133b and miR-513a) influence DDP resistance via glutathione S-transferase gene 1, a
member of the family of dimeric phase II metabolic enzymes, which acts as a catalyst for the
binding of intermediary metabolites to cofactors, transforming them into more hydrophilic
molecules and, thus, facilitating their detoxification. GSTP1 has been shown to be associ-
ated with lung-cancer expansion; it may cause resistance by binding/inactivating cisplatin
(platinum-glutathione conjugates), enhancing DNA repair, or reducing cisplatin-induced
oxidative stress [52].

Cisplatin causes cytotoxicity by DNA damage with formation of cisplatin–DNA
adducts. As a consequence, DNA-repair mechanisms are enhanced in DDP-resistant
cells and, conversely, suppressed in DDP-sensitive cells. For example, miR-488 contributes
to DDP resistance via suppression of eIF3a expression and, consequently, activation of
XPC and RPA14 of the NER, which are involved in DNA-repair pathways in organisms
including prevention of gene mutation and repair-DNA distortion [53]. The miR-92 family
associated with DDP sensitivity downregulates RAD21, which is crucial for the homolo-
gous recombination of DNA during double-strand-break repair. DNA damage activates
the stimulation of checkpoint mechanisms and leads to DNA repair and further cell-cycle
progression or to cell death by apoptosis. Thus, DNA-damage-inducible transcript 3, in-
duced in response to certain stressors, contributes to endoplasmic reticulum stress-induced
apoptosis. However, under DDP therapy, miR-146a expression may be enhanced and lead
to the suppression of CHOP and CHOP-induced apoptosis [54].

The miRNAs involved in DDP sensitivity/resistance via cell-cycle and apoptosis
regulation are presented in Figures 4 and 5. However, they are tightly related to each other
and are separated artificially for easier identification.
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Figure 4. Cell-cycle regulation by miRNAs and target genes in LC-DDP-resistant tumors. Downregu-
lation is shown by red arrows, and upregulation is shown by blue arrows. MicroRNAs and genes
associated with DDP resistance (blue) and DDP sensitivity (red).

Figure 5. MicroRNAs and target genes regulating apoptosis in LC-DDP-resistant cells. Downregu-
lation is shown by red arrows, and upregulation is shown by blue arrows. MicroRNAs and genes
associated with DDP resistance (blue) and DDP sensitivity (red) are shown.

Various studies have suggested that miRNAs are responsible for cell-cycle control by
activating or inhibiting the expression of proteins involved in the response to DNA damage.
Members of the BCL2 family have been the most frequently described target molecules
among the different miRNAs associated with apoptosis related to DDP resistance in NSCLC



Int. J. Mol. Sci. 2022, 23, 7594 11 of 22

cells (Table S2 and Figure 5). The complicated network of genes and miRNAs involved
in the regulation of DDP resistance via BCL2 confirmed this. BCL2 is also considered
to be an important anti-apoptotic protein that is involved in cisplatin-induced apoptosis
(Figure 5). Other members of the BCL family, i.e., pro-apoptotic Bak1 and Bax, are regulated
by miR-103a and miR-181a, correspondingly, and suppress their expression results in DDP
resistance. Other widely represented mechanisms of miRNA influence on DDP resistance
are the PTEN gene and the PI3K/Akt signaling pathway. This pathway is regulated by
several miRNAs associated with DDP resistance (Figure 5) and influences apoptosis via
NRF2 and BCL2 and the cell cycle via CDKN1.

The MiRNAs involved in CDDP-resistance of NSCLC cells, which are mainly assigned
to apoptosis pathways, are summarized in Figure 5.

The data on the involvement of miRNAs in processes of DDP resistance from Figures 1–5
are summarized in Figure 6. Some miRNAs have multidirectional effects on DDP-resistance
development (miR-146a and miR-181). Thus, they seem to be a doubtful choice as DDP-
resistance markers. However, three of the analyzed miRNAs (miR-216b, miR-378, and miR-
497) are involved in all the main processes (EMT, cell-cycle progression, drug transportation,
apoptosis, and autophagy), and, therefore, have the highest potential as nonspecific DDP-
resistance markers. Moreover, the distribution of miRNAs in Figure 6 evidence that all
analyzed processes are crucial for DDP resistance and the development of a co-therapy for
the DDP-resistance reversal should influence all of them.

Figure 6. MicroRNA involvement in DDP-resistance development through EMT, drug transportation,
apoptosis, cell cycle, and autophagy regulation. MicroRNAs, in which low expression is associated
with DDP resistance development (red) and miRNAs, in which high expression is associated with
DDP resistance development (blue).

8. Bioinformatics Analysis of miRNAs Involved in DDP-Response Regulation

MicroRNAs found in a few independent studies with different experimental designs
are considered to be more valid as potential markers for the DDP response. To select
such miRNAs, only miRNAs that were shown to be involved in the regulation of the
ADT therapy response in three different types of experiments were considered for further
analysis. The group of such miRNAs consisted of 9 miRNAs associated with DDP resistance
and 23 miRNAs associated with DDP sensitivity (Table 3).
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Table 3. miRNAs regulating DDP-therapy response, confirmed in three different types of experiments
(data based on DDP-resistance studies and extracted from Tables S1 and S2).

DDP R/DDP S miRNA Downstream Regulation Reference

miR-21 PTEN [55–58]

miR-27a RKIP [59,60]

miR-92b-3p PTEN [23,61]

miR-130b PTEN [62]

miR-146a CHOP [54]

miR-224 p-21 [62]

miR-324-5p FBXO11 [63]

miR-425-3p AKT1 [26]

miR-1269b PTEN [64]

let7 a,b,c,d,e,f,g,i LIN28 [36,48]

miR-29c AKT2 [65]

miR-30b-5p LRP8 [66]

miR-34c-3p Notch [35]

miR-100-5p mTOR [25]

miR-101 ABCC1, ROCK2 [67,68]

miR-145-5p ABCC1 [69]

miR-146a JNK2, CEACAM6, CCNJ [70–72]

miR-181b BCL2, TGFβR1, Notch2 [73–76]

miR-193 LRRC1 [77]

miR-378 sCLU [78]

miR-379 EIF4G2 [79]

miR-381 NFkB [80]

miR-451a MCL-1 [81–83]

miR-486-5p TWF1 [84]

miR-613 GJA1 [85,86]
DDP—cisplatin; DDP-S miRNA—miRNA associated with DDP sensitivity; DDP-R miRNA—miRNA associated
with DDP resistance.

These miRNAs are involved in all key processes underlying PCA development: cell
proliferation, epithelial–mesenchymal transition (EMT), apoptosis, cell-cycle progression,
angiogenesis, metastasis, and invasion regulation (Table 4).

The Diana MirPath database presents processes regulated by all of these miRNAs.
Twenty-four of the selected miRNAs, according to the Diana database, are involved in
NSCL regulation (39 genes); there are eight miRNAs that are not involved: miR-146a,
miR-200b, miR-203, miR-219a, miR-379, miR-381, miR-486, and miR-613. Moreover, all
32 selected miRNAs are involved in cell-cycle regulation (101 genes), the FoxO signaling
pathway (95 genes), the Wnt signaling pathway (86 genes), the TNF signaling pathway
(80 genes), the MAPK signaling pathway (156 genes), the TGF-beta signaling pathway
(66 genes), the p53 signaling pathway (56 genes), the AMPK signaling pathway (89 genes),
and the mTOR signaling pathway (46 genes).

The interactions of proteins encoded by the genes regulated by selected miRNAs and
involved in LC regulation (58 genes) were analyzed using the STRING database (string-db.
org). The complicated and closed network organized by these genes and the interactions
between them are presented in Figure 7.
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Table 4. The involvement of selected miRNAs in crucial steps of tumorigenesis.

DDPR/
DDP S
miRNA

Apop-
tosis EMT

Cell Cycle
Progres-

sion

Auto-
Phagy

Prolife-
ration

Cell
Growth

Angio-
Genesis

Meta-
Stasis Invasion Reference

miR-21 ↓ ↑ ↑ ↑ ↑ ↑ [87,88]

miR-27a ↑ [60]

miR-130b ↑ ↑ ↑ ↑ ↑ [88–90]

Let7-a ↓ ↓ ↓ [91–93]

Let7-f

Let7-g ↑ ↓ ↓ [94,95]

Let7-i ↓ [96]

miR-29c ↓ [65]

miR-181b ↑ ↓ ↓ ↓ [73,76,97–99]

miR-193 ↓ ↓ ↓ [100]

miR-200b ↑ ↓ ↓ ↓ ↓ ↓ [101–104]

miR-378 ↓ ↓ ↓ ↓ ↓ [105–107]

DDP—cisplatin; DDP-S miRNA—miRNA associated with DDP sensitivity; DDP-R miRNA—miRNA associated
with DDP resistance; ↑ the increased expression of selected miRNA is associated with upregulation of process;
↓ the increased expression of selected miRNA is associated with downregulation of process.

Figure 7. The interactions of proteins coded by genes that are regulated by miRNAs, which are the
most valid as potential markers of DDP response and involved in lung-cancer regulation (STRING
Database). Proteins involved in cellular response to DNA-damage stimulus (light blue); proteins
involved in regulation of autophagy (red); proteins involved in stem-cell differentiation (green);
proteins involved in regulation of epithelial-cell proliferation (dark green); proteins involved in
cell-cycle regulation (blue); proteins involved in platinum drug resistance (yellow); proteins involved
in apoptosis (pink).
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MicroRNAs and genes that are involved in a greater number of interactions represent
the most robust potential markers of therapeutic effectiveness. To select such potential
markers, we analyzed the regulation of genes by miRNAs and also whether transcription
factors among selected genes could regulate miRNAs from the selected panel (using the
TransmiR 2.0 database). The genes and miRNAs involved in the greatest number of
interactions (more than 10) were then selected: let7a, i, g, f, miR-21, miR-27a, miR-29c,
miR-130b, miR-181b, miR-193, miR-378, LIN28, CDK6, CCND1, E2F1, E2F3, MAPK1, TP53,
NRAS, and XIAP (Figure 8).

Figure 8. MicroRNAs and genes involved in DDP response, with the greatest number of interactions
according to Diana and Targetscan databases. Red arrows represent downregulation, and blue arrows
represent upregulation.

To understand whether the 39 dysregulated miRNAs were specific for LC DDP
chemotherapy or not, a further analysis using both DIANA and miRPath was performed.
It was revealed that the miRNAs played significant roles in the development of oncological
diseases. For example, all of the miRNAs were involved in the development of small cell
lung cancer (63 genes), prostate cancer (68 genes), colorectal cancer (48 genes), renal cell
carcinoma (58 genes), bladder cancer (29 genes), thyroid cancer (21 genes), endometrial
cancer (39 genes), pancreatic cancer (51 genes), and glioma (47 genes). Previously, we
analyzed the involvement of miRNAs in the regulation of chemotherapy resistance of
prostate cancer [108]. Most of the studies analyzed in this article had been based on investi-
gations of miRNAs in the regulation of responses to taxanes (docetaxel and paclitaxel). The
combined analysis of bioinformatics resources and the available literature indicated that
the expressions of eight microRNAs and nine genes were associated with chemotherapy
response and had a high potential for the prediction of the prostate cancer chemother-
apy response [108]. Interestingly, three miRNAs (miR-21, miR-27a, and miR-181b) and
three genes (CCND1, E2F3, and TP53) were part of both combined miRNA panels, i.e., for
prostate-cancer chemotherapy resistance and for lung-cancer DDP resistance. This indicates
that these miRNAs and genes may represent a panel for nonspecific-cancer chemotherapy-
resistance assessment. The miRNAs from the selected panel are involved in all crucial
mechanisms of chemotherapy resistance, and, therefore, they may be non-specific for the
type of the cancer and also for the type of the chemotherapy. This assumption still needs
to be investigated. However, if the change in miRNA-expression level from the selected
panel is not a diagnostic criterion, then the fact that they occur in other types of cancer
becomes insignificant.
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9. Conclusions

The data presented indicate that the selected miRNA and gene panel are strongly in-
volved in DDP response and represent a perspective tool for the assessment and prediction
of DDP therapy effectiveness. Nevertheless, their prognostic efficacy remains to be further
confirmed by studies of randomized cohorts of patients.
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