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a b s t r a c t 

Objectives: Vaccination and the emergence of the highly transmissible Omicron variant changed the fate of the 
COVID-19 pandemic. It is very challenging to estimate the number of lives saved by vaccination given the multiple 
doses of vaccination, the time-varying nature of transmissibility, the waning of immunity, and the presence of 
immune evasion. 
Methods: We established a S-SV -E-I-T-D-R model to simulate the number of lives saved by vaccination in six 
states in the United States (U.S.) from March 5, 2020, to March 23, 2023. The cumulative number of deaths were 
estimated under three vaccination scenarios based on two assumptions. Additionally, immune evasion by the 
Omicron and loss of protection afforded by vaccination or infection were considered. 
Results: The number of deaths averted by COVID-19 vaccinations (including three doses) ranged from 0.154- 
0.295% of the total population across six states. The number of deaths averted by the third dose ranged from 

0.008-0.017% of the total population. 
Conclusions: Our estimate of death averted by COVID-19 vaccination in the U.S. was largely in line with an 
official estimate (at a level of 0.15-0.20% of the total population). We found that the additional contribution of 
the third dose was small but significant. 
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SARS-CoV-2 is a highly contagious virus that affects the respiratory
ract and causes COVID-19. SARS-CoV-2 spread rapidly worldwide, ul-
imately resulting in over 772 million confirmed cases of infection and
.98 million deaths due to COVID-19 [ 1 ], which placed a significant bur-
en on healthcare systems. Several variants of SARS-CoV-2, such as Al-
ha, Beta, Gamma, and Delta, have previously emerged. These variants
ere associated with increased transmission of SARS-CoV-2 and mor-

ality from COVID-19 and exhibited stronger immune evasion abilities
han the original variant [ 2 ]. The Omicron variant (B.1.1.529), first re-
orted in November 2021, led to a surge in cases of infection in multiple
ountries and became the dominant variant in the U.S. at the beginning
f 2022 [ 3 ]. Mutations in Omicron led to increases in its transmissibility,
iral binding affinity, and antibody escape [ 4 ]. 
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COVID-19 infection causes clinical symptoms of varying severity in
atients and also contributes to a large number of patient deaths. By
ay 12, 2022, the total deaths in the U.S. were over 1000,000 [ 5 ]. In
arch 2021, the Centers for Disease Control and Prevention in the U.S.

rovided the following estimates of the infection fatality ratio (IFR) for
ARS-CoV-2 across different age groups: 0.002% for individuals aged
-17, 0.05% for those aged 18-49, 0.6% for those aged 50-64, and 9%
or those aged over 65 [ 6 ]. However, due to the weak fusion ability
f Omicron, most infections with Omicron cause mild symptoms [ 7 ].
ompared to previous strains of COVID-19, a cohort study showed that
micron caused a significantly lower risk of hospitalization and death
 8 ]. 

The vaccination campaign represents a highly effective strategy for
enerating herd immunity against SARS-CoV-2 infection. As of May 11,
023, the U.S. had administered over 980 million vaccine doses, pro-
24 
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Figure 1. Flow chart of the S-SV -E-I-T-D-R model. 
S-SV -E-I-T-D-R, susceptible–vaccinated–exposed–infectious–treated–dead–
recovered. 
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iding a substantial level of coverage to its population. Specifically, on
he aforementioned date, the rates of coverage with at least one dose,
wo doses, and booster doses were 81.4%, 69.5%, and 17.0%, respec-
ively [ 9 ]. Various studies have found that the effectiveness of different
accines against SARS-CoV-2 ranges from 63-95%, indicating that they
ffer a significant level of protection [ 10 , 11 ]. Nevertheless, the dura-
ion of antibody protection conferred by vaccination is limited to ap-
roximately 6 months, and the presence of different variants can result
n breakthrough infections. Omicron has diminished effectiveness and
urability compared with vaccination against older variants [ 12 ]. 

The impact of vaccination on the COVID-19 pandemic is of great in-
erest to numerous scholars. This impact can be examined in terms of
he number of lives saved, as this is typically used as an indicator of the
ffectiveness of vaccination campaigns. Suthar et al. [ 13 ] showed that a
0% increase in vaccination coverage was associated with an 8% reduc-
ion in mortality rates during the eras of Alpha and Delta variant pre-
ominance. Lin et al. [ 14 ] established a susceptible–exposed–infectious–
ospitalized–dead–recovered model to explore the effect of second doses
f vaccine in 50 states and the District of Columbia in the U.S. from
ebruary 2020 to November 2021 and found that, without vaccination,
he number of deaths in most states might have been 1.67–3.33 times
hat it was. Yeh et al. [ 15 ] studied Taiwan by constructing the COVID-
9-and-death with competing risk model and found that booster doses
educed Omicron BA.2-, BA.5-, and BA.2.75-related all-cause mortality
y 58%, 70%, and 75%, respectively. However, it is a very challenging
ask to reliably estimate the effectiveness of vaccination in the late pe-
iod of the pandemic, when Omicron was predominant, given the use
f multiple doses of vaccine, the variation of transmissibility over time,
he waning of immunity, and immune evasion. 

ethods 

The application of mathematical modeling in studying COVID-19 is
ssential for proposing potential and optimal interventions to reduce the
pread of the pandemic. In particular, by considering fundamental as-
umptions and utilizing available data on the Omicron variant, which
an evade the immune system, mathematical models can be utilized to
redict the change trends of the pandemic and assist public health agen-
ies in formulating policies. 

We established a susceptible–vaccinated–exposed–infectious–
reated–dead–recovered (S-SV -E-I-T-D-R) model to simulate the ability
f different vaccine doses to prevent mortality from COVID-19 in
ix states in the U.S. Given that many factors affect SARS-CoV-2
ransmission, we used the time-varying transmission rate, which takes
he form of an exponential cubic spline function of time. Among the
tates analyzed, California, Florida, Georgia, Illinois, Michigan, and
orth Carolina had one-dose coverage rates of 85.1%, 82.9%, 68.6%,
9.2%, 69.9%, and 90.2%, respectively; two-dose coverage rates of
4.9%, 69.7%, 57.5%, 71.5%, 62.6%, and 66.9%, respectively; and
ooster-dose coverage rates of 20.6%, 11.7%, 10.6%, 20.3%, 18.1%,
nd 14.9%, respectively [ 9 ]. The three scenarios we considered were
he actual vaccination situation, a scenario without the third dose
booster dose), and a scenario without any vaccination under the
ifferent assumptions of immunity decay in third-dose recipients.
e also considered the effect of immune evasion by the Omicron

ariant and the diminishing of the infection- and vaccination-derived
mmune response. We applied a partially observed Markov process
odel and employed a maximum likelihood-based iterated filtering

echnique to fit the mortality data and transmission rate. We used a
lug-and-play likelihood-based inference statistical framework imple-
ented R package POMP. We time-discretized our differential equation
odels into a daily updating system. On each day, we take a value

rom an exponential cubic spline function (ECSF) of time. The ECSF
ontains several values of certain nodes. Parameters in the model can
e estimated via the R package POMP, once the model and the data
re "plug" into the package. Previous studies have also explained the
2

stimation details of the model in detail and similar codes can be found
nline [ 16 , 17 ]. Our full model was a stochastic model that considered
rocess noise (by using the Euler multinomial algorithm) and obser-
ational noise (by following a negative binomial distribution) when
erforming simulations, enabling it to effectively reflect real-world
onditions. 

The population was divided into susceptible (S), vaccinated (Sv), ex-
osed (E), infectious (I), treated (T), recovered (R), and death (D) classes
o create an S-Sv-E-I-T-D-R model ( Figure 1 ). In this model, individuals
n the S class move to the E class after they are exposed to SARS-CoV-2
nd the Sv class after they are vaccinated. In addition, those in the Sv
lass who lose their immunity move back to the S class, those in the Sv
lass who retain their immunity move to the R class, and those in the
v class who come into contact with SARS-CoV-2 move to the E class.
uring a latent period, those in the E class move to the I class, and a
roportion of those in the I class then move to either the T class or di-
ectly to the R class. Those in the T class may either die and thus move
o the D class or recover and thus move to the R class. There is also a
ossibility that some individuals from the treated class may lose their
mmunity, becoming susceptible to the infectious class once again. The
ifferential equation for our model is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑑𝑆 

𝑑𝑡 
= 𝜃𝑆𝑣 + 𝜃𝑅 − 𝜈1 𝑆 − 𝛽𝑆𝐼 

𝑁 

𝑑𝑆𝑣 

𝑑𝑡 
= 𝜈1 𝑆 − 𝜃𝑆𝑣 − 𝜂𝛽𝑆𝑣𝐼 

𝑁 

− 𝑏𝑆𝑣 

𝑑𝐸 

𝑑𝑡 
= 𝛽( 𝑆 + 𝜂𝑆 𝑣 ) 𝐼 

𝑁 

− 𝜎𝐸 

𝑑𝐼 

𝑑𝑡 
= 𝜎𝐸 − 𝛾𝐼 

𝑑𝑇 

𝑑𝑡 
= 𝜙𝛾𝐼 − 𝜅𝑇 

𝑑𝐷 

𝑑𝑡 
= 𝑟𝜙𝜅𝑇 

𝑑𝑅 

𝑑𝑡 
= ( 1 − 𝜙) 𝛾𝐼 + ( 1 − 𝑟𝜙) 𝜅𝑇 − 𝜃𝑅 + 𝑏𝑆𝑣 

(1.1) 

here S, SV , E, I, T, R, and D are defined as above, and N represents
he population of each country. t0, t1, and t2 are used to represent the
tart time, immune evasion time (appearance of Omicron), and end time
f the study period, respectively. The transmission rate 𝛽(t) is a time-
arying function that follows an exponential cubic spline pattern, which
an be expressed as 𝛽(t) = exp(cubic_spline). We fitted 18 nodes and 16
odes, respectively, and obtained a better fit from the former than the
atter. Among these 18 nodes, 12 are located within the interval [t0, t1],
hile the remaining six are evenly distributed within the interval [t1,

2]. v1 represents the rate of vaccination with the second dose, while
 denotes the rate of vaccination with a third dose (booster dose). The
accination data were in a per capita form, indicating the proportion of
accinated individuals relative to the entire population. However, we
ould not directly incorporate these data into our model. Therefore, in-
tead, we incorporated the proportion of vaccinated individuals among
he susceptible population into our model. To that end, we converted the
accination data from per capita to per unvaccinated individuals, which
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Table 1 

Parameters of S-SV -E-I-T-D-R model. 

Parameter Unit 

𝑁 Population of each country 
𝛽 Time-varying transmission rate Per day 𝛽 = 𝛾𝑅 t 
𝜈1 Vaccination rate (second dose) Per day Translate from data (per capita) to 

per unvaccinated 
𝜃 Rate of loss of immunity protection Per year 0.333 
𝜂 Relative susceptibility of vaccinated vs unvaccinated 0.1 
𝑏 Booster rate (third dose) Per day Translate from data (per capita) to 

per second dose susceptible 
𝜎 Rate of infectiousness onset after exposure Per day 1/2 
𝛾 Rate of loss of infectiousness Per day 1/3 
𝜙 Infection severity case ratio and severity case mortality ratio [0.04,0.08] 
𝜅 Rate of removal from severity stage Per day 1/12 
𝑟 A scaling factor 
𝑡0 , 𝑡1 , 𝑡2 Start time of study period, time of immune evasion, end time of 

study period 
𝑡0 isFebruary27 , 2020 , 
𝑡1 isDecember 2 , 2021, 
𝑡2 isMarch23 , 2023 

S-SV -E-I-T-D-R, susceptible–vaccinated–exposed–infectious–treated–dead–recovered. 
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epresented the proportion of vaccinated individuals among those who
ere unvaccinated (susceptible). Similarly, we converted the booster
ose data from per capita to per fully vaccinated individuals (i.e. those
ho had received the second dose). Moreover, the model incorporates
 7-day delay for the second dose but no delay for the booster dose.
his delay was taken into account when inputting vaccination data into
he model as a covariate. These adjustments were made based on the
bserved delay in the onset of vaccine protection. We set the relative
usceptibility of vaccinated individuals compared with unvaccinated in-
ividuals (denoted by 𝜂) as 0.1 [ 11 ]. Additionally, we set the rate at
hich immunity protection diminishes over time (represented by q) as
.333 [ 18 ]. 𝜎, 𝛾, and 𝜅 represent the rates of infectiousness onset after
xposure, loss of infectiousness, and recovery from the severe period, re-
pectively, which we assigned values of 1/2 per day (the inverse of mean
ncubation period), 1/3 per day (the inverse of mean infectious period),
nd 1/12 per day (the inverse of mean hospitalization period), respec-
ively [ 19 , 20 ]. We considered that there was a 2-day latent period before
he onset of infectiousness, followed by a 3-day period of infectiousness.
dditionally, we considered that there was a 12-day delay from the loss
f infectiousness to death. Additionally, both asymptomatic and symp-
omatic cases were included in the I class. The infection severity case
atio and severity case mortality ratio were assigned the same values,
enoted as 𝜙. The scaling factor r was set as 1 before t1 and then grad-
ally decreased linearly to 𝛼 over time [t1, t1 + 60 days]. All of the
arameters and their settings are summarized in Table 1 . 
𝜙 represents the proportion of severe cases among all infected cases

nd was set to [0.04, 0.08] [ 18 ]. In addition, as we did not have access
o data on hospitalized severe cases, we made the assumption that the
ortality rate among severe cases was also equal to 𝜙. Therefore, the

verall IFR was calculated as 𝜙 ˆ2. We made this assumption because
he precise definitions of class T and variable 𝜙 were not crucial for our
nalysis, as we were focused on fitting death data rather than treated
r infected case data. The T class serves as an intermediate category
etween the I class and the D class. The effective reproductive number
s given by 𝛽( 𝑡 ) 𝑆( 𝑡 )∕ 𝛾, where S(t) represents the susceptible population.

We defined the weekly number of deaths 𝐷𝑡 +Δ𝑡 as ∫ 𝑡 +Δ𝑡 
𝑡 

𝑟 Φ𝑘𝑇 𝑑𝑡 and
he reported weekly deaths as 𝑍𝑡 +Δ𝑡 and then made the following as-
umption: 

𝑡 +Δ𝑡 ∼ negativebinomial 

mean = 𝐷𝑡 +Δ𝑡 , variance = 𝐷𝑡 +Δ𝑡 (1 + 𝜏𝐷𝑡 +Δ𝑡 )) , 

Next, we defined the log-likelihood function as follows: 

𝑜𝑔_𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑛𝑑 =
𝑛 ∑
𝑖 =1 

log 𝑓 (𝑍𝑖 |𝑍1∶ 𝑖 −1 , Θ) . 
3

We assumed that the population remained constant throughout our
tudy period, as the COVID-19 timescale is much shorter than the demo-
raphic timescale. Therefore, demographic processes such as births and
atural deaths were not included in the model. In addition, we assumed
hat the pre-Omicron IFR ranged from 0.16% to 0.64%. A linear change
n the IFR occurred from the time of Omicron’s appearance, denoted
s t1, and lasted for 60 days (t1 + 60 days). Moreover, we assumed
hat the IFR during the Omicron era was approximately 10% to 50% of
he IFR during the pre-Omicron era, such that the IFR was reduced by
0% to 90%. We investigated a multiple invasion scenario: first, Omi-
ron BA.1 and Omicron BA.2 invaded at time t1, followed by Omicron
A.4 and Omicron BA.5 variant at time t1 + 180 days [ 21 ]. When new
ariants arose, some individuals in the SV or R class might have lost im-
unity and thus moved to the S class. We assumed that when Omicron

ppeared, immune evasion ranged from 0-40%. 
We separately estimated the IFR and transmission rates for the

OVID-19 pandemic in the following scenarios: individuals received
hree doses of the vaccine (two doses plus a booster dose), individu-
ls received two doses of the vaccine, and individuals did not receive
he vaccine. In addition, we compared the above-mentioned scenarios
ith two different immunity levels of the booster dose: immunity decay

n third-dose recipients, and no immunity decay in third-dose recipi-
nts. These comparisons allowed us to assess the impact of different
accination statuses on the severity of disease and the rate of transmis-
ion. Thus, by examining these scenarios, we gained insights into how
ortality rates and transmission rates varied with vaccination status,
hich afforded valuable information for public health interventions and
ecision-making. Furthermore, we used 𝛼 to represent the relative ratio
f the Omicron IFR to the pre-Omicron IFR. This allowed us to quan-
ify the impact of the Omicron variant on the severity of infections. All
f the data used in our model simulation, including reported COVID-19
eath data and vaccination data (second dose and third dose/booster
ata), were for the period from March 5, 2020, to March 23, 2023, and
btained from the “Our World in Data ” website [ 22 ]. 

esults 

Figure 2 depicts the model-simulated results under the assumption of
mmunity decay in third-dose recipients. In California and Florida, the
ide deployment of vaccines caused the slopes of the blue and the green

urves to increase continuously, whereas the slope of the brown curve
howed some fluctuations, indicating the appearance of the Omicron
ariant. Thus, we applied four initial immune evasion times to char-
cterize the prevalence of the Omicron variant, namely November 3,
ovember 18, December 2, and December 17, 2021. The slope of the

ransmission rate ( 𝑅 ( 𝑡 ) = 𝛽( 𝑡 )∕ 𝛾) initially fluctuated stably and then in-
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Figure 2. Number of model simulated deaths vs number of reported deaths in three vaccination scenarios (assumption: immunity decay in third dose recipients) for 
(a) California and (b) Florida. The top curves in each panel represent the current per capita immunization rate (brown curve), the per capita number of individuals 
who received a second dose (green curve), and the per capita number of individuals who received a booster dose (dark blue curve). The bottom of each panel displays 
the square root of reported number of weekly deaths per million population (red circles), the simulated median of the scenario representing the factual condition 
(black curve), the transmission rate (dark blue curve with a plus sign), the simulated median of the scenario without a third dose of the vaccine (light green curve), 
and the simulated median of the scenario without the second and third doses of the vaccine (dark red curve). The gray region represents the 95% CI of 1000 model 
simulations. The percentage displayed at the top of each panel represents the estimated maximum log-likelihood of the infection fatality ratio prior to the emergence 
of the Omicron variant. 
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o  
reased toward the end of 2021, decreased significantly in early 2022,
nd finally continually increased. However, different states exhibited
ifferent trends of transmission, due to their different onsets of immune
vasion by the Omicron variant. Our model simulated the number of re-
orted deaths in three vaccination scenarios. Clearly, the dark red curve
epresents the simulated number of deaths among the unvaccinated was
uch higher than the reported number of deaths. 

Figure 3 depicts the simulation results under the assumption of no
mmunity decay in third-dose recipients and shows that these results
ere similar to the factual condition. In comparison, without the third
ose, there was a marked increase in the number of deaths. Similarly,
ithout the second dose, there was a significant increase in the number
f deaths and fluctuations in these numbers. In particular, California ex-
ibited extreme fluctuations, with its peak number of deaths being more
han twice those of other states. The transmission rates showed differ-
nt trends. In California, there was a steady increase in transmission
ates, especially after 2022 when this increase was reasonably stable. In
lorida, transmission rates remained relatively stable with fluctuations
n the pre-Omicron period. However, these rates sharply increased after
022 and showed a slight decrease at the end of the study period. 

The cumulative number of deaths was estimated under each assump-
ion and the number of deaths averted by COVID-19 vaccinations are
isted in Table 2 . Specifically, under the assumption of immunity decay
n third-dose recipients, the number of deaths averted by COVID-19 vac-
inations (including all three doses) was 0.295% (California), 0.207%
Florida), 0.188% (Georgia), 0.154%(Illinois), 0.162% (Michigan), and
.218% (North Carolina) of total population across six states, respec-
 c  

4

ively. The number of deaths averted by the third dose was 0.008% (Cal-
fornia), 0.014% (Florida), 0.011% (Georgia), 0.013% (Illinois), 0.017%
Michigan), and 0.009% (North Carolina) of total population across
ix states, respectively. Under the assumption of no immunity decay
n third-dose recipients, removal of the third dose caused a marked
ncrease in the number of deaths. Moreover, under both assumptions,
hen all vaccine doses were removed, there were marked increases in

he number of deaths. 

iscussion 

We established an S-SV -E-I-T-D-R model to estimate the number of
eaths under three scenarios in California, Florida, Illinois, Georgia,
ichigan, and North Carolina, considering the different assumptions of

mmunity decay in third-dose recipients. The study period was March
, 2020, to March 23, 2023, and thus included the pre-Omicron and
micron periods. 𝛽(t) was a time-varying function that accounted for

mmune evasion by the Omicron variant or induced by vaccination and
hus effectively described the dynamic transmission of SARS-CoV-2. 

We used time-varying transmission rates to depict the infectiousness
f SARS-COV-2 variants, particularly Omicron. Our model fits the re-
orted data reasonably well, as its simulated median number of deaths
s in general agreement with the number of reported cases. In all of
he six states, we found that at the end of 2021 and the beginning of
022, the transmission rate significantly increased while the proportion
f the immunized population decreased in a near- “V ” shape, which is
onsistent with the occurrence of the Omicron variant [ 23 ]. The preva-
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Figure 3. Number of model simulated deaths vs the number of reported deaths in three vaccination scenarios (assumption: no immunity decay in third dose 
recipients) for (a) California and (b) Florida. The top curves in each panel represent the current per capita immunization rate (brown curve), the per capita number 
of individuals who received a second dose (green curve), and the per capita number of individuals who received a booster dose (dark blue curve). The bottom of 
each panel displays the square root of reported weekly deaths per million population (red circles), the simulated median of the factual condition (black curve), the 
transmission rate (dark blue curve with a plus sign), the simulated median of the condition with the third dose of vaccine removed (light green curve), and the 
simulated median of the condition with the second and third doses of the vaccine removed (dark red curve). The gray region represents the 95% CI of 1000 model 
simulations. The percentage displayed at the top of each panel represents the estimated maximum log-likelihood of the infection fatality ratio, that is, prior to the 
emergence of the Omicron variant. 

Table 2 

Number of model-simulated deaths vs number of reported deaths in three vaccination scenarios. 

Assumption: Region Reported deaths Factual scenario Without 3rd dose Death-averted due 
to 3rd dose (%) 

Without all doses Death-averted due 
to all doses (%) 

immunity decay in 
third-dose recipients 

California 104,558 100,414.5 103,731 0.008 215,722.5 0.295 
Florida 87,141 69,334 722,27.5 0.014 111,361.5 0.207 
Georgia 41,055 40,285.5 41,372 0.011 59,501 0.188 
Illinois 41,618 41,835.5 43,566 0.013 61,608.5 0.154 
Michigan 42,311 41,351 43,034 0.017 57,418.5 0.162 
North Carolina 29,746 24,611 25,547 0.009 46,509 0.218 

no immunity decay 
in third-dose 
recipients 

California 104,558 99,305.5 119,363.5 0.051 237,047.5 0.352 
Florida 87,141 702,59.5 76,042 0.029 119,291 0.242 
Georgia 41,055 401,01.5 43,720.5 0.035 67,690 0.270 
Illinois 41,618 41,229 47,681.5 0.050 84,576.5 0.337 
Michigan 42,311 40,430 44,420.5 0.040 71,922 0.317 
North Carolina 29,746 24,962 27,041 0.021 49,020 0.240 
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c  
ence of Omicron BA.1 and BA.2 caused some people to lose immunity
 24 ], leading to a significant increase in transmission rates in six states.
he peak transmission rates occurred in approximately May 2022, when
micron BA.4 and BA.5 arose and possessed stronger transmission rates
nd immune evasion characteristics than other types of Omicron vari-
nts [ 25 ] and thus became predominant. Under the assumption of no
mmunity decay in third-dose recipients, the transmission rate decreased
arkedly, for example, by approximately half compared with the fac-

ual condition in 2022 in Florida. If we assume that individuals do not
xperience immune decay after receiving the third dose, then more peo-
le would be immune to COVID-19 at the same time, producing lower
ransmission rates. 
5

Vaccination plays a significant role in controlling the spread of
OVID-19 and saving lives [ 26 , 27 ]. Figures 2 and 3 show that in the
odel used in the current study, the introduction of the third dose led

o a gradual increase in the immunized proportion of populations, which
tabilized when booster-dose coverage reached a certain level. We com-
ared the cumulative number of deaths under three vaccination scenar-
os and found that vaccine protection was greatest when booster doses
ere used. Moreover, even during the complex and variable Omicron
eriod, the effectiveness of vaccination was evident. Specifically, there
ere marked fluctuations in the mortality rate without vaccination, with
igher peaks in the number of deaths than with vaccination. This is be-
ause the third dose of the vaccine effectively activates the level of the
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ndividual’s immune response, inducing the production of high levels of
eutralizing antibodies against Omicron. Furthermore, individuals who
eceived the third dose of vaccination produced higher levels of anti-
odies and experienced a slower decline in immunity compared to the
econd dose of vaccination [ 28 ]. 

We also estimated deaths averted by COVID-19 vaccinations.
hluwalia et al. [ 29 ] estimated that the number of lives saved by COVID-
9 vaccination in the U.S. in 2021 accounted for about 0.15-0.2% of the
opulation, and our model estimates are consistent with theirs. Due to
he administration of third doses, we found that Michigan had the high-
st percentage of deaths averted by the third vaccination (0.017%). Due
o the administration of all doses, we found that we found that Califor-
ia had the highest number of deaths averted by vaccination (0.295%).
he proportion of deaths saved by vaccines varies across the six states.
accination rates vary among states, so the level of herd immunity pro-
uced may be different. Additionally, the demographics (e.g. age, gen-
er, race, etc.) also differ between states. Factors such as gender, BMI,
ge, and race can affect the concentration of antibody titers produced
y an individual after vaccination and thus the effectiveness of resis-
ance to COVID-19 [ 30 , 31 ]. This suggests that we can further improve
he effectiveness of vaccination by implementing COVID-19 vaccination
ampaigns according to the characteristics of different regions. 

Protection against SARS-CoV-2 infection is improved with the third
ose of a vaccine [ 32 ], but the protective effect of the third dose dimin-
shes over time [ 33 ]. Therefore, we explored the significance of the im-
unity decay of vaccination. A comparison of Table 2 shows that when

he third dose of the vaccination did not provide immunity decay, there
as a higher number of deaths when no booster dose was administered
r when there was no vaccination. Thus, in the absence of immunity
ecay (i.e. 100% immunity), there was a significantly greater propor-
ion of deaths averted if the third dose was administered. However, the
micron variant has strong immune evasion ability, and the antibody

esponse to the third vaccine dose against Omicron was weaker relative
o the Alpha, Beta, and Delta variants [ 34 ]. Its emergence weakened
he level of herd immunity [ 35 ] and changed the fate of the COVID-19
andemic. The immune effect produced by the third dose of the vaccine
as important in saving COVID-19 deaths, and thus, how to improve the

ffectiveness and durability of the vaccine warrants further exploration.
The strengths of this study are that it developed a model to simulate

he number of COVID-19 deaths and considered the transmission rate
(t) as a time-varying parameter, which better depicted the changes and
uctuations in COVID-19 trends than previous models. The pandemic
as more complex during the Omicron period than during other peri-
ds, and thus, we took into account multiple factors, such as immune
vasion by the Omicron variant and a 7-day delay in immunization after
he second dose of the vaccine. Our model fitted the actual situation well
nd provided a reliable assessment of the number of deaths averted by
accinations, thereby demonstrating the effectiveness of vaccination in
reventing and controlling disease outbreaks. Nevertheless, this study
ad some limitations. First, some of the parameters of the model are
xed values, in reality, they fluctuate. Second, our study was based on
opulation data, with modeling and comparisons with one state as the
bservation area, and did not take into account the heterogeneity among
opulations. Last, by only relying on reported data to estimate the pan-
emic, we may overlook some of the unreported data. 

onclusion 

In summary, we found that vaccination effectiveness in reducing
eaths in COVID-19 (including the Omicron periods) in the U.S., and the
dditional contribution of the third dose was small but significant. We
lso examined the effects of immune evasion by Omicron and obtained a
easonable estimate of the number of lives saved by vaccination. More-
ver, our model fits the trend of COVID-19 prevalence well by using
ime-varying transmission rates, which will inform future vaccination
fforts during epidemics of infectious diseases. 
6

eclarations of competing interest 

The authors have no competing interests to declare. 

unding 

This work was supported by the National Natural Science Foundation
f China (Nos. 82320108018 ), the National Key Research and Devel-
pment Program of China (Nos. 2023YFC2306004 , 2022YFC2304000 )
nd Hong Kong Research Grants Council Collaborative Research Fund
 C5079-21G ). 

uthor contributions 

Conceptualization: YY, DH, and ZP; methodology: YY, ST, and SZ;
ormal analysis: YY, QL, and YM; data curation: YY, ST, and QL; writing
original draft preparation: YY and ST; writing – review & editing: QL,
M, SZ, and ZP; visualization: YY and WW; Supervision: ST, QL, WW
nd DH; Funding Acquisition: ZP and DH. All authors have read and
greed to the published version of the manuscript. 

vailability of data and materials 

All data used in this modeling study came from the website "Our
orld in Data". 

onsent for publication 

All authors reviewed and agreed on the final manuscript and consent
or its publication. 

upplementary materials 

Supplementary material associated with this article can be found, in
he online version, at doi:10.1016/j.ijregi.2024.100390 . 

eferences 

[1] World Health Organization. Coronavirus disease (COVID-19) pandemic,
https://www.who.int/emergencies/diseases/novel-coronavirus-2019 ; 2023 [ac-
cessed 02 December 2023]. 

[2] Fiolet T, Kherabi Y, MacDonald CJ, Ghosn J, Peiffer-Smadja N. Comparing COVID-
19 vaccines for their characteristics, efficacy, and effectiveness against SARS-CoV-2
and variants of concern: a narrative review. Clin Microbiol Infect 2022; 28 :202–21.
doi: 10.1016/j.cmi.2021.10.005 . 

[3] Our World in Data. Share of SARS-CoV-2 sequences that are the omicron variant,
https://ourworldindata.org/grapher/covid-cases-omicron?time = 2022-01-03 ; 2023
[accessed 02 December 2023]. 

[4] Karim SSA, Karim QA. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19
pandemic. Lancet 2021; 398 :2126–8. doi: 10.1016/S0140-6736(21)02758-6 . 

[5] Centers for Disease Control and Prevention. COVID-19 Data Tracker,
https://covid.cdc.gov/covid-data-tracker/#maps_deaths-total ; 2022 [accessed
03 December 2023]. 

[6] Centers for Disease Control and Prevention. COVID-19 Pandemic Planning Scenarios,
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html ; 2021
[accessed 03 December 2023]. 

[7] Du X, Tang H, Gao L, Wu Z, Meng F, Yan R, et al. Omicron adopts a different strat-
egy from Delta and other variants to adapt to host. Signal Transduct Target Ther

2022; 7 :45. doi: 10.1038/s41392-022-00903-5 . 
[8] Nyberg T, Ferguson NM, Nash SG, Webster HH, Flaxman S, Andrews N, et al. Com-

parative analysis of the risks of hospitalisation and death associated with SARS-CoV-
2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study.
Lancet 2022; 399 :1303–12. doi: 10.1016/S0140-6736(22)00462-7 . 

[9] Centers for Disease Control and Prevention. COVID-19 Vaccinations in the United
States, https://covid.cdc.gov/covid-data-tracker/#vaccinations_vacc-people-
onedose-pop-total ; 2023 [accessed 03 December 2023]. 

10] Dhama K, Nainu F, Frediansyah A, Yatoo MI, Mohapatra RK, Chakraborty S, et al.
Global emerging Omicron variant of SARS-CoV-2: impacts, challenges and strategies.
J Infect Public Health 2023; 16 :4–14. doi: 10.1016/j.jiph.2022.11.024 . 

11] Zeng B, Gao L, Zhou Q, Yu K, Sun F. Effectiveness of COVID-19 vaccines against
SARS-CoV-2 variants of concern: a systematic review and meta-analysis. BMC Med

2022; 20 :200. doi: 10.1186/s12916-022-02397-y . 
12] Araf Y, Akter F, Tang YD, Fatemi R, Parvez MSA, Zheng C, et al. Omicron variant

of SARS-CoV-2: genomics, transmissibility, and responses to current COVID-19 vac-
cines. J Med Virol 2022; 94 :1825–32. doi: 10.1002/jmv.27588 . 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100013290
https://doi.org/10.13039/501100002920
https://doi.org/10.1016/j.ijregi.2024.100390
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://doi.org/10.1016/j.cmi.2021.10.005
https://ourworldindata.org/grapher/covid-cases-omicron?time=2022-01-03
https://doi.org/10.1016/S0140-6736(21)02758-6
https://covid.cdc.gov/covid-data-tracker/\043maps_deaths-total
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://doi.org/10.1038/s41392-022-00903-5
https://doi.org/10.1016/S0140-6736(22)00462-7
https://covid.cdc.gov/covid-data-tracker/\043vaccinations_vacc-people-onedose-pop-total
https://doi.org/10.1016/j.jiph.2022.11.024
https://doi.org/10.1186/s12916-022-02397-y
https://doi.org/10.1002/jmv.27588


Y. Yin, S. Tang, Q. Li et al. IJID Regions 12 (2024) 100390

[  

 

[  

 

[  

 

[  

 

[  

[  

 

[  

 

[  

 

 

[  

 

 

[  

[  

[  

 

[  

 

[  

 

[  

 

[  

 

 

[  

 

[  

 

[  

 

[  

 

 

[  

 

[  

 

 

[  

 

13] Suthar AB, Wang J, Seffren V, Wiegand RE, Griffing S, Zell E. Public health im-
pact of Covid-19 vaccines in the US: observational study. BMJ 2022; 377 :e069317.
doi: 10.1136/bmj-2021-069317 . 

14] Lin L, Zhao Y, Chen B, He D. Multiple COVID-19 waves and vaccination ef-
fectiveness in the United States. Int J Environ Res Public Health 2022; 19 .
doi: 10.3390/ijerph19042282 . 

15] Yeh YP, Lin TY, Yao YC, Hsu CY, Yen AMF, Chen SLS, et al. New insights into three
trajectories of omicron-related all-cause death reduced by COVID-19 booster vacci-
nation. J Infect Public Health 2024; 17 :735–40. doi: 10.1016/j.jiph.2024.03.006 . 

16] Wang Y, Christley S, Mjolsness E, Xie X. Parameter inference for discretely observed
stochastic kinetic models using stochastic gradient descent. BMC Syst Biol 2010; 4 :99.
doi: 10.1186/1752-0509-4-99 . 

17] Yaylali E, Ivy JS. Partially observable MDPs (POMDPS): introduction and examples:
Wiley encyclopedia of operations research and management science., 2011. 

18] Chen B, Zhao Y, Jin Z, He D, Li H. Twice evasions of Omicron variants explain the
temporal patterns in six Asian and Oceanic countries. BMC Infect Dis 2023; 23 :25.
doi: 10.1186/s12879-023-07984-9 . 

19] Griffin J, Casey M, Collins Á, Hunt K, McEvoy D, Byrne A, et al. Rapid review of
available evidence on the serial interval and generation time of COVID-19. BMJ

Open 2020; 10 :e040263. doi: 10.1136/bmjopen-2020-040263 . 
20] Turbow S, Walker T, Culler S, Ali MK. Care fragmentation and readmission mor-

tality and length of stay before and during the COVID-19 pandemic: data from the
National Readmissions Database, 2018–2020. BMC Health Serv Res 2024; 24 :622.
doi: 10.1186/s12913-024-11073-1 . 

21] Kitamura N, Otani K, Kinoshita R, Yan F, Takizawa Y, Fukushima K, et al. Protective
effect of previous infection and vaccination against reinfection with BA.5 Omicron
subvariant: a nationwide population-based study in Japan. Lancet Reg Health West

Pac 2023; 41 :100911. doi: 10.1016/j.lanwpc.2023.100911 . 
22] Our World in Data. COVID-19 Data explorer, https://ourworldindata.org/explorers/

coronavirus-data-explorer ; 2020 [accessed 03 December 2023]. 
23] Liang Y, Gong Z, Guo J, Cheng Q, Yao Z. Spatiotemporal analysis of the morbidity of

global Omicron from November 2021 to February 2022. J Med Virol 2022; 94 :5354–
62. doi: 10.1002/jmv.28013 . 

24] Iketani S, Liu L, Guo Y, Liu L, Chan JFW, Huang Y, et al. Antibody eva-
sion properties of SARS-CoV-2 Omicron sublineages. Nature 2022; 604 :553–6.
doi: 10.1038/s41586-022-04594-4 . 
7

25] Cao Y, Yisimayi A, Jian F, Song W, Xiao T, Wang L, et al. BA.2.12.1, BA.4 and
BA.5 escape antibodies elicited by Omicron infection. Nature 2022; 608 :593–602.
doi: 10.1038/s41586-022-04980-y . 

26] Bartsch SM, Wedlock PT, O’Shea KJ, Cox SN, Strych U, Nuzzo JB, et al. Lives and
costs saved by expanding and expediting coronavirus disease 2019 vaccination. J
Infect Dis 2021; 224 :938–48. doi: 10.1093/infdis/jiab233 . 

27] Musa SS, Tariq A, Yuan L, Haozhen W, He D. Infection fatality rate and infection
attack rate of COVID-19 in South American countries. Infect Dis Poverty 2022; 11 :40.
doi: 10.1186/s40249-022-00961-5 . 

28] Belik M, Liedes O, Vara S, Haveri A, Pöysti S, Kolehmainen P, et al.
Persistent T cell-mediated immune responses against Omicron variants after
the third COVID-19 mRNA vaccine dose. Front Immunol 2023; 14 :1099246.
doi: 10.3389/fimmu.2023.1099246 . 

29] Avilov K, Wen L, Zhao Y, Wang W, Stone L, He D. The effectiveness of the COVID-
19 vaccination campaign in 2021: inconsistency in key studies. SSRN J 2024.
doi: 10.2139/ssrn.4751241 . 

30] Ahluwalia P, Vashisht A, Singh H, Sahajpal NS, Mondal AK, Jones K, et al. Ethno-
demographic disparities in humoral responses to the COVID-19 vaccine among
healthcare workers. J Med Virol 2023; 95 :e29067. doi: 10.1002/jmv.29067 . 

31] Reusch J, Wagenhäuser I, Gabel A, Eggestein A, Höhn A, Lâm TT, et al. Influencing
factors of anti-SARS-CoV-2-spike-IgG antibody titers in healthcare workers: a cross-
section study. J Med Virol 2023; 95 :e28300. doi: 10.1002/jmv.28300 . 

32] Niesen MJM, Matson R, Puranik A, O’Horo JC, Pawlowski C, Vachon C, et al.
Third-dose vaccination with mRNA-1273 or BNT162b2 vaccines improves protec-
tion against SARS-CoV-2 infection. PNAS Nexus 2022; 1 :pgac042. doi: 10.1093/pnas-
nexus/pgac042 . 

33] Levine-Tiefenbrun M, Yelin I, Alapi H, Herzel E, Kuint J, Chodick G, et al. Waning of
SARS-CoV-2 booster viral-load reduction effectiveness. Nat Commun 2022; 13 :1237.
doi: 10.1038/s41467-022-28936-y . 

34] Xiang T, Quan X, Jia H, Wang H, Liang B, Li S, et al. Omicron break-
through infections after triple-dose inactivated COVID-19 vaccination: a compre-
hensive analysis of antibody and T-cell responses. Immunology 2024; 172 :313–27.
doi: 10.1111/imm.13764 . 

35] Safdar S, Ngonghala CN, Gumel AB. Mathematical assessment of the role of waning
and boosting immunity against the BA.1 Omicron variant in the United States. Math

Biosci Eng 2023; 20 :179–212. doi: 10.3934/mbe.2023009 . 

https://doi.org/10.1136/bmj-2021-069317
https://doi.org/10.3390/ijerph19042282
https://doi.org/10.1016/j.jiph.2024.03.006
https://doi.org/10.1186/1752-0509-4-99
https://doi.org/10.1186/s12879-023-07984-9
https://doi.org/10.1136/bmjopen-2020-040263
https://doi.org/10.1186/s12913-024-11073-1
https://doi.org/10.1016/j.lanwpc.2023.100911
https://ourworldindata.org/explorers/coronavirus-data-explorer
https://doi.org/10.1002/jmv.28013
https://doi.org/10.1038/s41586-022-04594-4
https://doi.org/10.1038/s41586-022-04980-y
https://doi.org/10.1093/infdis/jiab233
https://doi.org/10.1186/s40249-022-00961-5
https://doi.org/10.3389/fimmu.2023.1099246
https://doi.org/10.2139/ssrn.4751241
https://doi.org/10.1002/jmv.29067
https://doi.org/10.1002/jmv.28300
https://doi.org/10.1093/pnasnexus/pgac042
https://doi.org/10.1038/s41467-022-28936-y
https://doi.org/10.1111/imm.13764
https://doi.org/10.3934/mbe.2023009

	Estimate the number of lives saved by a SARS-CoV-2 vaccination campaign in six states in the United States with a simple model
	Introduction
	Methods
	Results
	Discussion
	Conclusion
	Declarations of competing interest
	Funding
	Author contributions
	Availability of data and materials
	Consent for publication
	Supplementary materials
	References


