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Abstract

Next generation sequencing technologies have made it possible to investigate the

role of rare variants (RVs) in disease etiology. Because RVs associated with dis-

ease susceptibility tend to be enriched in families with affected individuals, study

designs based on affected sib pairs (ASP) can be more powerful than case–control
studies. We construct tests of RV‐set association in ASPs for single genomic

regions as well as for multiple regions. Single‐region tests can efficiently detect a

gene region harboring susceptibility variants, while multiple‐region extensions

are meant to capture signals dispersed across a biological pathway, potentially as

a result of locus heterogeneity. Within ascertained ASPs, the test statistics con-

trast the frequencies of duplicate rare alleles (usually appearing on a shared

haplotype) against frequencies of a single rare allele copy (appearing on a non-

shared haplotype); we call these allelic parity tests. Incorporation of minor allele

frequency estimates from reference populations can markedly improve test effi-

ciency. Under various genetic penetrance models, application of the tests in

simulated ASP data sets demonstrates good type I error properties as well as

power gains over approaches that regress ASP rare allele counts on sharing state,

especially in small samples. We discuss robustness of the allelic parity methods to

the presence of genetic linkage, misspecification of reference population allele

frequencies, sequencing error and de novo mutations, and population stratifi-

cation. As proof of principle, we apply single‐ and multiple‐region tests in a

motivating study data set consisting of whole exome sequencing of sisters as-

certained with early onset breast cancer.
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1 | INTRODUCTION

Literature on methods for genetic association analysis of rare
variants under a case–control design is extensive, but

relatively few methods exist to test for association under an
affected sibling pair design (Chen, Weinberg, & Chen, 2016;
Epstein et al., 2015; Gong et al., 2019; Guo & Zhou, 2019;
K. H. Lin & Zöllner, 2015). This represents a significant gap
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because tests involving sib pairs have been shown to be more
powerful than testing an equivalent number of cases and
controls (Epstein et al., 2015; Sha & Zhang, 2015; Teng &
Risch, 1999; Zöllner, 2012). From a design perspective,
comparisons using siblings provide a natural way to control
for many potentially confounding covariates, both genetic
and environmental.

Tests for association of rare variants (RVs) with binary
traits using affected sib pairs (ASPs) treat the count of RV
alleles as the outcome variable. The idea developed by
Epstein et al. (2015) is that rare susceptibility alleles will
appear more frequently on haplotypes shared identical by
descent (IBD), compared to those not shared IBD. Thus,
regressing the rare allele count in a region on the corre-
sponding IBD information for that sib pair is one way of
testing for association within the region. While this approach
to analyzing the ASP design is shown to have good properties
in reasonably large samples, our investigations of relation-
ships between rare allele counts and haplotype sharing have
led us to alternate, more refined test statistics. Rare alleles
appearing in duplicate in a sib pair will very likely be shared
IBD; single rare alleles, that is appearing only once, will
certainly be nonshared. Similar reasoning to that above
suggests that duplicate alleles should be enriched in sus-
ceptibility regions. In this report we demonstrate through
extensive simulation studies that this alternative counting
method leads to more powerful tests of association than re-
gression on IBD. We develop two tests at the region level,
and extend them to test at the pathway level. Overall, the aim
of our approach is to increase power to detect weaker signals,
such as medium to low penetrance variants clustered in a
region; or very rare, family‐specific mutations that operate
through a shared disease mechanism (a pathway).

2 | METHODS

Assume we are testing a genomic region which has been
filtered on minor allele frequency (MAF) information
from population reference panels (e.g., 1000 Genomes,
Exome Sequencing Project [ESP 6500], UK Biobank).
This produces j= 1,2,…, R loci with rare alleles (e.g.,
defined as MAF< 0.1%). For a study of N families each
with two affected siblings, define Qij to be the number of
copies of the rare allele at locus j for sibpair i, so that
∈Q {0, …, 4}ij ; and define ∑⋅Q Q=i j R ij=1, …,

. Also, let Zij

denote the number of alleles shared IBD for sibpair i at
locus j Z( = 0, 1, 2)ij . We assume no recombination
within a region, and for ease of notation, drop the sub-
script j from Zij unless otherwise specified. Although the
method we develop specifies families with two affected
siblings, the analysis can accommodate families with
more affected sibs, by including all pairs of siblings as

separate ASPs. For application to datasets with many
large sibships, valid variance estimation might entail an
adjustment for familial correlation.

Initially, we are interested in testing for a signal in a
single, contiguous genetic region. This case is most
commonly assumed in the RV association literature,
and often corresponds to testing at the gene level
(Derkach, Lawless, & Sun, 2014; S. Lee, Abecasis,
Boehnke, & Lin, 2014; Wu et al., 2011, and others).
Gene‐level testing reduces the multiple testing burden
of marginal testing at each SNP. This benefit can be
further extended if multiple genetic signals are cap-
tured in a pathway, that is a collection of genetic re-
gions related by biological role or function; we discuss
this subsequently.

2.1 | Epstein's test

Epstein et al. (2015) model the dependence of ∙Qi on Zi, as
summarized (in our notation) via the following regres-
sion equations:

⋅E Q Z μ μ μ Z[ | ] = 4 + 2( − )i i i0 1 0

⋅Var Q Z σ Z σ σ[ | ] = 4 + 2 (2 − ),i i i0
2

1
2

0
2

which assume that rare allele counts have a different
mean μ μ( , )0 1 and variance σ σ( , )0

2
1
2 depending on whe-

ther the haplotype they come from is shared IBD or not.
To test if a region is associated with disease susceptibility,
that is μ μ( − ) > 01 0 in that region, they first estimate
σ σ,0

2
1
2 from sibpair data, and use them as weights to

compute a test statistic

Y = ,burden




where  and  are based on weighted sums of ∙Qi 's. Then
Yburden is asymptotically standard normal under the null
hypothesis of μ μ( − ) = 01 0 . A brief summary of the de-
rivation is provided in Appendix A.

2.2 | Allelic parity test

At the sib‐pair level, we define ∑S I Q= { = 1}i j R ij=1, …,

and ∑D I Q= { = 2}i j R ij=1, …,
, i N= 1, …, , which sum

rare allele counts across a haplotype for single copy and
duplicate variants, respectively. Here, we let μj be the
frequency of the rare alleles at locus j j R( = 1, …, ) in the
source population (assumed known, for now). Further,
denote ∑μ μ= j. We express the means and variances of
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Si and Di in terms of the μj, conditional on haplotype
sharing, under the null hypothesis that there are no
susceptibility variants in the testing region. These deri-
vations are presented in Appendix B, and results are
summarized in Table 1; here, τ τ l, , = 0,1,2l

D
l
S denote

the conditional means of Di and Si, given Z l=i
(i.e., τ E D Z= [ | = 0]D

i i0 , etc.). Parameter k, which will be
estimated from study sample data, is introduced to ac-
count for within‐region linkage disequilibrium (LD) in
the variance computation and acts as an overdispersion
factor, that is arising from positive correlations between
RVs within the region.

Under the null we expect no systematic differences
between the MAFs in affected versus source populations;
we write ⋅ ⋅μ μ( − ) = 0,aff where ∑⋅μ μ=aff

j R j
aff

=1, …,
and

μj
aff is the frequency of the rare allele at locus j in the

affected population. Under the alternative of some var-
iants in the region being penetrant, the ascertainment of
the study sample will be reflected in a higher count of
rare alleles in the region, that is ⋅ ⋅μ μ( − ) > 0aff . Although
an exact quantification of such increase will depend on
the genetic model—which is assumed unknown—it is
nevertheless possible to make qualitative observations. In
particular, while we expect an enrichment in both single
and duplicate counts, the frequency of duplicate alleles
will increase proportionately more than the frequency of
single alleles. This occurs because siblings that share a
susceptibility allele are more likely to be both affected,
and hence ascertained into the study, compared to pairs
where one sib is an affected carrier and the other is an
environmental case, or where siblings carry different
susceptibility alleles. Table 2 illustrates that the increase
in D from the null to the alternative is greater than the
increase in S. The numbers in each cell are expected
sums of Si's and Di's over the entire sample under the
null, stratified by IBD state. These are obtained by mul-
tiplying the means in Table 1 by the expected number of
samples in each Zi category, that is by N P Z× ( )i , where

( )P Z( ) = , ,i
1

4

1

2

1

4
for Z = (0, 1, 2)i . The shading in each

cell signifies the expected increase in that count under
the alternative compared to the null (darker shading
means a higher proportional increase). With this setup, a
test statistic for evidence of association has the
general form

∑ ∑ ∑ ∑T c D τ c S τ= ( − ) + ( − ),
l

l
D

i Z l

i l
D

l

l
S

i Z l

i l
S

=0

2

{ : = } =0

2

{ : = }i i

where c c l, , = 0,1,2l
D

l
S are contrast weights in the

comparison of the different Zi strata. As discussed above,
one version of this test statistic contrasts the columns of
Table 2, that is ∑ ∑D S2 −

i N i i N i=1, …, =1, …,
, which has a

mean of zero at first order of μj, assuming no RV asso-
ciation and no excess IBD sharing (Appendix B). Stan-
dardizing this expression leads to

∑

∑
∼T

D S μ

k μ μ
t df N=

2 ¯ − ¯ − 6

ˆ [ (2 − )]
( = 2 − 2),ap

j j

N j j j

2

3

under the null. We call this the allelic parity statistic,
because it is based on the parity relation for RVs under
the null that expected counts of duplicates are half the
counts for singles. The overdispersion k is estimated from
data as

∑ ( )
k

s s

μ μ

ˆ =
+

3 1 −
,S D

j R j j

2 2

=1, …,

19

6

where sS
2 and sD

2 are the sample variances of Si and Di,
which reflect covariances among the RV loci, and provide
robustness to within‐region LD. Appendix B provides
detailed derivations.

TABLE 1 Means and variances for counts Si and Di conditional on identical by descent sharing (Zi)

Zi τZ
D
i

Var D Z( | )i i τZ
S
i

Var S Z( | )i i

0 ∑ μ6 j
2 ∑k μ6 j

2 ∑ μ μ4 (1 − 3 )j j ∑k μ μ4 (1 − 7 )j j

1 ∑μ μ(1 − )j j ∑k μ μ(1 − 2 )j j ∑ μ μ2 (1 − 2 )j j ∑k μ μ2 (1 − 4 )j j

2 ∑ μ μ2 (1 − )j j ∑k μ μ2 (1 − 3 )j j 0 0

Note: Expressions are accurate to second order in μj.

TABLE 2 Expected total counts of single and duplicate alleles
in the sample, stratified by Zi, under the null

IBD
sharing

Contribution to
Di∑

Contribution to
Si∑

Z = 0i 0 Nμ.

Z = 1i Nμ./2 Nμ.

Z = 2i Nμ./2 0

Total Nμ. 2Nμ.

Note: Bold indicates that a higher magnitude of proportional increase is
expected under the alternative. Here, ∑μ = μ

j=1 R j, …,· , and expressions are
accurate to first order.
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The μj parameter is the MAF of the variant at locus j,
which we assume to be known. Values can be determined
from external reference population panels, and ideally the
genomic panel closely matches the genetic characteristics of
the source population for the ascertained ASPs. If, however,
the general level of enrichment in all RVs across the genome
is consistently and substantially elevated in the sample
compared to reference panels, then a genome‐wide correc-
tion may be necessary to account for systematic differences;
we discuss what such a correction might be when we con-
sider robustness to misspecification of MAFs.

We also formulate a version of Tap that is self‐contained,
in that it does not use externally supplied μj. This follows
from estimating the sum of μj empirically by ∙∙Q

N4
, and drop-

pingO μ( )j
2 terms (shown in Appendix C). Thus, this version

of the allelic parity test (which we call empirical) is

∼
∙∙

T
D S

s s
t df N=

2 ¯ − ¯

( + )(2 + )
( = 2 − 2).ap emp

N S D
Q

N

−
1 2 2 4

3

2.3 | Weighted allelic parity test

Based on Table 2, it is possible to distill a more powerful
test by contrasting only the strongest signal, that is the
Di for Z = 1i or 2, with the corresponding mean under
the null of no RV association. Because the variances of Di in
the two strata are different, to increase efficiency we apply
inverse variance weights to the contribution of the strata
(i.e., by the inverse standard deviation of Di given Zi). The
test statistic we obtain is

∑

∑

∑

∼

{ }

T
k n n

D μ μ

μ μ

D μ μ

μ μ
t N

=
1

ˆ ( + )

− (1 − )

Σ (1 − 2 )

+
− Σ2 (1 − )

2Σ (1 − 3 )
(2 − 2),

ap w

Z Z i Z

i j j

j j

i Z

i j j

j j

−

=1 =2 { : =1}

: =2

i i i

i

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

where nZ =1,2i
stands for the number of sib pairs with

Z = 1i and 2, and k̂ is computed as above.

2.4 | Pathway extensions

In the multiple region case, assume we have a collection
of p different genetic regions (e.g., comprising a path-
way), and each of these has Rq rare variants after filter-
ing, q p= 1,2, …, . Quantities Si and Di are defined in a
similar way as above, but are now specific to a genomic
region denoted by an extra subscript q q p, = 1, …, , that

is Sqi and Dqi. Also let ∑S S=i
π

q

p
qi=1
, and ∑D D=i

π
q

p
qi=1
,

that is the sums of these quantities across the entire
pathway, for one sib pair. The multiple region allelic
parity test statistic has a similar form as in the single
region case, namely

∑ ∑

∑ ∑
∼T

D S μ

k μ μ
N=

2 ¯ − ¯ − 6

ˆ 6 − 3
(0, 1),ap

π π
q

p

j

R

jq

N q

p

j

R
jq jq

=1 =1
2

1

=1 =1
2

q

q

where ∑ ∑k s s μ μˆ = ( + )/(3Σ − Σ )
q S q D j q jq j q jq

2 2
,

19

2 ,
2

q q
, ob-

tained by similar reasoning (the notationΣj q, is shorthand for
the double summation in the previous formula). Note that
sS

2
q
and sD

2
q
are computed as in the single region case, using

all S D i Nand , = 1, …,qi qi from region q. From this, the
empirical version can be obtained similarly as above,

∑ ∑

∼
∙∙( )

T
D S

s s

N=
2 ¯ − ¯

( + ) 2 +

(0, 1).ap emp

π π

N q S q D
Q

N

−
1 2 2 4

3q q

For the weighted test, a multiple region statistic can
be obtained by adding the contributions across regions
as well as across families. Keeping in mind that the
observed IBD sharing of a sibpair can change from one
region to the next, the derivation is similar to the single
region test, leading to the expression

∑
∑

∼

T
n n

T n n

N

=
1

+
+

(0, 1),

ap w

q Z Z q

p

ap w
q

Z Z−

=1 =2 =1
− =1 =2

qi qi

qi qi

where the k̂ used for computing T q p, = 1, …, ,ap w
q
− is the

one given immediately above.
We note that there is no pathway extension for Epstein's

test; however, a simple approximation can be constructed
by regressing allele counts on IBD state—we call this the
“regression test”—and it can be easily extended to test a
pathway. See Appendix A for details.

2.5 | Robustness of allelic parity
statistics to linkage and LD

Under the null hypothesis of no RV association within a
region, we expect evidence for excess IBD sharing in the
region to be unusual, although it is possible that excess
sharing might be observed when the test region is close
enough to be in linkage with a common variant suscept-
ibility locus, but far enough away that the RVs are not in
LD with it. All three test statistics use the k parameter to
account for within‐region LD. In Appendix B, we show
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that linkage can inflate the allelic parity comparison but
the bias will be negligible unless the set of RVs is ex-
ceptionally large. We conclude that Tap and Tap emp− are
reasonably robust to linkage, but as a precaution, we re-
commend that IBD sharing estimates be examined for
regions suspected to harbor susceptibility genes. On the
other hand, the Tap w− statistic derives from conditional
means and variances of Di given Zi, so does not depend on
IBD sharing values and thus is fully robust to the presence
of linkage. This advantage, however, may be countered by
lack of relevance or imprecision of the external population
frequency μj values that can introduce bias into Tap w− .

In a series of simulation studies reported in the next
section, we compare validity and power of the affected
sibpair RV test statistics of interest under various design
parameters, and investigate robustness of Tap w− to MAF
misspecification. Because all test statistics based on ob-
served allele counts may be adversely affected by se-
quencing errors or the occurrence of de novo mutations,
we also investigate robustness of methods to these prac-
tical issues. Finally, we evaluate the consequences of
defining sets of RV with less rare MAF.

3 | SIMULATION STUDIES

3.1 | Design

Starting with 594 European haplotypes from the 1000
Genomes Project, we simulate a genetic region to be tested
for association; the region, of length 13.6 kb, is taken arbi-
trarily from chromosome 1. Because the minimumMAF that
can be simulated using the samples from the 1000 Genomes
European haplotypes is 1/594= 0.17%, to generate variants
that are more rare, we first filter variants on MAF<0.2%,
and then add a sufficient number of “noncarrier” families
(i.e., families with haplotypes containing the wild type var-
iant at all of the rare loci) to bring the MAF of the entire pool
of parental haplotypes below the desired threshold of 0.1%
for all variants. We generate families of parents with two
offspring using R package “sim1000G,” which assumes
random haplotype pairing, random mating, and Mendelian
inheritance (Dimitromanolakis, Xu, Krol, & Briollais, 2019).

Under the alternative hypothesis of RV association we
generate age at onset for each individual offspring via a
proportional hazards model with rate

Xh t h t t β X( | ) = ( − )exp(Σ ),j
R

j j0 0 =1
(1)

where h0(t) is the baseline hazard function, which we
specify as Weibull, and t0 is a minimum age of disease onset
set to age 20. X is the individual‐level genotype vector
indicating carrier (1) or noncarrier (0) of the rare allele at

each of the R rare loci. Among these, there are C suscept-
ibility loci, where C represents 15% of all RVs in the region,
chosen at random. The parameters βj, j=1,…,R correspond
to effect sizes for RVs in the region (so that βj> 0 for all of
the C susceptibility variants, and βj= 0 for the R−C
nonrisk variants). We draw a family from the population
pool of size 500,000 families, and apply the PH model (1)
to generate the age at onset for each of the siblings. The
model (1) is implemented in R package “FamEvent”
(Choi, Kopciuk, He, & Briollais, 2017), and returns the
cumulative distribution function (cdf) of the age at onset
for one individual. The onset age is simulated for each of
the siblings independently as the inverse cdf computed at
a uniform random variate, under the individual PH model.
We define “affected” as disease onset before age 50, and
ascertain a pair into the study if both siblings are affected.
The procedure of drawing from the pool and ascertaining
is repeated until the target sample size N is obtained. The
distribution of observed rare allele counts per sib pair in a
single region, which is heavily weighted toward counts of
zero, becomes visibly heavier in the right tail following
ascertainment under the alternative (Figures S1 and S2).

Under the null scenario of no association, genotypes are
simulated before ascertainment using “sim1000G” as de-
tailed above, but none of the RVs are designated to be sus-
ceptibility loci in the region; effectively β = 0,j for all
j R= 1, …, . This null is region‐specific, not global; in prac-
tical application, affected families without any susceptibility
alleles in the region could be environmental, or genetic cases
arising at some other region. To improve computational ef-
ficiency for the intensive null simulations, we do not gen-
erate age at onset for the offspring, but instead automatically
ascertain families into the study. This is correct because
phenotype is independent of genotype under the null hy-
pothesis of no RV association in the region.

Under a pathway scenario, we generate RV genotypes in
two genetically independent regions 1 and 2 on chro-
mosomes 1 and 3, which are assumed to form a functional
pathway. Extending the single region approach, there are
C1 andC2 different risk variants in each region, representing
15% of RVs in each region, respectively. Their joint effect is
captured through the function ∙g ( ) in the genetic model:

X X X Xh t h t t g( | , ) = ( − )exp( ( , ))1 21 2
0 0 . Under the null

hypothesis, there is no RV association in either region.
Under the alternative, we consider two different genetic
architectures. In an additive model suggested in P. I. Lin,
Vance, Pericak‐Vance, and Martin (2007), the effects of
deleterious alleles are added across regions, although it is
rare for one family to carry more than one such RV. In the
epistatic model of Marchini, Donnelly, and Cardon (2005),
rare susceptibility alleles are required at both genes for loss
of function to occur (in this case, one gene acts as a
“modifier” to the other). Since this scenario occurs rarely,
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we are more permissive with the MAF filtering to obtain a
visible effect.

To compare performance of the association tests,
we apply them in each data set generated under a null
or an alternative genetic model; replicated datasets are
drawn independently under single‐region and multiple
region mechanisms, for combinations of four study
sizes N (20, 100, 500, and 1,000 families), and various
effect sizes (Table 3). Going forward we drop the ori-
ginal version of the allelic parity test and only include
the empirical and weighted versions. We found the
original version to have similar performance char-
acteristics to the empirical version, but the additional
requirement to specify allele frequencies, as well as
lower power compared to the weighted version makes
its use less appealing.

3.2 | Validity and power

To assess type I error control, the observed p values
(−log 10 transformed) for each test are plotted in Figure 1

versus those expected under the null, for N= 100 and
1,000, using 100,000 replicates. We see that the test size is
well controlled. Plots for N= 500 show similar behavior;
for N= 20 the empirical allelic parity test is conservative
in the tail, however, the weighted version works well
(Figure S3). For power calculations, we employ 10,000
replications, and estimate power as the fraction of tests
that reject the null at level α, for data sets generated
under the alternative models specified in Table 3. Power
curves for a sample size of 500, evaluated at significance
criteria α = .05 and .0005 (Figure 2) show that the
allelic parity test—especially the weighted version—is
more powerful by a factor of 2–10 compared to regression‐
based tests. A more dramatic display of power differentials
occurs at stricter significance levels (Figure 3), where the
ratio increases with decreasing α. We observe that test
rankings according to power do not depend on sample size
(Figure S5).

Results for two‐region pathway testing are similar to
single‐region testing under the null and additive models
(Figures S4 and S6). Unsurprisingly, the power is higher
in general for pathway testing compared to region testing

TABLE 3 Genetic models used to generate ascertained datasets in the power simulations

Model Description Simulation settings Population MAF

Single region ∑g β X=
j

R
j j=1

β HR= log ( )j , for HR values of 2, 4, and 8. <0.001

Multiple region,
Additive model

∑ ∑g β X β X= +
j

R
j j j

R
j j=1 1

1
=1 2

21 2 β β HR= = log( )j j1 2 , for HR values of 2, 4,
and 8.

<0.001

Multiple region,
Epistatic model

∑ ∑g β I X I X= × { > 0} × { > 0}
j

R
j j

R
j=1

1
=1

21 2 β = log (8) <0.005

FIGURE 1 Q–Q plots of single‐region test statistic p‐values under the null hypothesis for sample sizes N= 100 and 1,000 families and
100,000 replicated data sets
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(Figure 2). In particular, it is encouraging to see that a
pathway with highly penetrant variants (HR = 8) can be
detected in a sample as small as 20 sib pairs, with power

just above 50% (Figure S6). Under the epistasis model,
power is generally low, as expected. Still, the weighted
allelic parity test performs visibly better than the other
tests (Figure S7).

Finally, all results shown in the text refer to one‐sided
tests. This is sensible at the genome‐wide level when
testing single regions for deleterious variants. It is also
possible to perform two‐sided tests, if we have reason to
believe that in certain regions, RVs could be primarily
protective.

3.3 | Robustness

We perform additional simulation studies to evaluate
practical consequences of misspecification of reference
population parameters, sequencing errors and de novo
mutations, as well as sensitivity to rare variant criteria.

FIGURE 2 Power curves for testing at α= .0005 (left) and α= .05 (right) for a sample size N= 500, and 10,000 replicated datasets.
Results for single region (top panels) and two‐region pathway under the additive model (bottom panels). The horizontal black lines
represent the significance threshold α

FIGURE 3 Power of single region testing versus significance
threshold for medium penetrance variants (HR= 4) for sample size
N= 500 sib pairs, and 100,000 replicated data sets
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(1) Misspecified external MAF estimates (the μj's) in the
weighted allelic parity test. These evaluations gen-
erate random errors for the reference population
MAFs, with random μj's drawn independently from
an exponential distribution under three scenarios.
The exponential mean is taken to be, in turn, un-
derestimated (by a factor of 2) compared to the true
MAF used in the prior simulations, equal, or over‐
estimated (by a factor of 2). As might be expected, the
test is liberal for under‐estimated MAFs and con-
servative for over‐estimated MAFs (Figure S8 and
Table S1). For unbiased MAFs, type I error is well
controlled for sample size N= 100, but becomes
liberal with larger N.

We suggest two relatively simple remedies to deal
with misspecified μj's. The first is to use an adjusted
null distribution, which is similar to the concept of an
“empirical null” distribution from Efron (2004) (See
Supporting Information Methods for details). Appli-
cation of this strategy to the simulated misspecified
test statistics yields an obvious improvement in per-
formance. Type I errors become well controlled using
the empirical null approach in the under‐estimated
and unbiased scenarios, and only slightly con-
servative for over‐estimated μj, and power estimates
also become close in all three scenarios (Figure S8
and Table S1). An alternative remedy is to scale the μj
estimates by a common factor so that they become
unbiased in distribution. This approach is suitable
when an empirical null distribution may not be
available, such as when performing only one or a few
tests. We show an example of using a scaling factor in
the Application section.

(2) Sequencing errors in next generation sequencing and
de novo mutations. Sequencing errors can cause base
substitutions, which will appear as rare variants in
the data used for analysis, and induce inaccuracies in
RV tests if the error rate is high enough. We simulate
sequencing errors and add these extra “rare alleles”
to the genetic data, for prespecified error rates of 10%,
25%, and 50% among the observed rare variants. As a
quality control step, we flag as errors and remove all
alleles that contradict the sharing state for that par-
ticular locus and sib pair; this is only possible for an
IBD state of 2 and an odd valuedQij. De novo variants
similarly add rare alleles that are not part of Men-
delian inheritance. The same simulation setup is
applicable to de novo mutations, except that, because
they are quite rare (perhaps only 30 per genome),
they have a less material impact. For all tests, Type I
error and power (Table S2) decrease with increasing
error rate. The empirical allelic parity test is the
most affected by errors and the weighted test is least

affected. This is sensible, since errors will inflate the
Si counts of single alleles, whereas the Di's would
require an error to occur at the site of an pre‐existing
rare allele, which is less likely. We note that even
though all tests become conservative, the weighted
allelic parity test retains high power (above 95%) even
for an error rate of 50%. We recommend this test for
use in the presence of sequencing errors. We also
note that bioinformatics tools may be able to weed
out common sequencing errors; for instance, Ma et al.
(2019) report an approach that can dramatically
reduce the A > T substitution error rate in deep
sequencing data.

(3) Comparative test performance for low frequency
variants. The development of our methods was mo-
tivated by the aim of uncovering very rare variants
(MAF< 0.1%), but the tests can be applied with more
common variants as well (e.g., low frequency var-
iants). Type I error simulations for MAF< 3% and
MAF< 5% show that, compared to the regression
tests which retain close to nominal type I error con-
trol, the allelic parity tests are conservative, but not
extremely so. All tests tend to have higher power for
low frequency than for rare variants, as expected
under a simplistic simulation model, where the HR is
constant at all MAFs (Table S3). The allelic parity
tests have the highest power, with the weighted ver-
sion being the most powerful. It may be possible to
improve type I error control for the weighted version
by including higher order terms (O μ( )j

3 and higher) in
the expressions for mean and variance of Di; this
investigation is reserved for future work.

3.4 | Software and code

A function that implements the tests with an example
data set, as well as the code files used in the simulation
studies are included as Supporting Information Material.
The function is for general use, and can be run in R. The
simulation code is intended only for the purpose of re-
plicating the results in this paper, and runs in a multicore
Unix environment.

4 | APPLICATION: AFFECTED
SISTER PAIRS WITH EARLY ‐
ONSET BREAST CANCER (BC)

A woman's risk of developing BC increases with the
number of close family members diagnosed (Collabora-
tive Group on Hormonal Factors in Breast Cancer, 2001;
O'Brien et al., 2016). This risk is even higher if a family
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member is diagnosed at a young age (before 45 years).
However, known genes with variants predisposing in-
dividuals to hereditary BC explain less than 50% of dis-
ease clustering within families (Easton et al., 2015; A. Lee
et al., 2019). The motivating data set is a pilot study of
whole exome sequencing (WES) in ASPs with a family
history of cancer and early‐onset in at least one sibling.
The median age at diagnosis is 45 years, and all but one
family have one sib diagnosed before age 45. The ASPs,
recruited from the Ontario Familial Breast Cancer Reg-
istry (John et al., 2004; Terry et al., 2015), had been
screened negative for known mutations in susceptibility
genes (including BRCA1/2 and CHEK2*1100delC var-
iants), thereby increasing the chances of finding rare fa-
milial mutations; all families except for one were
classified as Caucasian. The pilot data set included 37
individuals from 17 families (14 pairs and three triplets).
We count triplets as three pairs, yielding N = 23 ob-
servations at the ASP level.

In total, 251,931 variants were annotated with MAF
information obtained from three reference panels:
1000 Genomes Project n( = 1,092; all populations),
Exome Sequencing Project (n = 6,500), and UK Biobank
(n = 500,000). Variants were deemed rare if they ap-
peared in at least one of the panels (using the entire
populations for improved precision), and if the maximum
MAF from these references was no greater than 0.5%. As
a QC step, rare variant loci that were missing in more
than a few (4) families were excluded, otherwise missing
genotypes were imputed to be the rare allele. Other
standard QC procedures followed Genome Analysis
Toolkit Best Practice recommendations, and included
haplotype calling, variant recalibration, conversion to
human genome version hg19, annotation by ANNOVAR,
and filtering on read depth and quality. This resulted in
18,035 rare variants that passed quality control, anno-
tated to 9,572 genes (the number of RVs per gene ranged
from 1 to 69, with mean 1.9).

We specified the population parameters μj, used in
the weighted allelic parity test, as the median MAF at
locus j across the three reference panels. However, we
observed that the samples were enriched in rare variants
across the exome, in comparison to the allele frequencies
in the panels. Therefore, we applied a simple multi-
plicative genome‐wide adjustment factor of 10.1 chosen
to match the panel frequencies cumulated at the gene
level to the observed frequencies, (see Figure S8 for the
details of the calculation). This rescaling amounts to
converting an over or underestimated scenario to an
unbiased one, which is closest to nominal performance,
as per the simulations in Section 3.3, part 1. We note that
we used the entire UK Biobank data which includes
RVs imputed from genotype data, and that a similar

enrichment in exome RVs was found in an exome se-
quenced subset of the UK Biobank, compared with the
entire panel MAFs (imputed from genotype data). Van
Hout et al. (2019) report a >fourfold increase in coding
variants, and >10‐fold increase in loss‐of‐function var-
iants identified in WES compared with imputed data,
with rare variants accounting for the vast majority of this
increase.

To determine the IBD sharing in each sib pair, we
analyzed 102,322 common autosomal variants (MAF>0.10)
using the multipoint algorithm implemented in MER-
LIN (Abecasis, Cherny, Cookson, & Cardon, 2001).
Sex‐averaged linkage map positions were downloaded
from Rutgers University's Map Interpolator. IBD esti-
mates were obtained on genomic segments (“clusters”)
defined adaptively so that R2 among any two SNPs in a
cluster is more than 0.1 (Abecasis & Wigginton, 2005;
Abecasis, n.d.); this improves stability and accuracy of
IBD sharing estimates in the absence of parental data.
Finally, pairwise IBD sharing estimates for ASPs in
each family were obtained on 6,899 clusters spanning
chromosomes 1–22.

To illustrate single gene and pathway testing, we aimed
to validate a known BC‐related functional pathway—DNA
repair. If successful, this might help identify previously
unreported variants within this pathway as potential her-
editary mutations. Pathway information was taken from
Dexheimer (2013) and includes 84 genes known to be in-
volved in the various mechanisms of molecular DNA
repair; 41 of these genes had at least one RV, hence could
be tested. Table 4 reports seven genes with the top p values
for the weighted allelic parity tests. This test has the smal-
lest p values among the tests considered, and the top two
genes, BLM and MLH1, reach significance accounting for
multiple testing (at level 0.05/41 = 0.0012). For pathway
level analysis, we first tested the whole DNA repair path-
way, and then we tested its component pathways, each
having a different biological role in DNA repair (Table 5).
The p value for testing the entire DNA repair pathway
(significant at the 5% level) is smaller than the p values for
each of the component sub‐pathways; it is also smaller than
the p value of the top gene (MLH1), suggesting aggregate
testing can be effective. This confirms our intuition that the
signal is dispersed throughout the pathway, and shows that
multiple region testing can provide information not cap-
tured with gene‐level testing.

5 | DISCUSSION

In this communication, we consider the problem of
discovery of rare variants in a sample of ASPs.
Our methodological findings make headway in two
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directions: first, we develop powerful testing methods for
this particular study design at the region level. Second,
we extend these methods for use at the genetic pathway
level. The allelic parity test is novel, to our knowledge,
and offers important advantages compared to the other
methods considered. It has good type I error properties,
and the weighted version can be more powerful than the
other tests as evident in all simulation scenarios con-
sidered. The power advantage comes at the price of
sensitivity to the accuracy of the external RV frequency
values, but we propose that this can be remediated by use
of an empirical null distribution method. Moreover, we
find good robustness to sequencing errors and de novo
mutations, as well as to rare variant criteria.

The performance of the allelic parity methods over
tests that regress allele count on IBD state can be ex-
plained by the fact that allele parity counting (whether
alleles appear as singles or duplicates) is a better dis-
criminator between susceptibility and null regions at the
sib pair level, compared to IBD state. This is illustrated
graphically in Figure S2 in the Supporting Information,

which plots allele enrichment under the null and alter-
native. The regression of counts versus IBD goes from a
slope of zero (under the null) to a positive slope (under
the alternative), and this is captured by the regression
tests. However, a simple linear regression cannot capture
the fact that, when IBD is 1, the ratio of duplicate alleles
to single copies (i.e., D S2 :i i) also increases (>1), which is
extra information used by the allelic parity test. Also
notable is the general enrichment in rare alleles for all
IBD sharing states. This is missed by all tests except for
the weighted allelic parity, which compares counts
against a baseline level, supplied externally.

We expect that the allelic parity tests we propose will
be robust to confounding by population structure or en-
vironmental factors, with some caveats. The empirical
test compares double and single allele counts within each
sibpair and sums up this difference, which is strictly a
within‐family comparison and therefore robust to popu-
lation stratification. For environmental exposures shared
by the sibpair, the empirical version will be similarly
robust. However, a need remains for evaluation of

TABLE 4 Top hits for genes in DNA repair pathways (p value (ap‐w) < 0.1), rows are ordered by p value of the allelic parity‐weighted
test

Gene Chrom Ra p‐valRegression p‐valEpstein
p‐vala.p.
empirical

p‐vala.p.
weighted Pathwayb

MLH1 3 5 0.08 0.04 0.001 0.0002 2

BLM 15 3 0.35 0.13 0.003 0.0009 4

ERCC4 16 1 0.31 0.14 0.009 0.0014 3

XPC 3 3 0.18 0.29 0.047 0.0076 3

POLL 10 2 0.24 0.11 0.047 0.0082 5

POLD3 11 1 0.32 – 0.085 0.022 1, 3

XRCC3 14 1 0.50 0.45 0.085 0.030 4

Note: Full results are given in Table S1.
aR is the number of RV loci in the gene.
bPathway codes are: 1, base excision repair; 2, mismatch repair; 3, nucleotide excision repair; 4, homologous recombination; and 5, nonhomologous end‐joining.

TABLE 5 Pathway testing of DNA repair mechanisms (separately and jointly)

Pathway Ra
TRegres-

sion p‐valRegression Ta.p. empirical p‐vala.p. empirical Ta.p. weighted p‐vala.p. weighted

Base excision repair 26 −1.14 0.87 0.81 0.21 1.35 0.09

Mismatch repair 16 0.90 0.19 1.54 0.06 0.97 0.17

Nucleotide excision repair 20 1.58 0.07 1.19 0.12 3.46 2.7E−04

Homologous recombination 26 −0.31 0.62 −0.42 0.66 0.39 0.35

Nonhomologous end‐joining 17 0.21 0.42 0.94 0.17 2.02 0.02

DNA repair (all mechanisms) 83 0.43 0.34 0.83 0.20 3.67 1.2E−04

aR is the number of RV loci in the pathway.
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extensions that can account for individual‐specific risk
factors such as age at menarche. For the weighted version
which incorporates a population comparison, robustness
to population stratification requires that the external
allele frequencies accurately reflect the population
structure of the sample families. This means that fre-
quencies should be obtained for each population group,
after which a pooled μj estimate would be computed with
weights chosen to match the genetic diversity represented
in the sample. As larger more accurate reference popu-
lation panels are becoming available, it is increasingly
feasible to closely match samples to their background
population MAFs. With this setup, the denominators in
Tap w− could be expressed as aggregate differences within
ancestry groups, provided that the same variance in the
denominators can be used across groups. With a large
enough sample, one could relax this assumption and at-
tempt to standardize the Di's using different variance
estimates for different ancestry groups. The weighted
version would likely not be robust to other confounders,
but it may be possible to incorporate relevant covariates
into this and other test statistics, and further work to
investigate such extensions is warranted.

Testing at the pathway level can be informative,
especially when small to moderate effects are distributed
across functional pathways, a setting in which it would
be impossible to detect association at the single region
level without a very large sample. Because testing at the
pathway level will inevitably include a large number of
null variants in the statistics, the signal in a pathway
should be rich enough overall, and distributed broadly
enough for the tests to be successful at detecting it.
Besides power, the other benefit of pathway testing is that
it can offer functional insight into the etiology of disease,
beyond what a single gene might indicate. Once a path-
way has been identified and validated, it follows naturally
to examine each component gene (or RV) separately, to
gain a deeper understanding of how the pathway oper-
ates as a network.

Beyond methodological improvements, implications
for study design deserve to be brought to the forefront.
Previous authors have reported that the affected sibling
design is more cost effective than case/control studies
(Epstein et al., 2015; K. H. Lin & Zöllner, 2015; Zöllner,
2012). In particular, for single gene testing, Epstein et al.
(2015) demonstrate a twofold power gain for sib pair
testing (500 pairs) compared to case–control comparisons
(500 each), on average over different effect sizes, and
assuming that shared environmental and other genetic
factors between sibs do not have a very strong effect on
diagnosis. It stands to reason then, since our best test is
routinely 2–10 times more powerful than Epstein's, that
even under conservative scenarios applying it with an

ASP design is likely to compound the power gains com-
pared with case–control. A practical limitation of the ASP
design is the availability of ASPs for sequencing. How-
ever, at least for studies in which the barrier is cost of
sequencing rather than availability of subjects, the pro-
posed test should be of significant interest to investigators
looking to detect novel rare variants.
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APPENDIX A: EPSTEIN'S TEST AND THE
REGRESSION TEST

Epstein's test
Briefly, the method of Epstein et al. (2015) involves
testing for the slope of the regression of ∙Qi on Zi
being positive, namely H μ μ: − = 00 1 0 , as seen from

the main text (recall that Qi. = Σj=1, …, R Qij). This is
accomplished by first centering the two variables

as ∑∙ ∙ ∙Q Q WQ˜ = −i i i

N
i i=1

and ∑Z Z W Z˜ = −i i i

N
i i=1

,

where Wi is an estimate of ∙Var Q Z( ( | ))i i
−1. The

authors show that an efficient score to test H0 is pro-

portional to ∑ ∙WQ Z= ˜ ˜
i

N
i i i=1

 , which has an estimated

variance ∑ ∙WQ Z N N= { ˜ ˜ } − ( / )
i

N
i i i=1

2 2  . Hence their

∼Y N= / (0,1)burden   .

The quantities Wi require estimates of variance
parameters σ σand0

2
1
2. These are calculated as
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V̂0, V̂1, and V̂2 are the sample variances for the counts of
rare alleles possessed by affected sib pairs (ASPs) sharing
0, 1, or 2 alleles IBD, and are computed directly from data.

Regression test
We also propose a simpler version of Epstein's test that
assumes only one variance parameter (instead of two).
This corresponds more closely to standard regression,
and is preferable when data are insufficient to estimate
sample variances V̂0, V̂1, and V̂2, for example, when N is
small, and MAF is low. For a single (contiguous) region,
consider the regression

∼∙Q α βZ ϵ ϵ N σ i N= + + , (0, ), for all = 1, …,i i i i
2

which is implemented via the lm() function in R. The test
of β = 0 versus Ha: ≠β 0 has the form

∼T
β

SE β
t N=

ˆ

( ˆ)
( − 2).reg

At the pathway level, let ∙Q Q= Σqi j R qij=1, …, q
, for all

regions q p= 1,2, …, , and the regression equation is

∼∙Q α βZ ϵ ϵ N σ

i N q p

= + + , (0, ),

for all = 1, …, and = 1, …, .

qi qi i qi
2

The test statistic for β = 0 versus ≠β 0 is asympto-
tically normal

∼T
β

SE β
N=

ˆ

( ˆ)
(0, 1).reg

APPENDIX B: DERIVATION OF NULL
MEANS AND VARIANCES OF ALLELE
COUNTS
To compute the expected values of Si and Di, we first derive
the conditional probabilities P Q Z( | )ij i for all the combina-
tions of Q = 1,2ij and Z = 0,1,2i , where μj is the mean
number of rare alleles observed at locus j on a single
haplotype in the general population.

P Q Z P

μ μ

μ μ μ μ

( = 1| = 0) = (rare allele at locus j

on one of 4 haplotypes) = 4 (1 − )

= 4 − 12 + 12 − 4 ,

ij i

j j

j j j j

3

2 3 4

P Q Z

P

μ μ μ

μ μ μ

( = 1| = 1)

= (only rare allele on one of 2 non‐shared

haplotypes) = 2 (1 − )(1 − )

= 2 − 4 + 2 ,

ij i

j j j

j j j
2 3

P Q Z( = 1| = 2) = 0,ij i

( )

P Q Z

P

μ μ

μ μ μ

( = 2| = 0)

= (rare allele at locus j on exactly 2

of 4 haplotypes) = 4
2

(1 − ))

= 6 − 12 + 6 ,

ij i

j j

j j j

2 2

2 3 4

P Q Z

P

P

μ μ μ μ

μ μ

( = 2| = 1)

= (rare allele on both non‐shared haplotypes

and none on shared haplotypes)

+ (rare allele on shared haplotypes and

none on others) = (1 − ) + (1 − )

= − ,

ij i

j j j j

j j

2 2

2

P Q Z

P

μ μ

μ μ

( = 2| = 2)

= (rare alleles on one pair of shared haplotypes

and none on the other pair) = 2 (1 − )

= 2 − 2 ,

ij i

j j

j j
2

Then, E D( )i and E S( )i are computed by the law of total
expectation where f P Z= ( = 0)i0 , with f1 and f2 defined
similarly

∑ ∑

∑

∑

∑

∑

E D E I Q P Q

P Q Z P Z

P Q Z P Z

P Q Z P Z

μ μ μ f μ μ f

μ μ f

μ f f μ f f f

O μ

E S μ f f μ f f O μ

( ) = ( { = 2}) = ( = 2)

= ( = 2| = 0) ( = 0)

+ ( = 2| = 1) ( = 1)

+ ( = 2| = 2) ( = 2)

= (6 − 12 + 6 ) + ( − )

+ (2 − 2 )

= ( + 2 ) + (6 − ( + 2 ))

+ ( )

( ) = 2 ( + 2 ) − 4 ( + 3 ) + ( ),

i

j R

ij

j R

ij

j R

ij i i

ij i i

ij i i

j R
j j j j j

j j

j R
j j

j

i

j R
j j j

=1, …, =1, …,

=1, …,

=1, …,

2 3 4
0

2
1

2
2

=1, …,
1 2

2
0 1 2

3

=1, …,
1 0

2
1 0

3
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and

∑E D S μ f f μ f

μ f f O μ

(2 − ) = 4 ( − ) + 24

+ 2 ( − 2 ) + ( ).

i i

j R
j j

j j

=1, …,
2 0

2
0

2
1 2

3

In the absence of linkage, which we expect to be
the usual case under the null of no RV association: we

have ( )f f f f f f f( , , ) = , , , ( + 2 ) = 1, ( − ) = 0,0 1 2
1

4

1

2

1

4 1 0 2 0

f f( − 2 ) = 01 2 . Thus E D( )i simplifies to E D( ) =i

∑ μ μ μ+ − 3
j R j j j=1, …,

1

2
2 3 μ+ j

3

2
4=∑ μ μ O μ+ + ( )

j R j j j=1, …,

1

2
2 3 ,

and ∑ ∑E S μ μ μ μ μ( ) = 2 − 5 + 4 − = 2i j R j j j j j R j=1, …,
2 3 4

=1, …,

μ O μ−5 + ( )j j
2 3 , similarly.

Therefore, under the null hypothesis

∑

∑

E D S μ μ μ

μ O μ

(2 ¯ − ¯) = 6 − 10 + 4

= 6 + ( ).

j R
j j j

j R
j j

=1, …,

2 3 4

=1, …,

2 3

In the unusual case of linkage under the null (i.e.,
excess sharing in the region), the first order bias

∑f f μ(4( − ) )
j R j2 0 =1, …,

could be greater than zero when
f f>2 0. In the case of rare variants with MAF< 0.005, the
sum of population allele frequencies in the region will be
modest unless the set of RVs is quite large. Calculations
of bias in the numerator D S2 ̅ − ̅ for 41 DNA pathway
genes (Table S4) in the WES data (not shown) suggest
that bias under the null is small (specifically, in absolute
value, the bias is on average 3.3% of the absolute value of
the numerator).

To calculate the variance of Si and Di, we make the
assumption ∑Var D k Var I Q( ) = ( { = 2}),i j R ij=1, …,

where
the parameter k captures the effect of LD between loci.
We generally expect correlation to be small between rare
loci, however, we cannot assume independence (k = 1)
since this would lead to inaccuracies. Variance at a single
locus j can be computed as

Var I Q E I Q E I Q

P Q P Q

μ μ O μ

( { = 1}) = [ { = 1}] − [ ( { = 1})]

= ( = 1) − ( ( = 1))

= 2 − 9 + ( ).

ij ij ij

ij ij

j j j

2 2

2

2 3

The variance further simplifies to Var D( ) =i

∑k μ μ O μ− + ( )
j R j j j=1, …,

1

2
2 3 , and similarly Var S( ) =i

∑k μ μ O μ2 − 9 + ( )
j R j j j=1, …,

2 3 . The conditional variances

Var D Z( | = 1,2)i i , used as weights in the allelic parity
weighted test, are derived following the same process.

To estimate k we use the sample variances of Si and Di

computed from data (sS
2 and sD

2), and combine them to
obtain

k
s s

μ μ
ˆ =

+

Σ 3 −
.S D

j R j j

2 2

=1, …,
19

2
2

This factor which is defined as the ratio of Var D( )i to
the sum of variances of its individual terms accounts for
linkage disequilibrium (LD) within a region being tested
for RV association. The idea is to let the data inform k.
When there is no LD, then k should be estimated to be
close to 1, but in the presence of LD, k will be >1 due to
positive correlation between RVs, and hence produces
a higher Var D( )i compared to the summed variances
(over j) of I Q{ = 2}ij .

APPENDIX C: DERIVATION OF THE
ALLELIC PARITY TEST STATISTIC

Derivation for the variance of D S2 ̅ − ̅:

Var I Q I Q Var I Q

Var I Q

Cov I Q I Q

μ μ O μ

(2 { = 2} − { = 1}) = 4 ( { = 2})

+ ( { = 1})

− 4 ( { = 1}, { = 2})

= 6 − 3 + ( ),

ij ij ij

ij

ij ij

j j j
2 3

where we use the fact that Cov I Q I Q( { = 1}, { = 2}) =ij ij

μ O μ−2 + ( )j j
2 3 . It follows easily then that Var D S(2 ¯ − ¯) =

∑k μ μ O μ6 − 3 + ( )
N j R j j j
1

=1, …,
2 3 .

Derivation for empirical version of Tap emp− :

We make use of the result: =
a μ a μ O μ

b μ b μ O μ

Σ + + ( )

Σ + + ( )

j j j j

j j j j

1 2
2 3

1 2
2 3

μ O μ+ Σ + ( )
a

b

a b a b

b j j j
− 21

1

2 1 1 2

1
2 .

The denominator of Tap, under the square root, is

∑ ∑

∑
⋅ ⋅

N
k μ μ

N
s s

μ μ

μ μ

N
s s μ O μ

N
s s μ O μ

1 ˆ 6 − 3 =
1

( + )
Σ 6 − 3

Σ 3 −

=
1

( + )
6

3
+
−3 3 + 6

3
+ ( )

=
1

( + ) 2 +
16

3
Σ + ( ) ,

j
j

j
j S D

j j j

j j j

S D
j

j j

S D j j j

2 2 2

2

19

2
2

2 2

19

2

2
2

2 2 2⎜ ⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝

⎞
⎠

via the previous result. Ignoring the second order power
of the μj's and estimating Σjμj by ∙∙Q N/4 leads us to the
formula in the text.
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