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This data article describes the complete draft genome sequence of
Salmonella specific bacteriophage FSP3 isolated from chicken in-
testinal contents. The FSP3 genome was sequenced by paired end
runs using Illumina HiSeq 2500 with 100X coverage. Phylogenetic
analysis using major capsid gene and genome wide comparison
were performed to understand bacteriophage evolutionary
relationship. Genome sequence of bacteriophage FSP3 was
deposited in GenBank under the accession number MG387042.

© 2019 Published by Elsevier Inc. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Data

Bacteriophage FSP3 was isolated from chicken intestinal contents obtained from retail market in
Cochin (10.060256 N; 76.321881E) as a therapeutic agent against Salmonella [1]. The physicochemical
characteristics of the bacteriophagewere studied in detail [1]. The phage significantly reduced bacteria
applied on chicken cuts, especially at refrigerated conditions, making it an ideal candidate for storage
applications [2]. A consortium of phages including FSP3 also increased the longevity of C. elegans
infected with Salmonella [3], indicating its ability to control infections.
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Specifications Table

Subject area Biology
More specific subject area Genomics
Type of data Genome sequence data
How data was acquired shot gun method using Illumina HiSeq 2500 with paired end runs
Data format Raw and analyzed
Experimental factors chicken intestinal content obtained from retail market
Experimental features Draft genome sequence of Salmonella bacteriophage FSP3
Data source location Cochin, India (10.060256 N; 76.321881E)
Data accessibility Genome sequence was deposited in GenBank under the accession number MG387042

Value of the Data
� The sequence data confirms the lytic nature and absence of toxic genes of FSP3 bacteriophage, fulfilling with the

requirements for future commercialization.
� Data contributes to phage genomics which requires many more phages to be sequenced and analyzed, to fill the gaps of

unidentified proteins as well as evolutionary relationships.
� Phage genome data can also be used for screening and Identification of novel antimicrobial proteins.
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The transmission electron micrograph of FSP3 showed a bacteriophage with a hexagonal head
(53.77 ± 0.38 nm) and a distinguishable long non-contractile tail (123.66 ± 0.32 nm), which are typical
morphological features of family Siphoviridae, Fig. 1a [4]. The draft genome sequence of FSP3 genome
had a size of 109,106 bp with 39.5% GC content. Many short overlapping regions between adjoining
genes were frequently detected. There were 166 predicted ORFs in the genome of which 57 ORFs were
with assigned functions (S1). 55 genes were transcribed in rightward direction (strand þ) while 111
genes on the leftward direction (strand -). 16 tRNA encoding genes were identified. No gene related to
phage lysogeny was detected, confirming the lytic nature of the phage. Moreover, the absence of genes
encoding virulence and allergy inducing genes makes FSP3 highly innocuous for application. Single
gene analysis using major capsid gene (ORF 149) was used to determine bacteriophage evolutionary
relationship. It was observed that FSP3 clustered together with the T5 like phages (Fig. 1b). Another
approach to understand the relationship is via whole genome comparison with related phages. This
approach revealed that FSP3 was 97% similar to Salmonella phage SPC35. Aligning FSP3 with
well-studied T5 genome [10] showed 95% similarity, but did not show any similarity to T4, T7 and T3
phages.

The genome map of FSP3 is displayed in Fig. 2. Genome annotation analysis showed that FSP3
genome is functionally organized into modules containing gene clusters involved in different functions
viz genes required for inactivation of host genome as well as transfer of DNA, genes involved in
nucleotide metabolism, lytic processes, packing and morphogenesis cluster. The DNA end structures
can be predicted from the terminase amino acid sequence as the enzymes that generate the virion DNA
ends are quite diverse. These different types of ends reflect differing DNA replication. Accordingly, the
amino acid sequence of large terminase genes can be used to predict the packing strategy of phages
[5,6]. The large terminase gene with 1316 bp (ORF 156) of phage FSP3 clustered with phages having
known DNA termini and packing mechanisms. Phage FSP3 terminase gene clustered with that of T5
which shows that they have complex concatemeric packing mechanisms (Fig. 3) Moreover, the blast
alignment with Salmonella phage SPC35 showed presence of long terminal repeats with a size of
around 9000 bp.

2. Experimental design, materials, and methods

The phage morphology was determined by transmission electron microscopy (Model JOEL JEM-
100X).

Phage DNAwas extracted as per Sambrook et al. [7], and purity was determined in terms of 260/280
and 260/230 ratios. Phage genomewas sequenced by shot gunmethod using Illumina HiSeq 2500 with
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Fig. 1. a) Transmission electron micrograph image of phage FSP3 stained with 1% uranyl acetate (bar represents 60nm).
b) Phylogenetic tree based on major capsid gene of selected bacteriophages. The gene sequences are compared using the ClustalW
program, and the phylogenetic tree was generated using the neighbour-joining method and 1000 bootstrap replicates.

Fig. 2. Genome map of bacteriophage FSP3 (DNA plotter).
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Fig. 3. a) Phylogenetic tree on based amino acid sequences of terminase gene. FSP3 were clustered with phages of known termini
and with experimentally determined packaging mechanisms. The DNA termini structures of phages that have been experimentally
determined are indicated on right side on each cluster [5] structures have been experimentally determined are indicated.
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paired end runs with 100X Coverage. The whole genome sequences were assembled using IVA [8] and
SEQuel for correcting errors [9]. Genes were predicted using GeneMarkS [10]. Predicted ORFs were
annotated with BLASTX, Uniprot, NCBI Conserved Domain Database (CDD). DNA Plotter was used to
construct phage genome map [11] and tRNA gene prediction by tRNAscan-SE [12]. Phylogenetic tree
depicting the evolutionary relationship of Salmonella bacteriophagewas generated based on terminase
gene and major capsid gene by neighbour-joining method [13] using MEGA 7.0 software [14].
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104606.
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