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Abstract: In this work it is demonstrated that enantiomerically enriched N-alkyl 2-oxazolinylazetidines
undergo exclusive α-lithiation, and that the resulting lithiated intermediate is chemically stable
but configurationally labile under the given experimental conditions that afford enantioenriched
N-alkyl-2,2-disubstituted azetidines. Although this study reveals the configurational instability
of the diastereomeric lithiated azetidines, it points out an interesting stereoconvergence of such
lithiated intermediates towards the thermodynamically stable species, making the overall process
highly stereoselective (er > 95:5, dr > 85:15) after trapping with electrophiles. This peculiar behavior
has been rationalized by considering the dynamics at the azetidine nitrogen atom, the inversion at
the C-Li center supported by in situ FT-IR experiments, and DFT calculations that suggested the
presence of η3-coordinated species for diastereomeric lithiated azetidines. The described situation
contrasted with the demonstrated stability of the smaller lithiated aziridine analogue. The capability
of oxazolinylazetidines to undergo different reaction patterns with organolithium bases supports
the model termed “dynamic control of reactivity” of relevance in organolithium chemistry. It has
been demonstrated that only 2,2-substituted oxazolinylazetidines with suitable stereochemical re-
quirements could undergo C=N addition of organolithiums in non-coordinating solvents, leading to
useful precursors of chiral (er > 95:5) ketoazetidines.

Keywords: azetidines; organolithiums; nitrogen dynamics; heterocyclic chemistry; computational chemistry

1. Introduction

Azetidines [1] are particularly interesting structural motifs among the large
family of saturated nitrogen heterocycles. Although azetidines have been regarded
as esoteric analogues of aziridines, recently such four-membered heterocycles have
proven to be appealing for diverse applications, especially in medicinal chemistry
and as agrochemicals. The interest towards this heterocyclic scaffold culminated in
the development of new strategies for its synthesis. These include ring contractions,
cycloadditions, C–H activations, cross-couplings, and strain-release tactics [2–7].
Among the different strategies to synthesize azetidines, the base promoted C2 metala-
tion with subsequent electrophilic trapping is a valid approach for accessing the more
complex azetidine derivatives that start from a preformed heterocyclic core. In this
context, recent studies on N-protected azetidines have shed some light on the struc-
tural factors that play a key role in the regio- and stereoselective C2-lithiation reaction.
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In fact, when an electron-withdrawing group, such as t-BuOC=O (Boc), t-BuSO2 (Bus),
t-BuOC=S (thio-Boc), or thiopivaloyl (t-BuC=O), is installed on the azetidine’s ni-
trogen, exclusive α-lithiation occurs and a variety of C2-functionalized azetidines
can be prepared via the α-lithiation/electrophilic trapping sequence (Scheme 1a) [8–
12]. Additional insights have been provided by our group on the factors affecting
the reactivity and regioselectivity of the lithiation of N-substituted aziridines and
azetidines [13–15]. Strained aza-heterocycles nitrogen dynamics and complexation
phenomena play a pivotal role in controlling the regio- and stereoselectivity of the
lithiation reaction [16]. Interestingly, while N-Boc-2-aryl-azetidines underwent ex-
clusive α-lithiation upon reaction with a lithium base, [17,18] the presence of an
electron-donating group (EDG), such as an alkyl group, on the nitrogen atom renders
the azetidine ring—an effective ortho-directing metalation group (DMG)—able to pro-
mote exclusive aromatic lithiation (Scheme 1a) [19]. In fact, an N-EDG group would
increase either the basicity or the coordinating capability of the nitrogen. There-
fore, a drastically enhanced kinetic acidity of the ortho-aromatic protons is observed
jointly with a higher capability for the nitrogen atom to act as an ortho-directing
group. These results prompted us to propose a model based on the assumption that
dynamic factors and coordination effects could play an important role in addressing
the regioselectivity of the lithiation of small heterocycles. It could be claimed that
the control of molecular stereodynamics by external stimuli could be exploited to
prepare structurally different compounds from the same starting material because of
a different reactivity related to a configuration or conformational preference. This
intriguing concept that we termed “dynamic control of reactivity” has already been
demonstrated in our group some years ago while studying the C-H functionaliza-
tion of aziridines bearing an N-EDG substituent that was able to undergo rapid
N-inversion (Scheme 1b). A control on the rate of the nitrogen inversion by control-
ling the reaction temperature allowed for switching between two different reaction
pathways (i.e., ortho-lithiation or α-lithiation) [20–22]. Similarly, the complexation
capability of alkylideneaziridines was affected by the solvent, thereby allowing for a
stereochemical switch in the lithiation reaction (Scheme 1b) [23].

More recently, the study on aziridines bearing an EDG group (i.e., alkyl) on
the nitrogen atom, and an oxazoline moiety as the EWG group at C2 revealed the
importance of complexation and nitrogen dynamics in their reactivity with organo-
lithium reagents [24]. In particular, starting from optically active N-phenylethyl-2-
oxazolinylaziridines, a regioselective lithiation was observed with n-butyllithium
at −78 ◦C in coordinating solvent, such as THF, thereby furnishing enantioenriched
2,2-disubstituted aziridines (Scheme 2a). The same study demonstrated that the
configurational stability of the α-lithiated intermediate was due to a high barrier
to N-inversion. Remarkably, the same aziridines underwent competitive reaction
pathways in non-coordinating solvents, such as toluene. In competition with the
deprotonation, a counterintuitive nucleophilic attack of the organolithium to the C=N
double bond of the oxazoline ring was observed. Such a nucleophilic addition was
the result of a combination of strict stereochemical requirements associated with the
nitrogen inversion and complexation phenomena (Scheme 2a). For the sake of compar-
ison, a similar study was executed on the homologue N-alkyl-2-oxazolinylazetidine
(Scheme 2b) [25]. In striking contrast to the three membered heterocycles, this com-
parative study on N-alkyl-2-oxazolinylazetidine, which was conducted in a non-polar
solvent such as toluene, revealed a more interesting reactivity profile. In fact, the
exclusive chemoselective nucleophilic attack of the organolithium to the C=N bond
of the oxazoline ring was observed, even at 0 ◦C, exclusively affording the corre-
sponding oxazolidinylazetidine in a highly stereoselective manner. Remarkably, this
approach led to hardly accessible chiral 2-acylazetidines in good yields and high
enantiomeric ratios upon the hydrolysis of the oxazolidine ring under mild acidic
conditions. The proposed mechanism for this stereoselective addition, which is sup-
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ported by DFT calculations, relies again on strict stereochemical requirements and
complexation phenomena.
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With these results in hand, we felt compelled to further explore the reactivity of N-alkyl
oxazolinylazetidines in more polar solvents to check if the α-lithiation could have been a
possible reactive event (Scheme 2c). We report herein the result of this investigation and a
comprehensive spectroscopic and computational study on the lithiated species involved in
this highly stereoselective process.
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2. Results

Diastereomeric oxazolinyl azetidines (2S,1′R)-1 and (2R,1′R)-1 were prepared starting
from chiral diastereomeric N-[(R)-1-phenylethyl)azetidine-2-carboxylic acid esters (see
Supplementary Material). First, we investigated the stereoselectivity for a deuteration
reaction by reacting chiral (2R,1′R)-1 with organolithium bases in THF at low temperatures,
followed by electrophilic quench (Table 1). As expected, when a solution of (2R,1′R)-1 was
reacted with 1.2 equivalents of n-hexyllithium (n-HexLi) at −78 ◦C for 30 min, followed
by quenching with a deuterium source, a mixture of diastereomeric deuterated products
(2R,1′R)-2a and (2S,1′R)-2a were obtained, albeit with a low conversion (Table 1, entry
1). To our delight, better yields and higher conversions were observed by using 2.2 and
2.8 equivalents of n-HexLi (entries 2 and 3), albeit reaction conversion was up to 40%.
This prompted us to further optimize the reaction conditions and, gratifyingly, when the
reaction was carried out with 3.5 equivalents of n-HexLi, (2R,1′R)-2a was obtained in a 90%
yield along with 10% of (2S,1′R)-2a (entry 4).

Under the optimized conditions (2 equivalents of s-BuLi, 20 min,−78 ◦C), the 1H NMR
analysis of the crude reaction mixture showed the formation of diastereomeric deuterated
products, (2R,1′R)-2a and (2S,1′R)-2a, in a 90:10 ratio (Figure 1). This result suggested
that azetidine (2R,1′R)-1 could epimerize under the lithiation conditions, which are likely
for the intrinsic configurational lability of the lithiated intermediate [26]. Similarly, the
lithiation/deuteration sequence on diastereomeric (2S,1′R)-1, under optimized conditions
(Table 1, entry 6), furnished a diastereomeric mixture of deuterated azetidines (2R,1′R)-2a
and (2S,1′R)-2a in a high yield and with the same diastereomeric ratio (90:10) observed
for (2R,1′R)-1 (Table 1). With this evidence in hand, it is reasonable to assume that both
azetidines, (2R,1′R)-1 and (2S,1′R)-1, could be regioselectively lithiated at the α-position
(i.e., C2), and that the putative intermediates, (2R,1′R)-1-Li and (2S,1′R)-1-Li, could un-
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dergo fast equilibration (epimerization). In striking contrast to configurationally stable
lithiated oxazolinylaziridines, lithiated oxazolinylazetidines undergo rapid epimerization
that is likely by a double inversion of the configuration at the lithiated carbon and at the
azetidine’s nitrogen.

Table 1. Optimization of lithiation/deuteration sequence on diastereomeric oxazolinylazetidines
(2R,1′R)-1 and (2S,1′R)-1.
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In Scheme 3, it is reported that the epimerization process involved the lithiated
azetidines (2R,1′R)-1-Li and (2S,1′R)-1-Li. In particular, the process must involve four
different species resulting, respectively, from two C-Li inversions and two N-R inversions.
In fact, NOESY experiments confirmed that, in starting azetidines (2R,1′R)-1 and (2S,1′R)-
1, the oxazolinyl ring and the N-phenylethyl group are set in an anti-arrangement [25].
This suggests that starting from (2R,1′R)-1, upon deprotonation, trans-(2R,1′R)-1-Li could
be generated first and then undergo either a C-Li inversion producing syn-(2S,1′R)-1-Li or
N-R inversion giving syn-(2R,1′R)-1-Li. On this basis, N-R inversion on syn-(2S,1′R)-1-Li
would give anti-(2S,1′R)-1-Li, which, upon C-Li inversion, would converge again to syn-
(2R,1′R)-1-Li in a sort of looping process. This dynamic scheme would explain the 90:10
diastereomeric ratio and the stereo-convergence towards (2R,1′R)-2a that was observed
in the lithiation/deuteration sequence of both (2S,1′R)-1 and (2R,1′R)-1. However, the
configurational lability observed in these lithiated azetidines is in striking contrast
to the configurational stability observed for the corresponding oxazolinylaziridines
(Scheme 3b).
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In fact, DFT calculations and reactivity studies on lithiated oxazolinylaziridines sup-
ported the hypothesis that the energy barrier for both N-R and C-Li inversion is too high to
be overcome, thus contributing to the configurational stability of η3-coordinated lithiated
intermediates [24]. By contrast, N-R inversion and ring puckering in azetidine is expected
to be easier with respect to aziridines due to a lower energy barrier for the larger heterocy-
cle [27,28]. With the aim to get useful insights for this epimerization process, we decided to
perform an in situ FT-IR investigation and DFT calculations on the neutral and lithiated
azetidines species involved in this process.

3. In Situ FT-IR Investigation

By using a mid-infrared FT-IR probe, the progression of the lithiation reaction was
monitored in situ at −78 ◦C [29–31]. The investigation was restricted to the range of
1700–1575 cm−1, which includes the diagnostic stretching vibrations of the C=N double
bond of the oxazoline ring. In neutral azetidine (2R,1′R)-1, the C=N signal was detected
at 1658 cm−1 in 0.2 M THF solution at −78 ◦C (Figure 2). In the first experiment, upon
addition of a solution of s-BuLi, new signals were observed in the range of 1580–1625 cm−1.
The new signals were ascribed to the putative lithiated azetidines (Figure 2a). Monitoring
the progress of the reaction for 20 min revealed the complete disappearance of the signal
at 1658 cm−1 and the persistence of signals in the range of 1580–1625 cm−1. No further
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changes were observed when monitoring the reaction for 1 h. The newly detected signals
were centered at 1603 cm−1 and ascribed to the equilibrating lithiated species (2R,1′R)-1-Li
and (2S,1′R)-1-Li.
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In a second in-situ FT-IR experiment using a faster signal detection, a transient
large signal in the range of 1650–1590 cm−1 (Figure 2b) was observed a few seconds
after the addition of the lithium base. According to previous evidence for similar
reactions [32], we supposed that the transient signal could belong to a pre-lithiation
complex between the oxazolinylazetidine and the organolithium base just before the
deprotonative event. Moreover, deprotonation was concluded in 15–20 s, resulting in
the disappearance of the signal at 1658 cm−1 and the appearance of a broad signal in
the range of 1580–1625 cm−1 that was assigned to the equilibrating lithiated species
(2R,1′R)-1-Li and (2S,1′R)-1-Li. When the electrophile (CD3OD) was added dropwise
to the reaction mixture, the broad signals disappeared and a new signal at 1650 cm−1

(νC=N), which was likely the quenched oxazolinylazetidine, appeared. 1H NMR anal-
ysis of the crude reaction mixture confirmed the presence of azetidines (2R,1′R)-2a and
(2S,1′R)-2a as a 90:10 mixture of diastereoisomers. It is worth mentioning that lithiation
on diastereoisomer (2S,1′R)-1, conducted under in-situ FT-IR monitoring, returned the
same IR profile observed for (2R,1′R)-1. This result supports the hypothesis that upon
addition of s-BuLi, a configurationally labile lithiated intermediate is generated and a
stereo-convergence favoring (2R,1′R)-1-Li takes place.
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4. DFT Studies

To further support the experimental evidence obtained by the in-situ FT-IR analy-
sis, as well as to get additional information on the structure and energies of the lithiated
oxazolinylazetidines (2R,1′R)-1-Li and (2S,1′R)-1-Li, a detailed DFT study was exe-
cuted. Neutral and lithiated oxazolinylazetidines were subjected to DFT computational
analysis using different DFT methods and solvation models (see Supplementary Infor-
mation). The relative stereochemistry (syn or anti) between the N-substituent and the
oxazoline ring was also judiciously taken into consideration. For neutral azetidines
(2R,1′R)-1 and (2S,1′R)-1, NOESY experiments confirmed that the oxazoline ring and
the N-substituent have an anti-arrangement. Pleasingly, the DFT calculations also
corroborated this experimental stereochemical evidence, and a computed unscaled
wavenumber for νC=N was in good agreement with the corresponding experimental
values (Figure 3).
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IEF-PCM solvation model at the BVP86/6-31+G(d,p).

As delineated in Scheme 3, four lithiated oxazolinylazetidines, likely involved in the
epimerization process, were computationally investigated as well. The computed struc-
tures of anti-(2R,1′R)-1-Li at the WB97XD 6-31+G(d,p) level (Figure 4 and Supplementary
Material) showed an important stabilization effect in the solvent THF. Moreover, both
the IEF-PCM and CPCM solvation models revealed an interesting relationship for the
computed wavenumber for the C=N bond and the experimental values and furnished the
Gibbs free energies for the four lithiated intermediates. Lithium can be bonded either by
the oxazoline ring (via η3-complex) or by the lone pair of the azetidine’s nitrogen for the
anti and syn arrangement of the substituents, respectively (see infra). However, the DFT
study disclosed that the most stable structure was anti-(2R,1′R)-1-Li, which showed an
η3-complex and a calculated νC=N of 1613 cm−1 (using WB97XD 6-31+G(d,p) basis set
and IEF-PCM model). This calculated C=N vibrational value appears consistent with the
value of 1603 cm−1 that was observed by in situ FT-IR experiments, and at lower wavenum-
ber with respect to the neutral oxazolinylazetidine anti-(2R,1′R)-1 (νC=Ncalc 1655 cm−1

vs. νC=Nexp 1658 cm−1). Interestingly, in agreement with the experimental observations,
the more stable lithiated structures were anti-(2R,1′R)-1-Li and anti-(2S,1′R)-1-Li, which
showed the involvement of the C=N group in the complexation of the lithium ion. This
justifies the shift of ~50 cm−1 to lower wavenumbers for the C=N stretching frequency
upon lithiation, and it is indicative of a weakening of the C=N bond that is likely involved
in the η3-coordination with lithium (Figure 4).
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5. Reaction Scope

After addressing the structural features of the lithiated azetidines and assessing that
a major stereoisomer could be involved, the synthetic potentials were explored. With
the optimized conditions in hand, both diasteromeric oxazolinylazetidines (2R,1′R)-1 and
(2S,1′R)-1, were employed in the lithiation/electrophile trapping sequence, leading to
products 2b-g (Scheme 4). The 2,2-disubstituted azetidines 2b-g were isolated in moderate
to excellent yields and with high stereoselectivity. In almost all cases a major distereoisomer
was observed whose absolute stereochemistry at C2 was supposed to be (R), based on the
result observed in the lithiation/deuteration experiments [33]. As reported in Scheme 4,
quenching with alkyl halides returned highly enantioenriched 2,2-disubstituted azetidine
2b-g in good to excellent yields and high diastereoselectvity (dr > 85:15). By using Boc2O
as the electrophile, enantioenriched ester 2h was obtained in a 94% yield and 90:10 diastere-
omeric ratio. The use of acetone as a representative carbonyl electrophile resulted in lower
diastereoselectivity (dr 65:35) for the trapping product 2i. However, the two diastereoiso-
mers were separable and were found highly enantioenriched (er > 99:1). The identity and
stereochemistry of the diastereisomer minor-2i, was ascertained by single crystal X-Ray
diffraction [34]. The stereochemistry at C2 in minor-2i agreed with the stereochemistry
observed for the alkylation reactions. This would suggest that, although the α-lithiation
produces equilibrating lithiated azetidines, the nature of the electrophile could affect the
diastereoselectivity of the trapping reaction. The possibility of an electrophile-dependent
kinetic resolution cannot be ruled out at this stage. Moreover, this process is complicated
by the involvement of four different lithiated azetidines as reported in Scheme 3. Interest-
ingly, the alkylation reaction produced different N-stereoisomers depending on the steric
demand of the alkyl substituent introduced at C2. In detail, 2D-NOESY experiments (see
Supplementary Material) on methylated product 2b clearly showed that the N-substituent
and the oxazoline ring adopt an anti-arrangement. In striking contrast, 2D-NOESY ex-
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periments demonstrated that in derivatives 2c-g the N-substituent and the oxazoline ring
are in a syn-arrangement. The stereochemical preference has also been confirmed by DFT
calculations for 2b and 2c (see Supplementary Material). Similarly, 2D-NOESY experiments
for both diastereoisomers major-2i and minor-2i showed the syn-arrangement between
the N-substituent and the oxazoline ring, as confirmed by the X-ray analysis of minor-2i
(Scheme 4). This stereochemical preference is relevant if we consider the epimerization
mechanism reported in Scheme 3. In fact, syn-(2R,1′R)-1-Li could be involved in the direct
retentive trapping of the electrophile. However, at this stage, the possibility of N-inversion
after the reaction with the electrophile of (2R,1′R)-1-Li cannot be ruled out.
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tioenriched azetidines.

The stereochemical preference (syn or anti) of the azetidine’s nitrogen substituent
is also relevant for reactivity. In fact, the nucleophilic addition at the C=N bond of the
oxazoline ring is strongly dependent on the stereochemistry of the oxazolinylazetidine [24].
According to our previous findings, which showcase that the nucleophilic addition of
organolithiums to the C=N bond of the oxazoline ring occurs smoothly in toluene, we
wondered if the same process could have been productive with 2,2-disubstituted oxa-
zolinylazetidines en route to not easily obtainable 2,2-ketoazetidines. To our delight, the
nucleophilic addition of ethyllithium and butyllithium to oxazolinylazetidine anti-(2R,1′R)-
2b in toluene at −78 ◦C produced, after acidic work-up and silica gel chromatography,
enantioenriched 2-acylazetidines (2R,1′R)-3a,b in very good yields and absolute preser-
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vation (er > 95:5, Scheme 5a). In striking contrast, the same nucleophilic addition of
organolithiums did not take place with oxazolinylazetidine syn-(2R,1′R)-2c bearing the
oxazoline ring and the N-substituent from the same side (Scheme 5b). In this last case,
unreactive starting material was recovered. The key in these chemoselective additions to
the C=N bond is in the right stereochemistry (i.e., syn or anti), which is able to produce
reactive or unreactive complexes with the organolithium nucleophile (Scheme 5). In further
detail, only with the anti-arrangement—as for anti-(2R,1′R)-2b, for example—is it possible
to produce a reactive complex that is able to promote C=N addition. The lack of reactivity
of syn-(2R,1′R)-2c supports the model, based on complexation previously reported [25].
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6. Conclusions

In conclusion, a method for accessing enantioenriched N-alkyl-2,2-disubstituted aze-
tidines by α-lithiation of N-EDG azetidines has been reported. The study revealed that a
chemically stable but configurationally labile lithiated azetidine is involved, which is in
contrast with the reported configurational stability of the corresponding lithiated aziridines.
The involvement of equilibrating diastereoisomeric lithiated azetidines has been supported
by in-situ FT-IR analysis and DFT calculations. The importance of stereochemical pref-
erences at the azetidine’s nitrogen has also been demonstrated with the enantioselective
preparation of 2-acylazetidines.
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