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Abstract 
 

Areal spatial misalignment, which occurs when data on multiple variables are collected using 

mismatched boundary definitions, is a ubiquitous obstacle to data analysis in public health and 
social science research. As one example, the emerging sub-field studying the links between 

political context and health in the United States faces significant spatial misalignment-related 

challenges, as the congressional districts (CDs) over which political metrics are measured and 
administrative units, e.g., counties, for which health data are typically released, have a complex 

misalignment structure. Standard population-weighted data realignment procedures can induce 
measurement error and invalidate inference, which has prompted the development of fully 

model-based approaches for analyzing spatially misaligned data. One such approach, atom-

based regression models (ABRM), holds particular promise but has scarcely been used in 
practice due to the lack of appropriate software or examples of implementation. ABRM use 

“atoms”, the areas created by intersecting all sets of units on which variables of interest are 
measured, as the units of analysis and build models for the atom-level data, treating the atom-

level variables (generally unmeasured) as latent variables. In this paper, we demonstrate the 

feasibility and strengths of the ABRM in a case study of the association between political 
representatives’ voting behavior (CD-level) and COVID-19 mortality rates (county-level) in a 

post-vaccine period. The adjusted ABRM results suggest that more conservative voting record 
is associated with an increase in COVID-19 mortality rates, with estimated associations smaller 

in magnitude but consistent in direction with those of standard realignment methods. The results 

also indicate that ABRM may enable more robust confounding adjustment and more realistic 
uncertainty estimates, properly representing the uncertainties arising from all analytic 

procedures. We also implement the ABRM in modern optimized Bayesian computing programs 

and make our code publicly available, which may enable these methods to be more widely 
adopted. 
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1 Introduction 
 
The COVID-19 pandemic, which simultaneously deepened political divisions in the United 

States (US) and shined a light on the role of the political system in population health, sparked 
increased scientific interest in the associations between political context and health outcomes1–

5. In contrast to assessments of individual political ideology and health, as measured by 

individual-level survey questions and/or by aggregated voting data (at the precinct or county 
level) on voter political lean, several members of our team recently published a novel study on 

the relationship between political representatives’ voting behavior and constituents’ health5. 
Specifically, this study analyzed associations between congressional representative voting 

behavior (plus other political metrics at the state level), and congressional district (CD) level 

COVID-19 outcomes reaggregated from county-level data. The analysis revealed that districts 
with representatives with more conservative voting patterns experienced increased COVID-19 

mortality rates and stress on intensive care unit capacity, even after adjusting for 

sociodemographic and economic conditions and vaccination rates5. 
 

Studies of this kind, which seek to link US congressional district-level political metric data with 
publicly available health data reported at standard census geographies (e.g., counties) must 

contend with the issue of areal spatial misalignment6. The same holds for other political units, 

such as state legislature districts, or city council or ward districts, which likewise can intersect 
with the boundaries of counties and census tracts. Areal spatial misalignment (hereafter simply 

spatial misalignment for brevity) occurs when areal data on multiple variables are collected 
using mismatched boundary definitions, and is a common obstacle to data harmonization and 

analysis across a range of fields. In political metric and health studies, political metric data may 

inherently arise at the CD level, e.g., representatives’ voting patterns, while the most granular 
health metric data publicly accessible are often aggregated to the county-level (as in Krieger et 

al5). Analyses seeking to investigate associations in CD and county-level features must confront 
a complex bi-directional spatial misalignment scenario, as counties can intersect CDs, be fully 

nested within CDs, or fully contain one or more CDs. Figure 1 displays an example of two types 

of spatial misalignment visible in the counties and CDs (from the 2010 redistricting cycle) in 
Vermont and New Hampshire. In Vermont, all counties are nested fully within the state’s single 

CD. In New Hampshire, there is non-nested misalignment in counties and CDs, with several 

counties intersecting both of the state’s two congressional districts. 
 

There is a large literature on the challenges and consequences of spatial misalignment7–14. In 
practice, spatial misalignment is nearly always dealt with during data processing, when each 

area-aggregated measure is reapportioned to a common target set of geographic units 

(“realigned”), and then analysis and inference proceeds as usual using the realigned data. 
Dasymetric methods represent one approach to realignment, where a strong and often 

unrealistic assumption of no within-area variability is imposed for each measure, and values are 
reapportioned to the target units via population-weighting. Dasymetric methods have previously 

been used to realign data in the context of political metrics and health research5. This type of 

apportionment-based realignment is deterministic and can introduce measurement error and 
confounding that bias effect estimates of interest15,16. Additionally, because the uncertainty 
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introduced by the realignment procedures is typically not accounted for in downstream 

modeling, analytic results are likely to suffer from under-estimated uncertainties and invalid 
inference. 

 
Fully model-based methods for addressing spatial misalignment have also been proposed in the 

statistical literature6,9,11,13,17–19. Many such methods approach the misalignment problem by 

assuming that any measure used in the analyses arises from a smooth underlying spatial risk 
surface6,9,14,19. Then, Gaussian process models are employed to create smooth predicted risk 

surfaces for each measure, and associations are assessed by extracting and analyzing 
predictions at a common set of points from each measure’s risk surface. In the context of 

political metrics and health research, because the scientific hypotheses contend that political 

representation and voting patterns are associated with health/health-relevant exposures20, and 
political representation may change sharply at congressional district boundaries, the notion of a 

smooth underlying spatial surface is at odds with the hypotheses. 

 
These considerations motivate our focus on a small literature proposing atom-based regression 

models (ABRM) for analyzing spatially misaligned data17,21, which do not rely on the assumption 
of a smooth spatial risk surface. ABRM use as the units of analysis the areas created by 

intersecting all sets of areal units on which variables of interest are measured (“atoms”). 

Because, in the most general case, variables of interest are unobserved at the atom level, this 
approach treats the atom-level unmeasured values of covariates or outcomes as latent 

variables, and builds models allowing them to be sampled, conditional on observed values 
across some unions of the atoms. ABRM provide a fully model-based approach for analyzing 

misaligned data without any assumption of smoothness or need to spatially align all variables 

prior to analysis, and the resulting inferential quantities properly represent the uncertainties 
arising from all model components, in contrast to deterministic reapportionment approaches. 

Thus, they offer a promising modeling framework for studying associations between political 
metrics and health. 

 

Although they were introduced in the statistical literature more than two decades ago, ABRM 
have rarely, if ever, been employed in scientific practice. This is likely due to the difficulty of 

implementing these complex Bayesian models from scratch and the lack of “off-the-shelf” 

software or examples to guide implementation, as well as their sizeable computational 
demands. In this paper, we implement an ABRM in Nimble22,23, a modern, optimized Bayesian 

sampling software accessible through R24, and demonstrate its application to a case study of 
political metrics and health. In particular, we conduct an analysis that builds on the study by 

Krieger et al5 to assess the association between congressional representatives’ voting patterns 

(CD level) and COVID-19 mortality (county level), during a period of vaccine availability, using 
ABRM. We compare the ABRM results to those obtained using standard realignment 

approaches with various selections for the target units. This work can serve as a guide to others 
seeking to use model-based approaches to analyze spatially misaligned areal data, in the 

context of political metric and health studies, and beyond. 
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2 Methods 
 
2.1 Spatial units of analysis 
 
Our study is based on data for the entire continental US, to sidestep issues with spatial 

modeling that arise when including Alaska and Hawaii. The most spatially granular level at 

which the COVID-19 outcomes of interest (described in detail in Section 2.2) are released is the 
county level. However, our primary covariate of interest (Section 2.3) is inherently defined at the 

CD level, using CD boundaries from the 2010 redistricting cycle. We thus wish to assess 
associations between variables collected at the county and CD levels, which creates a two-

level, bi-directional spatial misalignment structure (Figure 2). In the time period under study, 

while most counties-- 87% of counties in the continental US-- were fully contained within a 
single CD, others were split by CD boundaries, and in a few rare cases largely occurring in 

densely populated counties, multiple CDs were fully contained within a single county. Moreover, 

while only 13% of counties were intersected by more than one CD, these counties contained 
60% of the US population. 

 
For this study, atoms are created by intersecting county and CD boundaries (Figure 2). Thus, 

each atom overlaps a single county and a single CD. Atoms containing zero population are 

omitted from the analyses (1.7% of atoms). Our analytic dataset contains 3,104 counties, 432 
CDs, and 3,728 atoms (Table 1). Note that our exclusion of Alaska (1 CD) and Hawaii (2 CDs) 

accounts for our use of 432 out of the total 435 US CDs. 72% of the atoms are county-
equivalent atoms, i.e., atoms exactly equivalent to counties, a result of the fact that most 

counties are fully contained within one CD. The remaining atoms are sub-county atoms. 

 
All data used in our analyses are collected at either the county level, CD level, or the census 

block level. Census blocks are the only census geographies that are guaranteed by design to be 
fully nested within both counties and CDs, so data obtained at the census block level can be 

directly aggregated to the atom level. 

 
2.2 Outcomes 
 

Our outcome of interest is COVID-19 mortality during April 2021-March 2022, a time frame 
during which the COVID-19 vaccine was publicly available in the US. Counties are the smallest 

units for which COVID-19 mortality data are made publicly available nationwide. As in Krieger et 
al5, we collect county-level COVID-19 death counts for April 2021-March 2022 from the CDC 

Wonder Database (Provisional Mortality Statistics). Death counts <10 are suppressed in this 

data source, thus we impute values for counties with suppressed counts as described in Krieger 
et al5.  

 
Because our interest lies in COVID-19 age-adjusted death rates rather than death counts, we 

also obtain population count data to serve as denominators. Because our model is built at the 

atom level, we prefer atom-level data where available. Thus, we compute total population 
counts by aggregating census block-level counts from the 2020 Decennial Census redistricting 
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files to the atom level. At the time of writing, age distribution data from the 2020 census have 

not yet been released, so we obtain age distribution information at the county level from the 
2016-2020 5-year American Community Survey (ACS) data. We assume that age distributions 

are constant across atoms within each county and use these age distributions, alongside atom-
level total population counts, to create atom-level expected COVID-19 mortality counts. These 

serve as the denominators in our models of age-standardized rates. 

 
2.3 Predictors 
 
Our primary covariate of interest is the DW-NOMINATE dimension score 125, which is a 

measure of the political ideology of a CD’s congressional representatives calculated based on 

votes cast April 2021-March 2022. DW-NOMINATE can take values between -1 and 1, with 
lower values indicating more liberal voting patterns and higher values indicating more 

conservative patterns. This measure is defined and created at the CD level. Importantly, we 

note that it is not an aggregate measure-- each individual in the CD is “exposed” to the voting 
patterns of the CD’s representatives—and is therefore constant within a CD. Thus, for the 

purposes of our atom-based modeling approach, we can assume that each atom should inherit 
the DW-NOMINATE score of the CD containing it. 

 

As in Krieger et al5, the aim of this case study is to assess associations, not to make causal 
inference. However, we wish to adjust for several well-established community-level risk factors 

for COVID-19, and in this study use several social and economic variables also included in the 
Krieger et al study5. In particular, community impoverishment is an important adjustment 

variable in our analyses, which we measure using the percent of residents in poverty extracted 

from the 2016-2020 5-year ACS at the county level. Note that this variable can in fact be 
obtained down to the census block group level, but because census block groups are not 

nested within our other geographies (CDs and atoms), collecting data at that level would 
introduce another level of spatial misalignment, so we use the county-level measure instead. 

Poverty is an area-aggregate measure and so, unlike DW-NOMINATE, cannot be assumed to 

be constant across atoms within a county. We also adjust for areal racialized group composition 
measures (percent Black, percent Hispanic, percent Asian, and percent American Indian/Alaska 

Native [AIAN]) and population density in our models, which are collected at the census block 

level from the 2020 Decennial Census redistricting files and aggregated to atoms. 
 

2.4 Atom-based regression model 
 

Following the notation in Trevisani and Gelfand21, we let ! = 1,… ,& index counties and ' =

1,… , ( index atoms created by intersecting counties and CDs. We denote the observed county-

level COVID-19 mortality count outcomes by )*, the county-level poverty counts as +*, and the 
vector of the remaining, atom-level covariates (DW-NOMINATE, racial/ethnic composition, and 

population density) by ,-. Let .- represent the total population size of atom ' and /- 

represented the expected number of COVID-19 deaths for atom '. For the features observed at 

the county level, )* and +*, we also conceive of possibly latent atom-level values of these 

features, denoted by )- and +-. In the most general ABRM setting, atom level features can be 
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entirely unobserved/latent. However, in our setting, the majority of atoms are county-equivalent 

atoms, and because ) and + are observed at the county-level, )- and +- are observed for these 

county-equivalent atoms. For sub-county atoms, )- and +- are latent. 

 

We then postulate the following models for these atom-level variables 
 

)-|+-, .-,-,/-~Poisson(8
9:) 

<- = => 	+	=A	(+-/.-)	∗ 100	 + 	EF
G 	,- +	H*(:∋-) 	+ 	log(/-) 

(1) 

 
and 

 

+-|,-,.-~Poisson(8
M:) 

N- = O> 	+ 	PF
G 	,- 	+ 	Q*(:∋-) 	+ 	log	(.-) 

(2) 

 

Here H* and Q* are county-level spatial random effects, and each atom inherits the random 

effect value of its corresponding county. Because here )- and +- are latent for sub-county 

atoms-- and in more general ABRMs, atom-level features may be entirely latent-- we leverage 
the relationship between the atom-level variables and the observed data to learn about the 

parameters of models (1) and (2). Note that the observed county-level COVID-19 mortality 

counts, )*, and poverty counts, +*, are sums of the counts across the atoms within each county. 

The atom-level measures are assumed to be Poisson distributed, and sums of Poisson random 

variables are also Poisson distributed. Thus, the model specifications at the atom level induce 
the following distributions for the fully-observed county-level data: 

 

)* =R)-
-∈*

~PoissonTR89:

-∈*

U +* =R+-
-∈*

~PoissonTR8M:

-∈*

U 

 

Estimation of the ABRM proceeds within a Bayesian framework. A joint likelihood is formulated 
based on these distributions, and prior distributions are specified for the parameters and 

random effects. Here, we specified intrinsic conditionally auto-regressive (ICAR) spatial priors 

for the random effects in each model, Normal(0,1) priors for the E and P parameters, and 

Gamma(0.001,0.001) priors for the precision hyperparameters in the ICAR priors. 

 

The primary purpose of the model for ) is to estimate the coefficients =A and EF , while the 

purpose of the model for + is to obtain predictions of the latent +- values in sub-county atoms 

for downstream use in the model for ) (note that we can estimate the P coefficients from the 

model for +, but these are usually not of primary interest). While we could predict the latent +- 

values directly from model (2), doing so without constraints will generally result in +* ≠ ∑ +-X-∈* , 
i.e., the sum of predicted atom-level values within a county is not equal to the observed county-

level totals. To avert this issue and better utilize all information in the observed data, we obtain 
predictions for sub-county atoms conditional on the corresponding county totals, leveraging the 

fact that Poisson random variables conditional on their sum follow a Multinomial distribution. For 

sub-county atoms Y = 1,… ,Z[ nested within county \, the latent +] values can be sampled 

conditional on their corresponding county totals, +[, as  
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^+A,… , +_`
|+[a~Zbcd!efY!gc h+[, ^iA,… , i_`

aj, i] =
8Mk

∑ 8Mk
_`

]lA

 (3) 

 

Note that the latent )- values for sub-county atoms can be sampled analogously if desired. 

 

All model components are fit jointly via Markov Chain Monte Carlo (MCMC) sampling, enabling 
uncertainties to be fully propagated through all components. Code to implement the model was 

written in Nimble22 and executed through R. We report rate ratio estimates as exponentiated 
posterior means for the coefficient parameters and corresponding 95% credible intervals (CIs) 

from the models. 

 
2.5 Analyses using standard methods 
 

To compare the ABRM results to those that would be obtained using standard dasymetric 
realignment approaches (as described in Section 1), we conduct two additional analyses: a CD-

level analysis and a county-level analysis. First, following Krieger et al5, we conduct a CD-level 
analysis in which we (1) use a dasymetric approach to realign county COVID-19 mortality rates 

to the CD level; (2) collect all adjustment variables at the CD level from the 2016-2020 ACS and 

2020 census redistricting files; and (3) fit a Poisson regression model to the CD-level measures. 
Note that, while this analysis is similar to that of Krieger et al5, we use a smaller set of 

adjustment variables and more updated data sources that were not available at the time of their 
analyses (i.e., 2020 decennial census data). For the county-level analysis, we (1) assign each 

county the DW-NOMINATE score of the CD in which its centroid lies; (2) collect all adjustment 

variables at the county level from the 2016-2020 ACS and 2020 census redistricting files; (3) fit 
a Poisson regression model to the county-level measures. From each of these analyses, we 

report rate ratios and 95% confidence intervals. 
 

 
3 Results 
 

The final analytic dataset contains 3,104 counties in the continental US, 432 congressional 

districts, and 3,728 atoms (Figure 2, Table 1). There are 2,686 county-equivalent atoms and 
1,042 sub-county atoms. Sub-county atoms tend to be concentrated in densely populated 

counties, which can contain multiple CDs. Illustrating this, county-equivalent atoms have an 
average population size of 48,810, while sub-county atoms (atoms falling in counties containing 

2+ atoms) have an average population size of 187,378 (Table 1).   

 
The COVID-19 mortality rate ratio (MRR) estimates and 95% CIs from the ABRM, CD-level 

model, and county-level model are shown in Figure 3, where all models use age-standardized 
outcomes and are adjusted for the additional covariates described in Section 2.3. In each of the 

models, all covariates besides poverty were standardized prior to modeling, so that 100*(MRR-

1) can be interpreted in the percent change in COVID-19 mortality rate corresponding to a 1-
standard deviation increase in the covariate. Poverty, which required special considerations in 
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the ABRM due to its misalignment and cannot be easily standardized, was left on the percent 

scale in all models. With the exception of the percent Black variable, the MRR estimates from 
the three models agree in terms of direction, but the magnitude of the estimated associations 

from the three models often differs dramatically. Moreover, the uncertainties from the ABRM are 
consistently much larger than those from the CD- and county-level models. This is likely a result 

of the ABRM’s more comprehensive characterization of model-based uncertainty compared to 

approaches that rely on deterministic reapportionment, as well as possibly the smaller 
population sizes of atoms (smaller areas tend to have more variable disease/mortality rates). 

 
The ABRM found that a one standard deviation increase in DW-NOMINATE was associated 

with a 2.9% (1.1%, 4.9%) increase in COVID-19 mortality rates during April 2021-March 2022, 

indicating that an increase in conservative voting patterns by the area’s congressional 
representatives is associated with increased COVID-19 mortality rates, after conditioning on 

poverty, population density, and areal racialized-group composition. The MRR estimates from 

CD- and county-level models were much larger in magnitude. The CD-level model found a 
19.0% (18.5%, 19.5%) increase in COVID-19 mortality rates and the county-level model found 

an 8.1% (7.8%, 8.4%) increase in COVID-19 mortality rates for every standard deviation 
increase in DW-NOMINATE. 

 

Note that the trend in estimated DW-NOMINATE MRRs from the CD-level model, county-level 
model, and ABRM aligns with the general trend in population size of the units of analysis (on 

average, CDs > counties > atoms). The CIs for the DW-NOMINATE MRRs are widest for the 
ABRM, for reasons noted above, and narrowest for the county-level model. The wider CIs for 

the CD-level model compared to the county-level model are likely due to the much smaller 

number of CDs (N=432) relative to counties (N=3,104).   
 

In all models, areas with increased percent poverty, percent Hispanic residents, and percent 
AIAN residents were found to have substantially higher COVID-19 mortality rates, while areas 

with increased percent Asian residents had lower rates (Figure 3). CD- and county-level models 

estimated positive associations between percent Black and COVID-19 mortality rates, while the 
ABRM estimated an inverse association, but with 95% CI containing the null value. For 

completeness, we also report the rate ratio estimates from the poverty model, i.e., exp	{PFq} from 

model (2), and corresponding 95% CIs in Figure S1 of the SI, although they are not of 
substantive interest here. 

 

To provide further insight into the performance of the ABRM, we mapped the model-estimated 
atom-level standardized COVID-19 mortality rates (SMRs) for Los Angeles County, California 

(LA County) in Figure 4 (left panel). LA County serves as an informative example of the model’s 
performance, as thanks to its large population (>10 million), it is split across 18 CDs and 

therefore contains 18 sub-county atoms. Moreover, the LA County Department of Public Health 

has released sub-county health district-level age-adjusted COVID-19 mortality rate maps 
(Figure 4, right panel)26, which although representing data for the entire pandemic through 

January 8, 2023 (with only this cumulative data available from the data dashboard26, as 
opposed to the more limited post-vaccine period investigated here), enables general 
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comparisons of spatial patterns with our sub-county COVID-19 mortality rate estimates. While 

the absolute rate values in the two maps should not be compared, we can see that the ABRM 
estimates display similar spatial patterns to the observed rates, indicating that the ABRM is 

capturing key trends in COVID-19 mortality risk. Given dynamic temporal trends in both COVID-
19 mortality rates and social and spatial inequities in these rates, for future analyses we are 

investigating feasibility of obtaining the LA sub-county health district-level age-adjusted COVID-

19 mortality rates for solely the April 2021-March 2022 period, to match temporally to our 
vaccine-era analyses. 

  
 
4 Discussion 
 
In this paper, we demonstrated the feasibility and the benefits of employing ABRM to assess 

associations between spatially misaligned variables using a case study of COVID-19 mortality 

rates and political representatives’ voting records in the post-vaccine period. As in Krieger et al5, 
who studied the same question using standard reapportionment techniques to handle the spatial 

misalignment of county-level and CD-level data, we found that a more conservative voting 
record of congressional representatives was associated with higher age-standardized COVID-

19 mortality rates in a post-vaccine era, after adjusting for community-level poverty, racialized 

group composition, and population density. However, when compared to the results obtained 
with approaches that realign all data to the county or CD levels, the ABRM yields associations 

much smaller in magnitude with larger associated uncertainties. 
 

By design, the ABRM learns about associations between variables at spatial units smaller than, 

or equivalent to, those on which the variables were observed, and this higher resolution analysis 
may enable improved confounding adjustment compared to the more aggregated analyses 

typically conducted when all data are a priori realigned to the spatial units on which some of the 
variables were observed (here, counties or CDs). In our case study, we find evidence of this 

phenomenon, as the magnitude of estimated association between representatives’ voting record 

and COVID-19 mortality moved towards the null with smaller spatial units of analysis (CD-level 
estimates > county-level estimates > ABRM estimates), which may well be due to more robust 

confounding adjustment. Moreover, the ABRM is able to fully account for uncertainties arising 

due to misalignment, as indicated by the larger CIs for the ABRM estimates relative to those 
from a priori realignment approaches, which ignore uncertainty arising from the realignment 

procedures and therefore likely under-estimate uncertainties and provide unreliable inference. 
 

Given today’s vast amount of administrative data collected over incompatible geographies, the 

need for accessible methods that address spatial misalignment in a statistically-principled 
manner is greater than ever. ABRM are a powerful tool for assessing associations in misaligned 

data, but are often overlooked in practical applications, likely due to the absence of software or 
code examples to assist with implementation. Our work and publicly available code on Github 

(https://github.com/rachelnethery/atom_model) provide a prototype for implementation of ABRM 

leveraging modern optimized software for MCMC sampling, which can serve as a template to 
enable these methods to be more widely adopted in scientific research. 
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Figure 1. Example of two types of spatial misalignment in congressional district and county 

boundaries in New Hampshire and Vermont (using 2010 CD redistricting boundaries). The three 

US congressional districts in these states are shown in the three colors, county boundaries are 
grey, and state boundaries are black. In Vermont, all counties are nested fully within the state’s 

single congressional district. In New Hampshire, there is non-nested misalignment in counties 
and congressional districts, with several counties intersecting both the orange and the green 

congressional districts.  
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Figure 2. Continental US county boundaries (A), 2010 congressional district boundaries (B), and 

the number of atoms into which each county is split when the county and congressional district 
maps are intersected (C). The analytic dataset contains 3,104 counties, 432 congressional 

districts, and 3,728 atoms. 
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Figure 3. COVID-19 mortality rate ratio (MRR) estimates and 95% credible intervals from the 
atom-based regression model (ABRM), the congressional district-level model (CD) and the 

county-level model (county). Each model is fit to age-standardized COVID-19 mortality rate data 

and co-adjusted for all variables simultaneously. All measures besides poverty are standardized 
so that the MRR corresponds to a one-standard deviation increase in the coefficients. Poverty is 

on the percent scale and not standardized. 
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Figure 4. Left panel: Map of ABRM-estimated age-standardized COVID-19 mortality rates 
(SMRs) for April 2021-March 2022 across atoms in Los Angeles County, California. Right panel: 

age-adjusted observed COVID-19 death rates from the start of the pandemic through January 8, 

2023 by health district from the LA County Public Health Department COVID-19 Surveillance 
Dashboard26. 
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Table 1. N and mean (standard deviation) for variables collected at the county level, congressional district (CD) level,  
and atom level, as available, for the continental US (2016-2022)*. 
 
 

County-level CD-level 
Atom-level 

 Overall County-equivalent 
atoms Sub-county atoms 

N 3104 432 3728 2686 1042 
Population size (in 
thousands) 

105.84 (337.14) 760.37 (60.97) 87.54 (152.73) 48.81 (83.39) 187.38 (227.45) 

COVID-19 deaths† 121.55 (306.55)   70.96 (103.14)  
DW-NOMINATE  0.05 (0.46) 0.32 (0.41) 0.42 (0.33) 0.07 (0.46) 
Percent poverty‡ 13.90 (5.96) 11.90 (4.05)  14.20 (6.05)  
Population density 10.69 (72.08) 96.73 (279.93) 13.85 (56.96) 3.09 (14.70) 41.58 (99.95) 
Percent Black 8.80 (14.16) 12.36 (13.3) 9.27 (14.59) 8.23 (14.08) 11.96 (15.53) 
Percent Hispanic 9.83 (13.75) 18.64 (17.81) 11.08 (14.98) 9.17 (13.52) 16.00 (17.27) 
Percent Asian 1.36 (2.60) 5.94 (7.30) 2.06 (4.41) 0.95 (1.56) 4.91 (7.22) 
Percent AIAN 1.82 (6.58) 1.12 (2.03) 1.78 (6.84) 1.92 (6.84) 1.43 (6.82) 
 

*Population size and racialized group composition data were obtained from the 2020 US Census; COVID-19 deaths and the DW-NOMINATE 
data are for the time period April 1, 2021-March 31, 2022; poverty was obtained from the 2016-2020 American Community Survey 5-year 
estimates. 
†COVID-19 deaths are observed at the atom level for county-equivalent atoms only. 
‡Percent poverty is observed at the atom level for county-equivalent atoms only and was imputed based on model (3) for sub-county atoms. 
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