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Recurrent vulvovaginal infections (RVVI), a devastating group of mucosal infection, are

severely affecting women’s quality of life. Our understanding of the vaginal defense

mechanisms have broadened recently with studies uncovering the inflammatory nature of

bacterial vaginosis, inflammatory responses against novel virulence factors, innate Type

17 cells/IL-17 axis, neutrophils mediated killing of pathogens by a novel mechanism, and

oxidative stress during vaginal infections. However, the pathogens have fine mechanisms

to subvert or manipulate the host immune responses, hijack them and use them for their

own advantage. The odds of hijacking increases, due to impaired immune responses, the

net magnitude of which is the result of numerous genetic variations, present in multiple

host genes, detailed in this review. Thus, by underlining the role of the host immune

responses in disease etiology, modern research has clarified a major hypothesis shift in

the pathophilosophy of RVVI. This knowledge can further be used to develop efficient

immune-based diagnosis and treatment strategies for this enigmatic disease conditions.

As for instance, plasma-derived MBL replacement, adoptive T-cell, and antibody-based

therapies have been reported to be safe and efficacious in infectious diseases. Therefore,

these emerging immune-therapies could possibly be the future therapeutic options

for RVVI.

Keywords: adaptive immunity, innate immunity, oxidative stress, evasion, single nucleotide polymorphisms

(SNPs), pattern recognition receptors (PRRs), infectious diseases

INTRODUCTION

Vulvovaginal infections (VVI) are the commonly reported microbiological syndrome affecting
millions of women globally in all strata of society. An abnormal vaginal discharge is the key trait
and first sign of VVI that women seeking health care frequently complaint to gynecologist. About
a quarter of all adult women complain about abnormal vaginal discharge, more commonly by
those belonging to Indian subcontinent i.e., South Asia (1). Moreover, the repeated experiences
of common vaginal infections collectively known as recurrent VVI (RVVI) are emerging and are
the major concern for researcher these days. The three common RVVI are Bacterial Vaginosis (BV),
Vulvovaginal Candidiasis (VVC), and Trichomoniasis (TV) (2). The recurrence rate of BV (RBV) is
as high as 30–50% within 3 months while≥ 4 repetitive episodes of VVC in 12-months are referred
as recurrent VVC (RVVC) (3). Similarly, cases of recurring TV (RTV) have also been reported with
recurrence rates as high as 5–8% within 2 months of initial diagnosis (4). The milieu conditions
of vagina during one VVI type create a niche for the pathogenesis of other VVI, leading to Mixed
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Infections (MI) and co-infections (5, 6). These VVI, left
untreated, will not only affect the female reproductive health, but
may also result in many foster infections/diseases and adverse
pregnancy outcomes (7–9).

The literature regarding RVVI pathogenesis has suggested
that “a vaginal microbiota (VMB) dominated with Lactobacilli
is healthier than a diverse VMB.” This diversity in VMB causes
dysbiosis characterized by fall in number of Lactobacilli and
overgrowth of opportunistic pathogens that are either normally
present in human VMB in lower quantity or sexually transmitted,
resulting in RVVI (10). However, the decades of research failed
to find a single pathogen responsible for causing common RVVI.
This is because 20–30% of healthy (asymptomatic) women were
found to have VMB same as that of VVI women (11). Also,
some Lactobacilli strains, i.e., L. iners and L. jensenii, were
found to be pathogenic and associated with VMB instability in
pregnant women, pre-term birth, and BV (12, 13). Therefore, the
present scenario doesn’t satisfy the Koch’s postulates, according
to which the causative agent is essential for causing disease and
it should not be present in population without disease (14).
Due to this reason, accurate definition of vaginal health and
vaginal infections is still lacking till date. Besides this, there are
other local risk factors that have also been suggested to create
favorable conditions for the development of RVVI (15). However,
development of RVVI in women lacking any of these recognized
disposing factors, suggests the involvement of host immune
components, instrumental in elimination of RVVI pathogens
(16). Further suggesting that, it’s the host immune system that
determines the disease outcome and thus must be explored to get
an accurate definition of vaginal health and infections.

Thus, an attempt has been made, to achieve a clear
understanding of host immunity in three common RVVI. This
review commences with a brief summary of what is known about
immunology of human vagina. Different studies that contributed
to host defenses against common RVVI were then addressed and
linked. These protective immune mechanisms lead to oxidative
stress that has been shown to play amajor role in pathophysiology
of common RVVI. The review further fine points the hijacking
or exploitation of host immune responses by RVVI pathogens. A
theory and related mechanism was then proposed to explain the
immunopathogenesis of RVVI. Moreover, genetic variations in
immune molecules have been shown to play an important role
in how a woman responds to a particular RVVI challenge, as
evidenced by several genetic disease association studies that are
detailed in this review. Based on this comprehensive compilation,
different strategies were proposed for treatment of RVVI that
may prevent recurrence of these enigmatic infections.

IMMUNOLOGY OF HUMAN VAGINA

The human vagina consists of multiple levels of protection
in form of innate and adaptive immunity that is further
compartmentalize into various components and is under
strong hormonal control. Inflammation signifies an essential
immune mechanism that is meant to eliminate pathogens and
repair damage caused by deleterious stimuli. Theoretically,

inflammation is a process that involves four stages, including an
activating system, a sensing mechanism, signal diffusion, and the
effector cells activation (17). In infectious diseases, the activating
system is pathogen that has preserved biomolecular structures
on its surface known as pathogen associated molecular patterns
(PAMPs). These PAMPs lead to the activation of quick and non-
specific innate immunity that further signals for the activation of
specific adaptive immunity, with the ultimate goal of eradicating
the pathogens and repairing tissue damage elicited by the noxious
stimuli (17).

Innate Immunity in Human Vagina
The innate immuny of human vagina involve physical, chemical,
and cellular components (18). Interactions between these
components form a complex microenvironment that mediates
immune responses in vagina, regulated by sex hormones and
specific microbiome (19).

Physical Barriers
Mucosal lining and epithelial cells serve as gatekeepers
preventing the entry of pathogens in to vagina (20). The
gel like mucosal layer is produced by the mucin proteins
expressed by the surface of upper layer of epithelial cells
throughout the vagina (21). Besides entrapping the invasive
pathogens, the vaginal mucosal layer also provides lubrication
and acts as a source of nutrition for the VMB. In turn,
the VMB of healthy women (dominated by Lactobacilli)
contributes to the physical defense of vaginal mucosa against
pathogens by maintaining low pH, producing lactic acid, and
other antimicrobial substances (22). Thus, VMB is capable of
modulating defense property of vaginal mucosa. However, many
physiological processes including menstruation, conception,
pregnancy, and the hormonal changes frequently modulate the
vaginal mucosal immune system (23). The stratified squamous
vaginal epithelium, underlying the mucosal layer, also acts as a
barrier and first responder to pathogens by “sensing” the danger
leading to immune cell activation and secretion of immune
mediators driving inflammation and immune responses (24). The
identified danger is the damage done to vaginal epithelial cells by
virulence factors secreted by the pathogens. These damaged host
cells derived immune mediators are called damage-associated
molecular patterns (DAMPs, danger signals, or alarmins) that
constitute the parts of chemical components of immune system.
Beneath the epithelium is lamina propria that is composed
primarily of fibroblasts, blood vessels, and a diversity of immune
cells (explained under cellular components).

Chemical Components
DAMPs, PRRs, chemotactic cytokines, AMPs, and C system
make the chemical components of innate immune system of
vagina. Other than injured host cells, DAMPs are also released
under conditions like necrosis, apoptosis, and by collapsed
extracellular matrix (25). Some examples of intracellular DAMPs
includes DNA, fibronectin, highmobility group box-1 (HMGB1),
S-100 proteins, heat shock proteins, hyaluronic acid, formyl
peptides, ATP, and collagen or elastin derived peptides (25).
In order to discriminate own cells from pathogens, the vaginal
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immune system employ pattern recognition receptors (PRRs),
that specifically respond to various pathogens (26). Currently,
PRRs are divided into five major families including Toll-like
receptors (TLRs), C-type lectin receptors (CLRs), the nucleotide-
binding oligomerization domain (NOD) like receptors (NLRs),
retinoic acid-inducible gene (RIG) I-like receptors (RLRs), and
absent in melanoma 2 (AIM2)-like receptors (ALRs) (27). The
PRRs expressed by squamous vaginal epithelial cells include
TLRs i.e., TLR1-10 except TLR7, CLRs including dendritic cell-
associated c-type lectin-1 (Dectin-1) and secretary mannose
binding lectin (MBL) as well as NOD receptor including NOD1
(18, 28–32). The expression of TLR4 and Dectin-1 in the vaginal
epithelial cells is controversial as some studies have shown their
presence, while others reported their absence (28, 33, 34). Also,
the MBL levels in vaginal fluid are partly contributed from
plasma, as a result of transudation, though directly secreted
by local vaginal epithelial cells (32). However, almost all the
known human TLRs, CLRs and intracellular PRRs are expressed
by immune cells of both myeloid (neutrophils, macrophages
and dendritic cells) and lymphoid origin (B and T cells)
present in lamina propria or in vagina due to transmigration
(29, 30). Upon stimulation, either through direct contact of
PAMPs or through indirect means (DAMPs or cytokines), these
PRRs initiates a signaling cascade, that includes activation of
transcription factors, release of antimicrobial peptides (AMPs)
as well as chemotactic cytokines that further signals for the
activation of adaptive immunity and subsequent amplification
of innate immune responses, leading to the ultimate killing of
pathogens (35).

AMPs are generally expressed by numerous cell types of
vagina primarily by neutrophils and epithelial cells, with small
fractions contributed by dendritic cells (DCs), macrophages,
and natural killer (NK) cells (36). These AMPs have anti-
microbial properties against bacteria, fungus, parasite, and virus
(23, 36). Different AMPs that have been reported in lower
genital tract include defensins, protease inhibitors, including
serine protease inhibitors (serpins), secretory leukocyte protease
inhibitor (SLPI), human epididymis protein 4 (HE4), cystatins,
elafins, lysozyme, lactoferrin, and cathelicidin (LL-37). Out of
these, human defensins [both alpha (α) and beta (β)] are
among the most widely characterized and abundant AMPs
present in lower genital tract including vagina (18, 23, 37).
Besides antimicrobial properties, these AMPs can destroy target
cells through modulating pH and ionic concentration gradient
and also have been shown to have chemotactic activity (36).
The detailed mechanisms of action for each AMP have been
comprehensively reviewed elsewhere (36, 38, 39). As mentioned,
all the immune and vaginal epithelial cells upon activation release
chemical messengers called cytokines that create an aggressive
milieu for the pathogen either by creating a network between the
different immune cell types or by providing direct antimicrobial
response (20). Different cytokines are released based on different
stimuli and cell type. Other than this, the complement (C)
system, a humoral component of the innate immune system, is
actively involved in the host protection against vaginal infections
(40). The C system recognizes the pathogens by utilizing three
different molecules i.e., C1q, MBL (also a CLR) and C3, that

respectively trigger the classical, lectin and alternative pathways
for pathogen elimination (41).

Cellular Components
Inflammatory immune cells e.g., Neutrophils, Macrophages, NK
cells, and DCs, which are either resident (like epithelial cells) or
transmigrated into the genital tract in response to DAMPs or
chemotactic cytokines, form the cellular components of innate
immune system (42). Neutrophils are the major cells that are
recruited at the site of infection, mediating an inflammatory
response against pathogens. Neutrophils are present throughout
the female reproductive tract with pre-dominant number in
fallopian tubes. However, the quantity steadily reduced from the
upper genital tract to vagina (23, 42). However, upon infection,
under the influence of chemotactic cytokines e.g., IL-8, abundant
amounts of neutrophils penetrate from vaginal epithelium into
the lumen to phagocytise the pathogens and cellular debris
(43). Furthermore, the proportion of these neutrophils also
increases prior to menses, due to the natural process of tissue
breakdown, and during copulation for the phagocytosis of sperm
(18). Other than phagocytosis, these neutrophils also respond to
pathogens through production of oxidative compounds, leading
to oxidative stress, by releasing AMPs and cytokines for its
own stimulation or for the recruitment of other cells. Other
important innate immune phagocytic cells include macrophages,
DCs and NK cells that constitute 10% of the total leukocytes
present in the female genital tract (18, 44). Macrophages and
DCs act as professional antigen presenting cells (APCs) for
inducing of adaptive immune responses (45). Moreover, only
DCs in particular act as a main mediator for bridging the
innate and adaptive immunity and generate life-long memory by
priming naive T-cells (46). In addition, NK cells in vagina lead
to macrophage activation and generate pro-inflammatory and
cytotoxic T cell responses (18, 20).

Adaptive Immunity of Human Vagina
The adaptive immune system of female reproductive tract
presents distinctive characteristics that are unique from the
adaptive immunity of other mucosal surfaces (18). It involves
immunoglobulins and various cellular components (18, 47).

Chemical Components
Different studies have documented antibody (the humoral
component of adaptive immunity) responses against vaginal
infections based on in vivo or in vitro experiments and suggested
weak but consistent presence of IgG and IgA antibodies in
vaginal secretions (47). Although both antibodies are present in
genital secretions, IgG was found to be more predominant than
IgA (48). These antibodies prevent colonization of pathogen by
checking their adherence to vaginal epithelial cells and contribute
to the neutralization and formation of Ag-Ab complexes, helping
in uptake and clearance of pathogen by phagocytic cells of
vagina (47, 48).

Cellular Components
The cellular components of vaginal adaptive immunity include
effector B-cell, CD4+, and CD8+ T cells responses as well as
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local B and T memory cells that are found throughout the female
reproductive tract. The T cells in vaginal tissue are localized at
the stroma/epithelial interface and are few in number (49, 50).
Moreover, recent studies have also suggested the presence of T-
helper 17 (Th17) cells and regulatory T (Treg) cells in vagina
(51). Other than this, various immuno-histochemical studies
have shown the presence of antibody-producing B cells with
low prevalence in vagina, ectocervix, and fallopian tubes relative
to endocervix (47). However, during inflammation the number
of intra-epithelial lymphocyte population increases relative to
non-inflamed vagina.

IMMUNOLOGICAL HOST DEFENSES
AGAINST COMMON RVVI

Tomaintain homeostasis andminimize the risk of infection, host
vagina is capable and competitive enough to generate different
immune responses against different vaginal infections as given in
detail below:

Immunity in BV
Studies based on transcriptional profiling and markers
assessment in vaginal secretions and serum has indicated
the major involvement of host immunity in BV (Figure 1).
Assessment of vaginal secretions in BV women has shown the
stimulation of nuclear factor-κB (NF-κB) in various cell types,
which is the characteristic factor involved in proinflammatory
signaling pathways of many TLRs (52). However, the major
TLR found to be involved in BV pathology is TLR4, whose
expression in monocytes is shown to be strikingly increased on
exposure to lavage samples of BV women (53). Moreover, it
was shown that sensing of BV associated bacteria is facilitated
in situ via TLR4 signaling, through NF-κB pathway leading to
lymphocytes enrolment by cytokines secretion, thus causing
genital inflammation (54). Other than this, immunofluorescence
analysis of clue cells from BV patients revealed the presence
of MBL and C3 on clue cells suggesting their direct role in
recognition of BV associated bacteria (BVAB) and activation
of both lectin and alternative pathways of complement system
(40). Complementry evidence recommended that the chances
of acquiring BV will be more in cases with insufficient sMBL
levels (55). Expression of Dectin-1, another PRR, was found
to increase upon stimulation with bacterial LPS relative to
primarily observed low expression in freshly isolated human
peripheral blood monocytes (PBMCs) and human monocytes
cell line detected by both qPCR for mRNA and FACS staining for
cell surface protein expression (56). In consonance, high serum
Dectin-1 levels were observed in BV patients relative to controls,
suggesting the active role played by Dectin-1 in defense eagainst
BV (57).

In addition, cytokines have been shown to directly contribute
to BV pathology, as, BV was found to induce milieu enriched
with proinflammatory cytokines in the lower genital tract. These
include IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-1β, IL-1α,
TNF-α, IFN-γ, FMS-like tyrosine kinase 3 ligand, chemokine
C-C motif ligand 5 (CCL5), and SLPI [compiled in 58 and

currently reported in Jespers et al. (58) and Lennard et al. (59)].
These studies supported the concept that BV triggers the innate
immune responses, which was also assessed independently for
individual bacterial species present in VMB of BV patients. For
example, A. vaginae was found to induce expression of IL-1β, IL-
6, IL-8, CCL20, human β defensin-2 (HBD-2), and TNF-α via
NF-κB, TLR2, and MyD88 signaling pathways; G. vaginalis was
found to induces IL-1β, IL-18, IL-6, IL-8, and TNF-α;Mobiluncis
curtisii and Prevotella bivia induced IL6, IL8, G-CSF, IP-10,
MIP-1β, RANTES, and Gro-α (60–64).

Of all the associated pro-inflammatory cytokines, IL-1β
was consistently been linked with BV, with four to over 10-
fold higher levels than controls, validated both by earlier
as well as current studies (58, 65–75). Moreover, successful
treatment of BV has been shown to normalize the elevated pro-
inflammatory cytokines levels (76). IL-1β, a pro-inflammatory
cytokine produced by innate immune cells, is a key mediator of
the inflammatory response and is essential for the host-response
and resistance to pathogens (77). IL-1β has a special role in the
altering production of pro-inflammatory cytokines such as IL-8,
IL-6, and TNF-α and found to be positively correlated with their
levels and cell surface expression of TLR4 in human epithelial
cells (78). This suggests that the secondary pro-inflammatory
cytokines should also increase with increase in IL-1β levels during
BV. This was further confirmed by studies that have found higher
levels of IL-8 in womenwith BV (67, 72). In contrast, inconsistent
but elevated expression of IL-1α was also found to be associated
with BV (65, 79, 80).

Other than cytokines, AMPs, particularly defensins, were
found to be associated with BV, though their role in pathogenesis
is not clear due to inconsistencies in the results obtained.
Elevated expression of human α-defensins, mainly formed by
neutrophils and epithelial cells, were observed in BV with
intermediate flora (81). Furthermore, a study has also shown
increased expression of HBD-2 in vaginal epithelial cells elicited
by BVAB, while no such association was found by another
study (63, 82). Expression of other AMPs including SLPI and
HE4 was also found to be associated with BV organisms, but
their negative association were also reported (63, 83). The
high levels of AMPs, including S100A8 and calprotectin, were
found in lavage samples of BV cases (84). These proteins bind
manganese, leading to decrease in availability of free manganese
which is an absolute requirement for lactobacilli to grow, thus
inhibiting their proliferation and creating milieu for BVAB to
grow (85). Another AMP i.e., cathelicidin was also observed at
high levels in BV women, acting as a pore-forming toxin to
disrupt membrane of pathogenic bacteria (86, 87). Cathelicidin
also induces the migration of neutrophils, macrophages, and
monocytes, ultimately leading to inflammatory response against
infection (88). Recently, high levels of lactoferrin, an iron binding
AMP, which is predominantly produced by neutrophils, were
also reported in BV women (89). Iron sequestering ability
of lactoferrin leads to depletion of free iron that is required
for the growth by BVAB. The elevated levels of α-defensins,
lactoferrin, and cathelicidin in BV suggest the possibility of high
neutrophils levels in BV, however, no such elevation has been
observed (69, 90).
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FIGURE 1 | Immunopathology of Bacterial Vaginosis (BV). BV induces milieu enriched with proinflammatory cytokines and antimicrobial peptides (AMPs) in vagina.

This enriched vaginal milieu has been induced by recognition of BV associated bacteria (BVAB) by pattern recognition receptors (PRR) such as the TLR4, MBL, and

C3. The role of these cytokines and AMPs is to induce migration of neutrophils, macrophages, and monocytes. However, no such migration has been reported in BV,

depicting the inferior inflammatory response without any localized inflammatory symptoms. Conversely, persistent BV has been shown to lead chronic and extreme

vaginal inflammation, while the role of adaptive immunity is still elusive.

On the other hand, DCs maturation has been shown to be
induced by lavage samples from women with BV leading to
DC-surface expression of CD83 and CD86 markers, reduced
internalization ability, improved antigen presentation to T cells,
thereby modulating T cell responses (91). The same profile of
activation and maturation of DCs and T cells has been reported
recently but found to occur only at the highest G. vaginalis
concentration (92). No heightened neutrophils levels and
maturation of DCs only at high bacterial concentration depicts
the uncharacteristic and poor inflammatory response without
any localized inflammatory symptoms, perhaps the reason why
BV is not called bacterial vaginitis. However, very recently a
longitudinal study has shown occurrence of chronic and extreme
vaginal inflammation due to persistent BV (59). Overall, these
studies confirm the inflammatory nature of BV. Absence of local
inflammatory responses can be attributed to evasion of BVAB or
perhaps the presence of genetic polymorphisms in inflammatory
genes modifying the inflammatory responses.

Immunity in VVC
Unlike BV, where the host immediately recognize and generate
immune responses against BV associated bacteria, which are the
different entities from the normally present Lactobacilli, VVC
involves the same entity Candida, present both as commensal
as well as responsible for pathogenesis. The pathogenic activity
of Candida is determined by its morphology, where the yeast
form is associated with commensalism, and hyphal form
with pathogenicity. The detection and elimination of Candida
pathogenic form is mediated by vaginal epithelial cells, the first

barrier encountered by pathogen (93). Vaginal epithelial cells
“sense” the danger constituted by the pathogen and respond
by immune cell activation, secretion of inflammatory immune
mediators and by generating immune responses. The danger
can be attributed to virulence factors secreted by Candida
hyphae e.g., secreted aspartic proteases (Saps). Saps can directly
lead to neutrophils recruitment at the site of infection (94).
However, a new protease, namely Candidalysin, has recently
been proposed to be secreted by Candida hyphae (95). This
protease is the first protein toxin recognized in any human
fungal pathogen that damages the epithelial cells and thus
triggers host immune responses. Candidalysin has recently been
proposed as a key hypha-associated virulence factor responsible
for immunopathogenesis of VVC (96). By sensing candidalysin
activity, vaginal epithelial cells respond to pathogenic C. albicans
through activation of two signaling pathways i.e., p38/c-Fos
and MKP1 pathways (95, 96). The same pathways have been
suggested as common mechanism facilitating different human
epithelial cells for differentiating pathogenic Candida from
non-pathogenic yeast form and to coordinate innate immune
responses (93, 97). The receptors employed by epithelial cells to
sense candidalysin activity are still pending to be eludicated. The
resulted activation of p38/c-Fos and MKP1 signaling pathways
persuades expression of pro-inflammatory cytokines and AMPs
including IL-1α, IL-1β, IL-8, G-CSF, GM-CSF, β-defensin 3,
CCL20, S100A8, and S100A9 from vaginal epithelial cells, which
are instrumental for innate immune cells recruitment (95–97).
Vaginal epithelial cells were shown to produce calcium-binding
proteins namely S100A8 and S100A9 in response to C. albicans
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that lead to robust neutrophils migration during VVC (98, 99).
However, their involvement was not found to be crucial for
driving the neutrophils response in VVC (100).

Neutrophils and macrophages are the first innate immune
cells that recruit at the site of infection in response to affected
epithelial cells derived immune mediators. The neutrophils
further release TNF-α that consequently up-regulates TLR4
expression on epithelial cells (101). Independent to these
virulence factors and cytokines response, direct contact mediated
recognition of C. albicans sugar moieties such as mannan and β-
glucan is mediated by neutrophils, marcrophages, and dendritic
cells via surface PRRs including TLRs (including TLR 2, 4,
and 9) and CLRs (including MBL, Dectin-1, Dectin-2, DC-
SIGN, and Mincle) (40, 102, 103). Ligation of PRRs further
stimulate downstream MAPK and Syk signaling, production of
NF-kB, and pro-inflammatory cytokines. The activated immune
cells form a loop of positive feedback that amplifies the
inflammatory process, leading to ultimate effectors functions.
Other than this, immunofluorescence analysis of the Candida
hyphae from VVC patients showed the presence of C3 and
pH dependent binding of MBL suggesting their direct role in
Candida recognition and activation of alternative as well as
lectin complement pathways (40, 102). In addition, MBL have
been shown to cause agglutination of Candida upon hyphae
generation independent of direct/indirect opsonophagocytosis
and complement activation (104). In consonance, two different
studies have reported high MBL levels in women with VVC
than healthy women, suggesting the active role of MBL in the
defense against VVC (105, 106). Other complementary evidences
have shown that low MBL levels in women predispose them to
VVC (55, 107, 108).

Moreover, neutrophils, through direct contact via PRRs
particularly CLRs, mediate killing of Candida with short
hyphae intracellularly and those with long hyphae extracellularly.
The intracellular killing is mediated by phagocytosis while,
extracellular killing is mediated by NETosis i.e., development of
neutrophils extracellular traps (NETs). Both mechanisms involve
oxidative burst due to reactive oxygen species (ROS) production
(109–113). Additionally, autophagy, fibronectin, release of
granular enzymes, AMPs including calprotectin and Dectin-1
signaling has also been shown to be involved in NETosis (109,
110, 112, 114, 115). In contrast, some other studies suggested
that β-glucan mediated NETosis occurs through complement
receptor 3 (CD11b/CD18) and not through Dectin-1 signaling or
ROS mechanism, indicating their controversial role in NETosis
(111, 114). Furthermore, recruitment of polymorphonuclear
neutrophils (PMN) into vagina was observed to be associated
with vaginal inflammatory symptoms when volunteer women
were challenged with live C. albicans (116). This vaginal
inflammation was observed to decrease with diminution of
PMNs (117, 118). Robust response by neutrophils recruitment
correlates well with local vaginal inflammation similar to
high vaginal Candida burden for causing VVC. However, a
mechanism explaining PMN dysfunction at the vaginal mucosa
remained a mystery. The most current information relative
the mechanism(s) of the VVC immunopathogensis where a
strong inflammatory condition occurs (via candidialysin and

hyphal morphology transition), but fail to reduce the Candida
load and thus the persistence of infections has been proposed
(119). This has recently been termed as “neutrophil anergy” and
involves vaginal factors that inhibit the ability of the PMN to
bind to Candida for effective killing (119). Unlike neutrophils,
macrophages mediate only intracellular killing of Candida but
both through ROS and RNS mechanisms (120).

Just like surface PRRs, the intracellular PRR i.e., NLRs of
innate immune cells are also activated by DAMPs or through
direct contact of internalized pathogenic fungal components
that activate NLRP3 inflammasome, consequently leading to
release of proinflammatory cytokines including IL-1β and IL-
18 (121). This inflammasome activation also led to programmed
host cell death known as pyroptosis, which is employed as
one of the evasion strategies by virulent Candida for escaping
macrophages (122, 123). Owing to this reason, the macrophages
mediated killing of intracellular C. albicans is shown to be
of lower efficiency than neutrophils (103, 121). However, the
fungal triggers activating the inflammasome mediated pyroptosis
are still not known. Finally, IL-1β and IL-18 release through
inflammasome activation by innate immune cells promote
adaptive T helper 17 (Th17) and Th1 responses respectively, thus
linking innate with adaptive immunity (124). Moreover, both in
vitro and in vivo studies have shown that Dectin-1-Syk-CARD9
signaling couple innate and adaptive immunity independently
of TLR signals and induce differentiation of adaptive Th-17 and
Th-1 cells (125, 126).

Carvalho and group showed that Dectin-1 is necessary for
controlling vaginal infections (127). The study evaluated two
genetically distinct strains of mice with vaginal candidiasis for
Dectin-1 deficiency and showed that the role of Dectin-1 in
antifungal immunity lies ahead of Th17 cell activation and is
significantly dependent on host genetic milieu. The study found
that Dectin-1 was required for appropriate control of vaginal
candidiasis in mice strain C57BL/6, but not in BALB/c mice.
The former Dectin-1 deficient strain of mice was found to be
vulnerable to infection, with defective production of cytokines
including IL-17A as well as IL-22 and adaptive Th1 responses,
relative to reverse effect observed in latter strain. However, this
depiction of two tremendously contradictory phenotypes, have
been attributed to differential expression of functionaly distinct
Dectin-1 isoforms by two strains (128). Thus, the study clearly
depicts that Dectin-1 essentially contributes to the stability of
Th1, Th17, Treg CD4+ T-cell populations during infection,
as its deficiency lead to defective release of Th17 cells in
C57BL/6 mice and both Th1 as well as Treg cells in BALB/c
mice after infection. This suggests the contribution of Dectin-
1 in differentiation of T helper cells and its relative ability to
control the vaginal infection. In consonance to this, another
study highlighted the specific role of Dectin-1 in VVC in four
women from Netherlands, affected either by onychomycosis or
RVVC (129). The Dectin-1 expression in these women was
found to be poor with defective β-glucan binding, defective
Th17 responses, and defective production of cytokines including
IL-6, TNF-α, and IL-17. Another study has shown increased
intracellular expression of Dectin-1 in response to opsonised
Candida albicans through recognition of β-1,3-glucan (130).
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In consonance, a recent study found significantly high serum
Dectin-1 levels in VVC cases relative to controls suggesting the
active role played by Dectin-1 in defense against VVC (57). Thus,
Dectin-1 is certainly a formidable PRR for providing systemic
immune defense against the infection however, its role as a
mucosal defense marker is still ambiguous due to inconclusive
literature regarding its normal expression on vaginal mucosa as
aforementioned. Therefore, caution should be taken regarding
these interpretations. Moreover, two studies based on different
animal models (rat and mouse) of VVC, have depicted the
controversial role of dendritic cells following infection with no
definite conclusion (131, 132).

The activated Th17 cells release IL-17, a multifunctional
pro-inflammatory cytokine, that further increases expression of
PMNs, chemotactic cytokines and AMPs (HBD-2/3, histatins),
promoting effective inflammatory response (133–135). Studies
have shown that inhibition of Th17 cells differentiation led
to considerable decrease in production of IL-17 and HBD-
2 with consequent exacerbation of VVC (136–138). However,
some studies have suggested that inflammatory response during
VVC occurs independently of Th17 cell lineage (99, 139, 140).
Hence, valuable information relative to adaptive T cell-mediated
immunity (CMI) remained elusive as almost equal number of
studies are recommending and contrasting its role in VVC.
Additionally, studies have also established the link between
acquired antibody mediated humoral immunity (HI) with CMI
against VVC, suggesting the existence of protective antibodies
but at lower concentrations with no appreciable protection (141–
143). A common misbelieve regarding IL-17 is that, it is only
produced by adaptive Th17 cells and thus function mainly in the
adaptive immunity. However, an array of innate immune cells
called “innate Type 17” cells also produces IL-17. These cells
include innate lymphoid cell type 3 (ILC3), natural killer T (NKT)
cells, γδT cells, and TCRβ+ “natural” Th17 cells (nTh17) (144–
146). Furthermore, contrasting data regarding neutrophils as a
source of IL-17 has also been documented (147, 148). However,
as aforementioned, CARD9, an adapter that mediates Dectin-1
signaling, is essential for adaptive IL-17 response but this adaptor
was not shown to be involved in innate IL-17 responses (126).
Recently, a study reported Candidalysin mediated innate IL-17
response in murine model of oral candidiasis (149). However,
the role of IL-17 production by innate type 17 cells in VVC
is largely uncharted. Overall, these studies highlight the role of
innate immunity that work in concurrence with vaginal epithelial
cells against VVC, while, the role of adaptive immunity is still
elusive (Figure 2).

Immunity in TV
The innate immunity against T. vaginalis involves PRRs
stimulation, phagocytes recruitment in vagina and complement
activation (150–154). The first barrier of innate immunity
encountered by pathogens is vaginal epithelial cells, that lead to
immune response generation by TLRs (TLR2, TLR4, and TLR9)
expression via p38 MAPK signaling pathway, consequently
leading to IL-8 and TNF-α release from vaginal epithelium
(155, 156). However, ligands of T. vaginalis that bind to
these TLRs have not been identified till date. Alternatively,

independent of these TLRs expression, the lipophosphoglycan
(LPG), a major component of T. vaginalis membrane, also
induces inflammatory response by release of pro-inflammatory
cytokines after contacting human vaginal epithelial cells (157). In
addition, galectin-1 and galectin-3 expressed by vaginal epithelial
cells were reported as receptors for T. vaginalis LPG (158, 159).
Galectin-3 was accounted for pro-inflammatory cytokines (IL-
8 and MIP-3α) release whereas galectin-1 was shown to play
immunosuppressive role that might help in parasites evasion.
Both, IL-8 and MIP-3α cytokines show chemotactic activity,
promote migration of immune cells particularly neutrophils
and other phagocytes across the endothelium, while, MIP-
3α also induces dendritic cell maturation (146). Moreover, T.
vaginalis also releases leukotriene B4 (LTB4), an endogenous
lipid, which leads to inflammation in women infected with
T. vaginalis due to its leukocytes chemotactic activity (160,
161). This lipid mediator induces the release of IL-8, ROS,
and AMPs including β-defensin-3 and cathelicidin (LL-37)
through binding to its receptors BLT1 and BLT2 on immune
cells (162). The immune cells that are predominantly found
in the vaginal secretions of T. vaginalis infected patients are
neutrophils (163). In response to T. vaginalis stimulation,
immune cells release pro-inflammatory cytokines including IL-
1β, IL-6, IL-8, and TNF-α, leading to neutrophils recruitment,
explaining its predominant accumulation for mediating initial
inflammatory response following TV (161, 164, 165). These
neutrophils achieve T. vaginalis killing by phagocytosis and
by novel mechanism i.e., taking T. vaginalis “bites” prior to
parasite death, using trogocytosis (166). Immune-fluorescence
analysis of the T. vaginalis revealed binding of MBL to its surface
carbohydrates i.e., unmodified N-glycans (153). MBL binding to
T. vaginalis have shown to cause self-aggregation of parasites,
lowering their motility and division rate (153). T. vaginalis
also leads to the activation of complement system, encouraging
killing through neutrophil-mediated endocytosis (150, 151, 153).
Furthermore, SLPI, an AMP, has also shown to be associated with
TV (167).

Moreover, TV was found to induce CD4+ T cells penetration
in vaginal tissues indicating the role of T-cell mediated adaptive
immunity in defense against TV (168). In support of this, a
study reported the involvement of Th1 triggered cytokines (IL-
2 and IFN-γ) in maintaining low burden of T. vaginalis infection
(169). Similarly, the elevated levels of Th17 triggered IL-17 and
Th22 triggered IL-22 were found in women with Trichomoniasis
(170). Furthermore, elevated expression of cytokines including
IL-6 and TNF-α, that induces the differentiation of Th22 cells,
were reported in T. vaginalis activated macrophages (165). Both,
IL-22 and IL-17 share common functional aspects and were
shown to collaboratively induce and up-regulate production
of an AMP named cathelicidin (LL-37) (170–172). All these
cytokines produced by different subsets of Th cells collectively
lead to the activation and migration of effectors cells including
neutrophils, macrophages, cytotoxic T lymphocytes, natural
killer cells, along with differentiation of B cells into antibody
producing plasma B cells (173). However, the exact role of
these different subtypes of Th cells in TV is still remains to
be elucidated. T. vaginalis infection also leads to the induction
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FIGURE 2 | Immunopathology of vulvovaginal candidiasis (VVC). Vaginal epithelial cells respond to pathogenic form of Candida either through direct contact via

Pattern recognition receptors (PRRs) or by sensing hypha associated virulence factor e.g., Candidalysin, through unknown receptor, further activating two signaling

pathways i.e., p38/c-Fos and MKP1. The response includes immune cell activation, secretion of inflammatory immune mediators, which are instrumental for innate

immune cells recruitment. Neutrophils and macrophages are the first to recruit at the site of infection. The neutrophils release TNF-α that provides shield from infection

by up-regulating TLR4 expression on epithelial cells. The expressed PRRs on ligation with pathogen further stimulate downstream signaling, production of NF-kB and

pro-inflammatory cytokines, forming a loop of positive feedback. The effector cells mediate killing of Candida with short hyphae by phagocytosis and those with long

hyphae by NETosis. Both mechanisms involve reactive oxygen species (ROS) production that further regulates all the stages of inflammation. The phagocytised

pathogenic components activate NLRP3 inflammasome through intracellular NLRs, and lead pro-inflammatory cytokines release including IL-1β and IL-18, which

further promote adaptive T helper 17 (Th17) and Th1 responses respectively, thus linking innate with adaptive immunity. Independently of this, Dectin-1-Syk-CARD9

signaling also couple innate and adaptive immunity and induce differentiation of adaptive Th-17 and Th-1 cells. The activated Th17 cells release IL-17, which further

increases expression of PMNs, chemotactic cytokines and AMPs, promoting extreme vaginal inflammation. However, an array of innate immune cells called “innate

Type 17” cells also produces IL-17. Thus, valuable information relative to adaptive T cell-mediated immunity (CMI) remained elusive in VVC.

of high concentration of T. vaginalis specific IgG, IgM, IgA,
and IgG subclass antibodies, along with induction of low
concentration of IgE antibodies, in vaginal secretions and serum
of T. vaginalis-infected subjects (152, 154, 174–177). However,
the protective role of these antibodies during T. vaginalis
infection remains obscure due to their short-lived effects caused
by degradation of these antibodies by T. vaginalis secreted
cysteine proteases (178, 179). Moreover, recently a study has
reported direct association between the effective metronidazole
based therapy of TV with diminution of specific anti-T. vaginalis
IgG antibody in serum (177). Thus, just like other VVIs both
innate and adaptive immune responses are activated during T.
vaginalis infection (Figure 3). However, the role of adaptive
immunity is still not clear, though elucidated better than VVC
and BV.

HOST DEFENSE AGAINST RVVI LEADS TO
OXIDATIVE STRESS

A wide range of substances, known as reactive oxidants,
consisting of free radicals and other non-radical oxygen
derivatives, are constantly generated as an essential part of
metabolism. These reactive oxidants are further neutralized by
an array of protective antioxidant mechanisms occurring in
human system and thus maintains redox homeostasis (180).
An imbalance between oxidants and antioxidants, due to an
excess oxidants production, leads to oxidative stress that disrupts
redox homeostasis (180). From the past decade, evidences have
emerged that suggested, reactive oxidants also generate as an
integral part of defense mechanism, leading to the state of
oxidative stress with significant biological consequences and
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FIGURE 3 | Immunopathology of Trichomoniasis (TV). T. vaginalis through unknown ligand lead to immune response generation by pattern recognition receptors

(PRRs including TLR2, TLR4, and TLR9) via p38 MAPK signaling pathway, consequently leading to IL-8 and TNF-α release from vaginal epithelium. Independent of

this, Galectin-1 and Galectin-3 expressed by vaginal epithelial cells recognize T. vaginalis LPG, wherein Galectin-3 accounts for pro-inflammatory cytokines (IL-8 and

MIP-3α) release. The pro-inflammatory cytokines promote recruitment and migration of immune cells, with predominant accumulation of neutrophils. The neutrophils

achieve T. vaginalis killing either by phagocytosis or by novel mechanism i.e. taking T. vaginalis “bites” prior to parasite death, using trogocytosis. T. vaginalis also leads

to the activation of complement system, encouraging killing through neutrophil-mediated phagocytosis. Phagocytosis involves reactive oxygen species (ROS)

production that further regulates all stages of inflammation. The phagocytised pathogenic components activate NLRP3 inflammasome, which further link innate with

adaptive immunity, promoting adaptive CD4+ T cells response. The different subsets of Th cells trigger cytokines that collectively lead to the activation and migration

of effectors cells promoting extreme vaginal inflammation, along with differentiation of B cells into T. vaginalis-specific antibody producing plasma B cells.

thus contributing to the pathophysiology of diseases (181).
These reactive oxidants are divided in to two main types
including reactive oxygen species (ROS) and the reactive
nitrogen species (RNS) (182). The former includes primary
ROS namely superoxide anion radical (O−

2 ) and secondary ROS
including hydrogen peroxide (H2O2) and the hydroxyl radical
(OH.) generated by the action of enzyme nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase (NOX) that exists
in different isoforms (183). The latter includes nitrogen oxide
free radical (NO.), the parent molecule of all RNS, generated
by the action of enzyme NO synthase (NOS) that catalyse
the conversion of l-arginine to l-citrulline in a five-electron
oxidative reaction. The NOS exist in three different isoforms that
includes type I-neuronal NOS (nNOS), type II-inducible NOS
(iNOS), and type III-endothelial NOS (eNOS). In which iNOS
is expressed only upon cell stimulation by pro-inflammatory
cytokines, by pathogen and pathogen associated molecules (as
given below) while nNOS and eNOS express constitutively (184).

These reactive oxidants affect all the stages of the inflammatory
immune response, starting from the release of DAMPs, their
sensing by PRRs, activation of signaling pathways, release of
immune mediators, and initiation of the innate and adaptive
cellular responses to the ultimate killing of pathogens by effectors
phagocytic cells as validated by different studies mentioned above
and below.

Oxidative stress plays an important role in release of DAMPs
such as HMGB1 in external surroundings (185–187). In turn,
HMGB1 itself leads to ROS and RNS generation by stimulating
cellular responses and up-regulating genes encoding iNOS via
TLR4 activation (188, 189). Moreover, these oxidants also
promote cells surface expression of PRRs (190, 191). In turn,
activated TLR and CLR-dependent pro-inflammatory signaling,
is coupled with ROS generation and up-regulated NOXs and
iNOS expression (130, 185, 192, 193). Thus, TLRs and CLRs
activation results into both oxidative and nitroxidative stress.
These oxidants further leads to TLR engagement and activation
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resulting in a round of magnification, designated as the “TLR-
radical cycle,” which ultimately causes chronic inflammatory
response (193). Moreover, the responses generated by PRRs
activation are mainly communicated through activation of
NF-κB, a redox sensitive transcription factor, which is also
activated by ROS. In turn, NF-κB controls the expression
of genes involved in innate immunity that leads to ROS
generation (194). In addition, ROS generation have also been
implicated for NLRP3 activation that generate adaptive immune
responses through inflammasome and also leads to further ROS
generation (195, 196).

Overall, these studies suggest that both oxidative stress and
inflammation stimulate each other and thus create a nasty cycle
that leads to the amplification and dissemination of inflammatory
response and respiratory/oxidative burst (the production of
ROS). The latter is a crucial reaction that occurs in activated
inflammatory cells especially neutrophils and macrophages to
degrade and kill internalized pathogen by phagocytosis. That
is why oxidative burst has long been recognized as a typical
consequence of immune cell stimulation coupled with both
chronic and acute states of inflammation (182, 197). All these
inflammatory stages that lead to ROS generation are shown
to be actively involved in RVVI, discussed above, suggesting
the major role of oxidative stress in pathophysiology of RVVI
and its contribution in vaginal immunity as an integral part of
defense mechanism.

Moreover, studies have documented the ROS production
by neutrophils in response to pathogenic bacteria, C. albicans
and T. vaginalis infection (43, 130, 163, 198–200). Studies also
documented the release of high levels of ROS by neutrophils
in response to Candida species such as C. galbrata and C.
dubliniensis (201, 202). The concentration of ROS in the vaginal
discharge of BV patients was found to be significantly higher
than that from healthy women (203). Candida species isolated
from VVC patients induce ROS production in neutrophils
(204). Reduced vaginal concentrations of NO metabolites were
shown to increase susceptibility to recurrent episodes of VVC
(205). Likewise, reduced serum concentration of ROS has been
shown to increase susceptibility to RVVI (206). Other than
neutrophils, macrophages were also shown to release cytotoxic
NO products against T. vaginaliswith increased iNOS expression
(165, 207). In addition, high levels of cytotoxic NO products
and increased iNOS expression was found in WBCs and
vaginal lavages of T. vaginalis infected asymptomatic women
relative to symptomatic women (208, 209). Thus, high ROS
production plays an important role in maintaining low burden
of infections, as observed in asymptomatic women depicting
a strong relationship between oxidative stress and vaginal
inflammation caused by RVVI.

HIJACKING OR EXPLOITATION OF HOST
IMMUNE RESPONSES BY RVVI
PATHOGENS

As discussed above, inflammation signifies an essential immune
mechanism which is meant to eliminate pathogens and

repair the damage caused by deleterious stimuli. However,
there are conditions in which such refurbishment may not
occur effectively, resulting in constant pushy cellular stress,
disseminating, and magnifying the inflammatory response.
In these situations, the process becomes defective, leading
considerable variations in tissue functions, with persistent
and systemic derangements of homeostasis (182, 210). These
conditions usually occur when pathogen becomes capable of
evading and subverting host immune responses, creating a niche
that allows its replication and leading to continuous stimulation
and thus amplification of inflammatory immune responses.
Generally, the evasion mechanisms counteract different events in
the entire RVVI pathogenesis, but this review will focus on the
mechanisms by which pathogens subvert or manipulate the host
immune responses, hijack it and use it for its own advantage.

In BV, the biota related to BV was found to inhibit the
release of secondary pro-inflammatory cytokine i.e., IL-8 (69).
As IL-8 endorses neutrophils migration, its absence does not
allow neutrophils to enter the vagina because of which local
inflammation does not occur, allowing pathogen survival. Also
BVAB were shown to release a combination of short chain
fatty acids, including butrate and succinate, which modulate the
host immune responses by negatively affecting neutrophils and
monocytes migration in vagina and their endocytic activity (211).
Moreover, lavages from women with BV as well as G. vaginalis
separately found to reduce internalization ability of dendritic cells
(DC) (91, 92). Additonally, BVAB has been shown to mask itself
from host’s immune responses by incorporating host sialic acid
produced as a result of chopping of vaginal mucosal layer by
bacteria (212–214).

Similarly in VVC, C. albicans was found to down-regulate
TLR4 expression on epithelial cells, thus restraining TLR4
mediated stimulation of immune responses and increasing C.
albicans infection (101). Candida species has the ability to shield
its β-glucan (the popular ligand of Dectin-1) with the help of
its cell wall components, thus preventing its recognition by
Dectin-1 and inhibiting Dectin-1 mediated immune responses
(215). As mentioned above, C. albicans leads to the activation
of complement (C) system and thus generate host immune
responses against pathogens. However, the pathogen employs
different strategies to evade the classical and alternative
pathways of C system. The first strategy includes degradation
of host complement components including C3b, C4b, and C5
(216). Second involves surface acquisition of host complement
inhibitors or regulators involving plasminogen-binding surface
protein, factor H, C4b-binding protein (C4BP), and FHL-
1. These surface attached inhibitors sustain their regulatory
property and inactivate respective host C proteins (217–219). The
third strategy includes direct and indirect C inhibition by self
secreting inhibitory protein including pH-regulated Ag 1 (Pra1).
This protein either directly blocks the activation and conversion
of C3 or indirectly inhibits C system by binding to the host C
inhibitor proteins (factor H and C4BP) (220–222). Candida also
inhibits the terminal complement complex (TCC) formation by
secreting Saps proteins (216).

Alternatively, C. albicans was shown to inhibit
phagolysosomes formation, which is an important step in
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the process of killing of a pathogen (223). Moreover, pyroptosis
is a host antimicrobial response mechanism that involves
death of host cells infected with intracellular pathogens. This
mechanism has been shown to be hijacked by highly virulent
Candida strain, for escaping the host immune cells, particularly
macrophages, thus mediating its own survival and host cell
killing (122, 123, 224, 225). As afore-discussed oxidative stress
plays a fundamental role in host defense against RVVI. However,
Candida has strategies to neutralize and evade the oxidative
stress. C. albicans expresses superoxide dismutase (SODs) and
other antioxidant enzymes on the cell surface. These extracellular
SODs also have vital roles in the detoxification of superoxide
radicals generated by phagocytes and hence prevent massive
ROS accumulation (226, 227). In addition C. albicans catalase
and vacuole (fungal organelle) formation has been suggested to
counteract oxidative stress (228–230). Moreover, C. albicans also
exploit host cytokine production for its own benefit by inhibiting
host IL-12, IL-17, and IFNγ production (231–234). These
cytokines are critical for host innate and adaptive immunity as
studied above.

Similarly, T. vaginalis uses DCs and macrophages for its
own advantage by modulating their immune responses leading
to reduced synthesis of IL-12 and increase synthesis of IL-10
and TGF-β (235, 236). Furthermore, NF-κB was also shown to
be inhibited by T. vaginalis, further suppressing the expression
of pro-inflammatory genes including IL-12, suggesting the
modulation of the host cytokines milieu as an effective immune
evasion strategy followed by T. vaginalis (235). Other than this,
cysteine proteases secreated by T. vaginalis helps in evasion of
host’s immune responses by degrading its various components
that includes subclasses of host antibodies (IgG and IgA), C3
opsonin and secretary leukocyte protease inhibitor (SLPI), an
antimicrobial peptide (178, 179, 237–239). The cysteine proteases
also contribute to cytotoxicity particularly against B cells (240,
241). Killing of B cells and phagocytosis of human peripheral
blood mononuclear cells (PBMCs) through contact dependent
manner by T. vaginalis have also been reported (242, 243).
This parasite neutralize specific host antibodies by secreting
numerous immunogenic soluble antigens, thereby evading host
immune responses (244–246). Additionally, T. vaginalis has been
suggested to incorporate host serum proteins in its surface,
masking itself from host’s immune responses (247). Taking this
into consideration, recently it was proposed that T. vaginalis
acquire CD59 from host cells, e.g., red blood cells (RBCs), thereby
evading itself from host complement mediated killing (248).

As mentioned above, galectin-1 and galectin-3 receptors
expressed on vaginal epithelial cells surface, bind to LPG core of
T. vaginalis (158, 159). The binding of T. vaginalis to galectin-
1 plays an immunosuppressive role by inhibiting the releases
of IL-8, MIP-3α, and RANTES, the chemokines that connect
innate and adaptive immunity and facilitate the recruitment
of phagocytes, an another important evasion strategy by the
pathogen (159). This suggests that in response to T. vaginalis
infection, the two molecules of same family play contrasting
role. However, in general, galectin-1 can also play immuno-
stimulatory role while galectin-3 is also capable of down-
regulating the inflammation (249, 250). The possible explanation

behind this inconsistency could be recognition of self ligands on
host cell surface by galectins, the reason behind why galectins
are still not strictly considered as PRRs, because PRRs recognize
only highly conserved pathogen associated structure that are
not present in host (251). This obvious contradiction divulges
our incomplete understanding regarding the structural and
biophysical features of ligand binding preferences displayed by
galectins and genuine variety in identification of the host galectin
range (252). However, the details of this topic are outside the
scope of this review. Moreover, T. vaginalis can leads to apoptosis
of neutrophils and macrophages by reducing expression of the
anti-apoptotic proteins and by activating caspase-3, which is a
pro-apoptotic marker (253, 254). Other than this, like many
other parasites, T. vaginalis also releases extracellular vesicles, for
instance exosomes, which can also modulate the host immune
responses by diminishing vaginal IL-17 concentration and up-
regulating IL-10 expression in macrophages (255). Besides this,
the surface immunogens of T. vaginalis, involving P230 and
P270 go through conformational changes that prevent the
epitope accessibility for binding of host antibodies that allows
parasite to evade host humoral immune responses (256, 257).
Thus, understanding the molecular mechanisms employed by
pathogens to exploit the host immune response for its own
benefits is of crucial importance for the management of these
devastating infections.

IMMUNOPATHOGENESIS OF RVVI:
PROPOSED THEORY

Vaginal innate immunity is the first line of defense system that
responds to the pathogens and activates the adaptive immunity.
In turn, activation of adaptive immune responses also support
the function of innate immunity consequently forming a loop of
positive feedback, leading to amplified inflammatory responses
and augmented effectors functions for the ultimate killing of
the pathogens. This emphasize on the pivotal role of innate
immunity, whose impairment can leads to adaptive immune
dysfunction and increased susceptibility to infections. Women
inspite of having disturbances in vaginal milieu represent
different clinical outcomes. Asymptomatic cases of RVVI is due
to proper functioning of both innate and adaptive immune
system, that have successfully coped up with the infection in
spite of different evasion strategies followed by the pathogens
and thus asymptomatic cases should be considered as healthy
individuals. While symptomatic cases are characterized by the
impairment in the communication part of the innate immunity
that signal for the activation of host adaptive immune responses
thus, breaking the loop of feedback amplification. This increases
the chances of hijacking and evasion of the immune system by
the pathogen, which creates a niche for the pathogen replication,
leading to continuous stimulation and violent innate immune
responses. Thus, symptoms that define the infection are due
to robust inflammatory immune responses and high vaginal
pathogen burden—a fine interplay that determines the clinical
outcome of infection. However, the presence of symptomatic
RVVI is appeared to be more dependent on host factors rather
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than on pathogens itself. Therefore, treatment should depend
upon recognition of the impaired unit of innate immunity that
do not allow adaptive immunity to responds and thus increasing
susceptibility to vaginal infections. Thesemost probable impaired
innate immune units could be PRRs that signal for activation of
adaptive immune responses. The genetic variations in these PRRs
have been shown to play an important role in how a woman
responds to a particular microbial challenge, as evidenced by
several genetic disease association studies given below. Thus,
looking at the women itself provided the answer to the major
query suggesting that symptomatic/asymptomatic cases of RVVI
are due to differences in women’s immunity, conferred partially
or wholly by genetic variations.

GENETIC SUSCEPTIBILITY: HOST
GENOTYPE MODULATES IMMUNE
RESPONSES AND VULNERABILITY TO
RVVI

Genetic variations, particularly single nucleotide polymorphisms
(SNPs), in genes coding various components of immune
system have evidently been shown to modulate innate and
acquired antimicrobial immune responses, both qualitatively
and quantitatively. These SNPs affect gene expression as well
as function and hence modulates individual’s susceptibility
to acquire diseases including RVVI, as evidence by several
studies (Table 1). SNPs in genes coding cytokines, enzymes,
growth factor, PRRs, and signaling adaptors were found to
be associated with RVVI susceptibility. A study have shown
association of dull IL-1β response against pathogens in allele
2 IL1RN∗2 carriers resulted due to polymorphism in intron
2 (IL1RN) of interleukin-1 receptor antagonist gene (IL-1Ra),
widely known to modulates the pro-inflammatory action of
IL-1 gene (258). Similarly, immunomodulatory effect of IL1β
polymorphisms was shown to be associated with susceptibility
of acquiring BV (259, 260). Another study showed increased
susceptibility to RVVC due to reduced levels of vaginal
anticandidal factors in IL-4 polymorphism homozygotes carriers
(205). Also, polymorphisms in IL-6 were associated with
reduced cytokine responses, conferring increased risk to BV and
premature deliveries (260, 261). However, IL-8 polymorphism
was shown to be associated with increased cytokine responses
and decreases BV risk (260). Presence of polymorphisms in
tumor necrosis factor-α (TNF-α) in BV women were associated
with increased vaginal TNF-α levels and preterm deliveries
(262, 263). Another study showed association of increased
BV risk as well as pre-term delivery with polymorphisms in
protein kinase C alpha (PRKCA) and fms-like tyrosine kinase
1 (FLT1) genes involved in the regulation of inflammatory
responses (261). Corticotropin-releasing hormone (CRH) is
involved in stress and regulation of inflammatory immune
responses. Polymorphisms in genes coding for Corticotropin-
releasing hormone binding protein (CRH-BP), Corticotropin-
releasing hormone (CRH) and corticotropin-releasing hormone
receptor 2 (CRH-R2) were found to be associated with BV (264).
Functional polymorphism at position 677 in gene coding for

methylene tetrahydrofolate reductase (MTHFR), a rate limiting
enzyme in methyl cycle, was shown to alter MTHFR activity and
DNA methylation in human placenta, which further increases
3.5-fold risk of premature rupture of membranes in BV positive
women (265).

As discussed above, PRRs are the important dictatorial
components of immune system. Polymorphisms in gene
encoding PRRs including TLRs (TLR2, TLR4, TLR7, and TLR9),
NLR (CIAS1), and CLRs (MBL2 and CLEC7A) have been
shown to modulate immune responses and susceptibility to
RVVI. Studies have shown association of TLR2 polymorphisms
with 3-fold increased risk of acquiring BV and increased
colonization of BVAB (266, 268). In consonance, a non-
synonymous SNP (nsSNP) in TLR2 was linked with defective
protein function, which subsequently reduced the production of
pro-inflamatory cytokines and predisposition to RVVC (269).
Similarly, polymorphisms in TLR4, TLR7, and TLR9 were shown
to be associated with increased risk of BV and>10-fold increased
colonization of BVAB (71, 267, 268). In contrast, a study has
shown decreased risk of acquiring BV with TLR2 and TLR7
Polymorphisms (267). Additionally, polymorphism in NLRP3
gene, also known as cold-induced auto-inflammatory syndrome
1 (CIAS1) gene, which code for the inflammasome component
NLRP3, has been shown to cause impaired NLRP3 expression
and IL-1β production that subsequently predisposes women
to RVVC (270). Moreover, polymorphisms in genes involving
MBL2 and CLEC7A have been shown to modulate their encoded
CLRs expression and activity resulting in defective immune
responses and altered susceptibility to RVVI (55, 57, 107, 108,
129, 271–273). Studies have shown an association of MBL2
codon 54 polymorphisms with increased RVVC risk (107, 108,
271, 272). Another study has found an association of codon
54 polymorphism with increased risk of both RVVC and RBV
(273). Moreover, Y/X promoter polymorphism of MBL2 was
found to predispose women to RVVI either it is BV, VVC,
or MI in North Indian population (55). A study identified
and explained a CLEC7A nsSNP i.e., Y238X (rs16910526) in
antifungal defenses in onychomycosis and RVVC (129). The
study showed poor expression of mutated form of Dectin-1,
with defective β-glucan binding, defective Th17 responses, and
defective production of cytokines including IL-6, TNF, and IL-
17, alluring the cause of VVC in these patients. Moreover, Y238X
variant was depicted to show gene-dose effects i.e., onset of
disease at early age of 10–12 years was observed in homozygous
variant daughter relative to late onset at age of 40 and 55 years
in heterozygous mother and father, respectively (129). Recently,
another study has reported that G allele of CLEC7A rs3901533
intronic variant and its homozygous carriers significantly lower
the risk of developing RVVI and its types i.e., BV, VVC, or MI in
North Indian population (57). Furthermore, a variation (Q295X)
in CARD9, coding for adaptor (CARD9) that mediates Dectin-
1 signaling, was shown to impair Dectin-1 signaling, resulting
in decreased numbers of interleukin-17 producing effector Th17
cells and increased risk of RVVC (276). In addition, precision
in diagnosing RVVI and subject assortment lead to variations
between studies that limit the simplification of the reported
findings to other populations.
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TABLE 1 | Human genes conferring susceptibility to RVVI.

Genes SNP(s)U Associated phenotype observed RVVI References

IL-1ra IL1RN*2 Reduced IL-1β response Increased colonization of anaerobic

Gram-negative rods, Mycoplasma, and

Peptostreptococci and Decreased

Lactobacilli colonization

(258)

IL-1β −511 and +3954 – Increased risk for BV (259)

+3954 Increased cytokine response Decreased risk for BV (260)

IL-4 rs2243250

(−589T/C)

Increased vaginal IL-4, reduced NO and MBL

levels

Increased risk for RVVC (205)

IL-6 −174 Reduced cytokine response Increased risk for BV (260)

rs1800795 – BV and High spontaneous preterm delivery (261)

IL-8 −845 Increased cytokine response Decreased risk for BV (260)

TNF-a TNF-2 (−308) – BV and Increased risk of spontaneous

preterm birth

(262)

−308G>A Elevated levels of vaginal TNF-α BV (263)

PRKCA rs1003599, rs10491202, rs11658528,

rs16960112, rs17762314, and rs1990503

– BV and High spontaneous preterm delivery (261)

FLT1 rs748252 –

CRH-

BP

+17487 – BV (264)

CRH + 3362 and −1667 – Increased risk for BV

CRH-

R2

+8288,+ 5253, and + 4853 – BV

MTHFR C677T Altered MTHFR enzyme activity, Affect DNA

methylation in the human placenta

BV and increased risk of premature

rupture of fetal membranes

(265)

TLR2 rs1898830, – 3 fold increased rate of BV/intermediate

flora

(266)

rs1898830, rs11938228, rs3804099 – Increased colonization of endometrial

anaerobic gram-negative rods. anaerobic

non-pigmented Gram-negative rods,

anaerobic Gram-positive cocci

rs3804099 – Decreased risk of BV (267)

rs1898830 – Increased risk of BV (268)

rs5743704 (P631H) Deleterious effects on protein function; reduces

production of IL-17 and IFNγ

3-fold increased risk of RVVC (269)

TLR4 896A > G Reduced vaginal IL-1β and IL-1ra levels >10-fold increased colonization of

Gardnerella vaginalis and anaerobic

Gram-negative rods, Prevotella,

Bacteroides, and Porphyromonas.

(71)

rs4986790 – Increased risk of BV (268)

TLR7 rs5743737 and rs1634323 – Decreased risk of BV (267)

rs179012 – Increased risk of BV

TLR9 rs187084 – Increased risk of BV (268)

CIAS1 Tandem repeat in intron 4 Impaired NLRP3 expression and IL-1β production RVVC (270)

MBL2 Codon 54 (rs1800450) Low MBL levels in cervico-vaginal fluids Increased risk of RVVC (107, 108,

271, 272)

– Increased risk of both RBV and RVVC (273)

Y/X(rs7096206) Low sMBL levels Increased risk of RVVI either it is BV, VVC

or MI

(55)

rs10824792 Low sMBL levels Increased risk of RVVI either it is BV, VVC

or MI

(274)

rs7084554 and rs36014597 Low sMBL levels Increased risk of RVVI either it is BV, VVC

or MI

(275)

CLEC7A rs16910526 (Y238X) Poor dectin-1 expression, defective ligand

binding, defective immune responses

Increased risk of RVVC (129)

rs3901533 High sdectin-1 levels Decreased risk of RVVI either it is BV, VVC,

or MI

(57)

CARD9 Q295X Decreased proportion of Th17 cells RVVC (276)

U represented either by rs number, position or by possible allele, See text for required abbreviations.
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RESEARCH DIRECTIONS

Though, understanding regarding immunopathology of
recurrent vulvovaginal infections has broadened recently, still
there are many key questions that are needed to be addressed.

First, unlike VVC and TV, studies have provided no relevant
evidence for neutrophils elevation in BV, though evidences
regarding high levels of bio-markers including cathelicidin that
induces neutrophils migration in BV is present (88, 89).

Second, candidalysin has recently been proposed as
a key hypha-associated virulence factor responsible for
immunopathogenesis of VVC (96). However, the receptors
employed by epithelial cells to sense candidalysin activity are still
pending to be eludicated.

Third, pyroptosis is employed as one of the evasion strategies
by virulent Candida for escaping macrophages (122, 123).
However, the fungal triggers activating the inflammasome
mediated pyroptosis are still not known.

Fourth, both in vitro and in vivo studies in VVC have
shown that Dectin-1-Syk-CARD9 signaling, couple innate and
adaptive immunity independently of TLR signals and induce
differentiation of adaptive Th-17 and Th-1 cells (125, 126).
However, no such role of Dectin-1 has been reported in BV
and TV till date. Though, its role in defense and recognition of
these pathogens has been revealed (277, 278). However, these
pathogens do not possess β-glucans, suggesting the possibility of
other ligands of Dectin-1 that are still not identified.

Fifth, an array of innate immune cells called “innate Type 17”
cells have also been shown to produces IL-17 (144–146). Recently,
a study reported candidalysin mediated innate IL-17 response in
murine model of oral candidiasis (149). However, the role of IL-
17 production by innate type 17 cells in BV, VVC, and TV is
largely uncharted.

Sixth, the first barrier of innate immunity encountered by
pathogens is vaginal epithelial cells that lead to immune response
generation by TLRs (155, 156). However, ligands of T. vaginalis
that bind to these TLRs have not been identified till date.

Seventh, the odds of hijacking increases, due to impaired
immune responses, the net magnitude of which is the result
of numerous genetic variations, present in multiple host
genes, detailed in this review. However, so far, the functional
consequences of genetic variations of only two genes i.e.,
MBL2 and CLEC7A have been reported, while the role of
other associated genetic polymorphisms are still pending to
be elucidated.

Finally, valuable information relative to the role of adaptive
immunity in RVVI is still not clear, though elucidated better in
TV than VVC and BV.

TREATMENT STRATEGIES

Advancements in diagnostic tools as well as drugs, targeting the
pathogens, provide temporarily relief, as the infection re-occurs
because disturbance in host genetic system is still persisting that
must be rectified in order to restore host homeostasis. The afore-
highlighted causal factors, that modulate propensity to RVVI in

FIGURE 4 | A funnel representing a fine interplay between host VMB, host

genotype and local factors that culminates to symptomatic RVVI. The tenant

VMB controls host gene expression and in succession the tenant VMB is

shaped by host genotype, while exposures of both local systemic and

environmental factors influence VMB and host genome.

women, may further be used to develop efficient diagnosis and
treatment strategies of this enigmatic disease. As for instance,

MBL Replacement Therapy
Plasma-derived MBL replacement has become a safe and
efficacious therapeutic option in diseases associated with low
MBL levels (279–281). Therefore, the emergingMBL substitution
therapy could possibly be the future treatment strategy for
RVVI (282).

Adoptive T-Cell Therapy
The use of CD8+, CD4+, and γδ T cells for the treatment of
infections dieases and cancer has been reported to safe and
efficacious (283). Therefore, the emerging MBL substitution
adoptive T-Cell therapy could possibly be the future treatment
strategy for RVVI.

Antibody-Based Therapy
Presence of many licensed monoclonal antibodies for the
treatment of infectious diseases including HIV (284) outlines the
prospects of this therapy for RVVI.

CONCLUSIONS

The methodical scrutiny of literature indicated RVVI as a
multifarious disease, requiring a “perfect storm” to start
infection. This “perfect storm” is a result of fine interplay
between host VMB, host genotype and other local risk factors
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that culminate into symptomatic infection (Figure 4). However,
the presence of symptomatic RVVI is appeared to be more
dependent on host factors rather than on pathogens itself.
Thus, by underlining the role of the host immune responses in
disease etiology, modern research has clarified amajor hypothesis
shift in the philosophy of RVVI pathogenesis. Future research
in explication of highlighted critical questions may provide
complete understanding of immunopathological mechanisms of
RVVI. Future research in explication of the highlighted causal
factors, that modulate propensity to RVVI in women, may reveal
new biologicals for preventing and treating RVVI.
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