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Abstract: GLUT1, being a ubiquitous transporter isoform, is considered primarily responsible for
glucose uptake during glycolysis. However, there is still uncertainty about the regulatory mechanisms
of GLUT1 in hyperglycemia in pregnancy (HIP, PGDM, and GDM) accompanied by abnormal
oxidative stress responses. In the present study, it was observed that the glycolysis was enhanced in
GDM and PGDM pregnancies. In line with this, the antioxidant system was disturbed and GLUT1
expression was increased due to diabetes impairment in both placental tissues and in vitro BeWo cells.
GLUT1 responded to high glucose stimulation through p38MAPK in an AMPKα-dependent manner.
Both the medical-mediated and genetic depletion of p38MAPK in BeWo cells could suppress GLUT1
expression and OS-induced proapoptotic effects. Furthermore, blocking AMPKα with an inhibitor or
siRNA strategy promoted p38MAPK, GLUT1, and proapoptotic molecules expression and vice versa.
In general, a new GLUT1 regulation pathway was identified, which could exert effects on placental
transport function through the AMPKα-p38MAPK pathway. AMPKα may be a therapeutic target in
HIP for alleviating diabetes insults.

Keywords: hyperglycemia in pregnancy; oxidative stress; glucose transporter 1; AMPKα; p38MAPK

1. Introduction

Oxidative stress (OS) is defined as a disturbance in the equilibrium status of pro-
oxidants and antioxidants. A hyperglycemic environment such as pre-gestational diabetes
(PGDM) and gestational diabetes mellitus (GDM) could initiate OS, which is reflected
by the overproduction of reactive oxygen species (ROS) and defects in the antioxidant
defenses [1–3]. During normal pregnancies, specific adaptations of maternal nutrient
metabolism such as carbohydrates are required to meet the increasing energy needs of
both mother and fetus. These variations are superimposed in hyperglycemia in pregnancy
(HIP) and subsequently affect placenta transport functions and fetal programming for
disease in adulthood [4,5]. Glucose is the principal energy substrate for fetal development
and is transported from maternal circulation due to the low production capacity in the
fetus [6]. The glucose uptake is dominantly mediated by facilitative transporter proteins in
trophoblast cells.

Glucose transporter 1 (GLUT1) is ubiquitously expressed and is the major glucose
transporter in the human placenta [7]. It plays a key role in the primary utility of glucose,
namely glycolysis, to generate energy. Altered GLUT1 expression is discovered in patho-
logical pregnancies, implicating abnormal glucose usage. Available documents suggest
that GLUT1 was increased in HIP with or without a large infant [8–13]. In contrast, its ex-
pression is shown to be decreased in IUGR [14]. Given that ROS production or elimination
is strongly associated with glycolysis and the subsequent metabolic pathways, the high
glucose exposure is often accompanied by ROS accumulation and thus recapitulates the
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plausible relationships between hyperglycemia and increased metabolic activity through
cellular stress-related mechanisms [15]. However, the GLUT1 regulation patterns with
exaggerated OS in HIP were unclear.

AMP-activated protein kinase (AMPK), a serine/threonine kinase, regulates the cel-
lular and whole-body energy metabolism under stress conditions, which is inactivated in
GDM or T2DM due to the enriched cellular ATP [16]. AMPK is necessary for nutrient trans-
portation and GLUT regulation [17]. Recent studies demonstrated that it could stimulate
glucose uptake through GLUT3 in the placenta [18] and GLUT4 in the skeleton muscle
independent of insulin [19]. The ability is heightened by treating with the AMPKα ago-
nist [20,21]. Moreover, in the placenta of GDM with macrosomia, AMPKα phosphorylation
and the GLUT1 expression level are more decreased and upregulated, respectively, than in
GDM with normal birth weights or normal pregnancies [22]. Apart from the traditional
view as a sensor of energetic status, AMPKα may be equally important in the regulation
of cell proliferation lying downstream of LKB1 [23]. However, the precise mechanism by
which AMPK regulates GLUT and cell growth or apoptosis remains unknown.

OS has been involved in regulating molecular pathways in many diseases through p38
mitogen-activated protein kinase (p38MAPK), a stress-activated protein serine/threonine
kinase [24]. Recently, researchers suggested that p38MAPK could mediate glucose uptake
and exerts beneficial effects appearing to be AMPKα-dependent [25]. AMPKα displays
a close relationship with p38MAPK in high glucose-related apoptosis [26], glucolipid
metabolism [27], tumor cell survival, and metastasis [28]. Considering the biological
similarities between the placenta and malignant tumors such as the microenvironment
heterogeneity, a high proliferative rate, and aerobic glycolysis [29], it was hypothesized
that GLUT1 is regulated through AMPKα-p38MAPK signaling and may exert influences
on placental transport function.

HIP (GDM and PGDM) constitutes one of the most common metabolic disorders in
obstetric populations. PGDM insulting at the beginning of gestation could exert long-
term effects on placental development, and GDM foremost leads to functional changes
insulting at a later stage of gestation [30]. Therefore, the aim of this study was to investigate
the influences of different high-glucose intrauterine environments on placenta transport
functions and the regulatory mechanisms of GLUT1 in the context of HIP-induced OS
enhancement. It was found that, in HIP groups, the antioxidant substances were decreased
concomitantly with overexpressed proapoptotic molecules. GLUT1 expression was also
increased and could be regulated by AMPKα-p38MAPK cascades.

2. Results
2.1. Participant Characteristics

The clinical characteristics of all subjects are summarized in Table 1. A total of 43 preg-
nancies were enrolled in this study, including 14 normal pregnancies (Control), 10 diet-
controlled GDM (GDM1), 9 insulin-controlled GDM (GDM2), and 10 PGDM (Type 2
diabetes). Women with HIP, especially GDM2 and PGDM, exhibited significantly high
p-BMI (Control: 21.68 ± 1.765 vs. GDM1: 22.27 ± 2.491 vs. GDM2: 26.56 ± 3.092 vs.
PGDM: 25.77 ± 4.803 kg/m2, p < 0.01), third-trimester fasting glucose level (Control:
4.48 ± 0.371 vs. GDM1: 4.71 ± 0.463 vs. GDM2: 5.17 ± 0.925 vs. PGDM: 5.19 ± 0.838,
p < 0.05), and decreased gestational weight gain (GWG, Control: 13.37 ± 4.239 vs. GDM1:
11.40 ± 2.989 vs. GDM2: 9.49 ± 2.875 vs. PGDM: 8.45 ± 3.218 kg, p < 0.01) when
compared with the control group. Moreover, there were significant differences in the
OGTT results among the control, GDM1, and GDM2 pregnancies (GLU0: 4.51 ± 0.180 vs.
5.17 ± 0.415 vs. 5.53 ± 0.420 mmol/L, p < 0.0001; GLU1: 7.88 ± 1.161 vs. 10.23 ± 1.335 vs.
10.00 ± 1.321 mmol/L, p < 0.0001; GLU2: 6.57 ± 0.873 vs. 9.21 ± 1.086 vs. 8.15 ± 1.520 mmol/L,
p < 0.0001; AUC: 13.42 ± 1.495 vs. 17.42 ± 1.402 vs. 16.84 ± 1.952 mmol/L, p < 0.0001).
The PGDM pregnancies were under poor control from the first trimester, and the glyco-
sylated hemoglobin (%) and glycated albumin (%) levels were 6.56 ± 1.19/16.71 ± 2.34,
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5.85 ± 0.34/16.26 ± 1.78, and 5.82 ± 0.56/16.19 ± 3.21 in the first, second, and third
trimesters, respectively. Other clinical factors were similar and of no significant differences.

Table 1. Clinical characteristics of the pregnant women enrolled in this study.

Control
(n = 14)

GDM1
(n = 10)

GDM2
(n = 9)

PGDM
(n = 10) p-Value

Age (years) 32.78 ± 3.577 33.70 ± 4.448 35.67 ± 3.605 34.70 ± 4.877 0.4
Gestational age (Weeks) 38.64 ± 0.745 38.80 ± 0.632 38.89 ± 0.333 38.60 ± 0.516 0.681

p-BMI (kg/m2) 21.68 ± 1.765 22.27 ± 2.491 26.56 ± 3.092 25.77 ± 4.803 0.001 **
GWG (kg) 13.37 ± 4.239 11.40 ± 2.989 9.49 ± 2.875 8.45 ± 3.218 0.008 **

GLU0 (mmol/L) a 4.51 ± 0.180 5.17 ± 0.415 5.53 ± 0.420 - <0.0001 ****
GLU1 (mmol/L) a 7.88 ± 1.161 10.23 ± 1.335 10.00 ± 1.321 - <0.0001 ****
GLU2 (mmol/L) a 6.57 ± 0.873 9.21 ± 1.086 8.15 ± 1.520 - <0.0001 ****

AUC 13.42 ± 1.495 17.42 ± 1.402 16.84 ± 1.952 - <0.0001 ****
Third trimester glucose (mmol/L) 4.48 ± 0.371 4.71 ± 0.463 5.17 ± 0.925 5.19 ± 0.838 0.035 *

Fetal birth weight (g) 3439.28 ± 330.657 3580.00 ± 512.809 3582.78 ± 256.065 3350.00 ± 324.414 0.509
Height (cm) 50.21 ± 0.975 50.50 ± 1.581 50.33 ± 1.000 50.28 ± 1.054 0.858

Ponderal Index (kg/m3) 2.91 ± 0.143 2.73 ± 0.260 2.81 ± 0.133 2.66 ± 0.200 0.393
Head circumference (cm) 33.96 ± 0.499 34.07 ± 0.861 34.39 ± 0.928 34.11 ± 0.782 0.626

Placenta weight (g) 580.00 ± 80.288 641.33 ± 158.338 602.22 ± 69.061 630.00 ± 92.736 0.509
Placenta volume (cm3) 704.86 ± 71.471 778.00 ± 90.985 954.89 ± 198.515 870.30 ± 158.711 <0.0001 ****

Placental coefficient 0.169 ± 0.023 0.186 ± 0.068 0.169 ± 0.025 0.192 ± 0.030 0.456

Data was expressed as the mean ± SD, **** p < 0.0001, ** p < 0.01 and * p < 0.05. p-BMI: Pre-pregnancy Body Mass
Index, GWG: Gestational Weight Gain, AUC: Area Under Curve, a: Results of the 75 g Oral Glucose Tolerance
Test (OGTT), and GLU: Glucose.

2.2. The Antioxidant Capacity Was Compromised in GDM and PGDM Pregnancies

To explore the effects of hyperglycemia on OS responses, the relevant markers in
placenta tissues were detected. It could be observed that the T-AOC capacity (Control:
0.26 ± 0.09 vs. GDM1: 0.17 ± 0.06 vs. GDM2: 0.20 ± 0.07 vs. PGDM: 0.16 ± 0.05 mmol/g,
p < 0.05), activity assays of SOD1 (Control: 7.49 ± 2.65 vs. GDM1: 5.40 ± 1.30 vs. GDM2:
4.66 ± 1.95 vs. PGDM: 5.41 ± 3.23 U/mg, p < 0.05), and catalase (Control: 5.02 ± 2.12
vs. GDM1: 3.64 ± 1.14 vs. GDM2: 4.19 ± 1.02 vs. PGDM: 3.17 ± 1.12 U/mg, p < 0.05)
were obviously decreased in HIP pregnancies and deteriorated in PGDM (Figure 1A–C).
Increased MDA content was present in HIP when compared with the control group but
without significant differences (Figure 1D). Consistently, the mRNA (Figure 1F–H) and pro-
tein (Figure 1I–K) expression profiles of the antioxidative stress molecules were increased
in the normal pregnancies, followed by GDM1, GDM2, and PGDM pregnancies. Moreover,
it could be observed that OS-induced apoptosis was increased in the HIP groups and most
evident in the GDM2 or PGDM group (Supplementary Figure S1A–D).
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cies. (A–E) Changes in the capacity and activity of oxidative stress-related molecules. (F–K) Placen-
tal mRNA and protein levels of antioxidant molecules. Actin served as the internal controls. Data 
are the mean ± SEM. * p < 0.05 and ** p < 0.01 by a one-way ANOVA test, followed by a post hoc test. 

2.3. Glucose Metabolism Was Disrupted in Placentas of Women with Hyperglycemia 
The overall glycolytic status was evaluated by examining key intermediates of gly-

colysis through targeted metabolomics. It was shown that the upstream mediates such as 
D-Glucose 6-phosphate, Beta-D-Fructose 6-phosphate, and D-Fructose 1,6-bisphosphate 
were significantly increased in HIP, especially in the GDM2 group (Figure 2A, Supple-
mentary Figure S2A–F). The other candidates were consistent with this and followed by 
GDM1 and PGDM pregnancies. Furthermore, the GDM pregnancies were unique in their 
ability to generate ATP from high rates of glycolysis, and thus, more ATP production than 
the control group was found.  

Figure 1. The balance between oxidant and antioxidant substances was disturbed in HIP pregnancies.
(A–E) Changes in the capacity and activity of oxidative stress-related molecules. (F–K) Placental
mRNA and protein levels of antioxidant molecules. Actin served as the internal controls. Data are
the mean ± SEM. * p < 0.05 and ** p < 0.01 by a one-way ANOVA test, followed by a post hoc test.

2.3. Glucose Metabolism Was Disrupted in Placentas of Women with Hyperglycemia

The overall glycolytic status was evaluated by examining key intermediates of gly-
colysis through targeted metabolomics. It was shown that the upstream mediates such as
D-Glucose 6-phosphate, Beta-D-Fructose 6-phosphate, and D-Fructose 1,6-bisphosphate
were significantly increased in HIP, especially in the GDM2 group (Figure 2A, Supplemen-
tary Figure S2A–F). The other candidates were consistent with this and followed by GDM1
and PGDM pregnancies. Furthermore, the GDM pregnancies were unique in their ability
to generate ATP from high rates of glycolysis, and thus, more ATP production than the
control group was found.
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2.4. Hyperglycemia Inhibited AMPKα Activation and Induced p38MAPK Phosphorylation in 
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AMPKα has emerged as a master regulator of cellular energy metabolism and can be 
activated by cellular stress, including glucose deprivation. To investigate the involvement 
of AMPKα in the HIP, RT-PCR and WB were performed in placenta tissues and found 

Figure 2. Placental glycolysis and GLUT1 expression were compromised under hyperglycemic
conditions. (A) Heatmaps of the detected glycolytic intermediates among four groups. (B–D)
Placental mRNA and protein levels of GLUT1. (E–H) Correlation analysis between GLUT1 and
fasting glucose (E), p-BMI (F), placental volume (G), and GWG (H). Actin served as the internal
controls. Data are the mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 by a
one-way ANOVA test, followed by a post hoc test. p-BMI: Pre-pregnancy Body mass index and GWG:
Gestational Weight Gain.

Since the glycolytic intermediates showed obvious changes among the four groups,
it was necessary to further examine the expression profile of GLUT1, one of the most
important glucose transporters for evaluating the glucose uptake efficiency. It was observed
that GLUT1 was expressed most in PGDM (Figure 2B–D). A correlation analysis was
conducted between GLUT1 and clinical indicators with significant differences (p-BMI,
GWG, fasting glucose, and placenta volume). It was shown that the GLUT1 protein level
was positively related with third trimester fasting glucose (r = 0.31, p = 0.045), p-BMI
(r = 0.28, p = 0.069), and the placenta volume (r = 0.27, p = 0.07) but negatively related with
GWG (r = −0.21, p = 0.17) (Figure 2E–H).
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2.4. Hyperglycemia Inhibited AMPKα Activation and Induced p38MAPK Phosphorylation in Both
Placental Tissues and In Vitro Trophoblasts

AMPKα has emerged as a master regulator of cellular energy metabolism and can be
activated by cellular stress, including glucose deprivation. To investigate the involvement
of AMPKα in the HIP, RT-PCR and WB were performed in placenta tissues and found
that it was obviously inhibited in GDM2 or PGDM pregnancies (Figure 3A–C). However,
the stress-activated protein p38MAPK was highly phosphorylated, responding to OS
(Figure 3D–F).
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Figure 3. AMP-activated protein kinase signaling was activated accompanied by p38MAPK downreg-
ulation in placenta exposed to hyperglycemia. (A–C) Placental mRNA and protein levels of AMPKα.
(D–F) Placental mRNA and protein levels of p38MAPK. Actin and Vinculin served as the internal
controls. Data are the mean ± SEM. * p < 0.05 by a one-way ANOVA test, followed by a post hoc test.

BeWo cells were fused spontaneously to form syncytiotrophoblast (STB) induced by
Forskolin (FSK), as indicated by an increased expression of Syncytin2 and h-CGβ (Supple-
mentary Figure S3A–D). Then, the cells were stimulated with a high-glucose medium to
induce metabolic activity. High glucose (10 mM and 25 mM) tends to induce more ROS
formation and improve OS responses (Figure 4A). In addition, the decreased antiapoptotic
molecule (BCL2L2) and increased proapoptotic molecules (BAX, BAD, and BAK) in high-
glucose surroundings, especially under 25 mM, simulated for PGDM pregnancies further
demonstrated the augmented OS level (Supplementary Figure S4A–D). Consistent with the
above results, AMPKα was downregulated, while p38MAPK and GLUT1 showed opposite
trends with high-glucose stimulation (Figure 4B–J).
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followed by a post hoc test. 

2.5. p38MAPK Mediated Hyperglycemia-Stimulated GLUT1 Expression and Apoptosis in BeWo 
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The roles of p38MAPK on GLUT1 expression and OS-mediated apoptosis were in-
vestigated using siRNA and SB203580, an inhibitor of p38 phosphorylation. It was found 
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BeWo cells exposed to a high-glucose medium (Figure 5A and Supplementary Figure 
S5A). Specifically, it could significantly suppress GLUT1 expression, making it equal to or 

Figure 4. The oxidative status and expression levels of AMPKα, p38MAPK, and GLUT1 were altered
in in vitro trophoblasts cultured in a high-glucose medium. (A) Intracellular ROS level in normal or
high-glucose medium. (B–J) Cellular mRNA and protein levels of AMPKα (B–D), p38MAPK (E–G),
and GLUT1 (H–J) cultured in normal or high-glucose medium. Actin and Vinculin served as the
internal controls. Data are the mean ± SEM. * p < 0.05 and ** p < 0.01 by a one-way ANOVA test,
followed by a post hoc test.

2.5. p38MAPK Mediated Hyperglycemia-Stimulated GLUT1 Expression and Apoptosis in
BeWo Cells

The roles of p38MAPK on GLUT1 expression and OS-mediated apoptosis were in-
vestigated using siRNA and SB203580, an inhibitor of p38 phosphorylation. It was found
that the interventions could diminish the phosphorylation of p38MAPK effectively in
BeWo cells exposed to a high-glucose medium (Figure 5A and Supplementary Figure S5A).
Specifically, it could significantly suppress GLUT1 expression, making it equal to or even
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lower than the normal glucose level (Figure 5B and Supplementary Figure S5B). In addition,
the mRNA level of BCL2L2 was restored, and simultaneously, the pro-apoptosis proteins
(BAX, BAD, and BAK) were further decreased after p38MAPK inhibition (Figure 5C–F and
Supplementary Figure S5C–F). The Western blot results were consistent with the previous
findings when BeWo cells were cultured in the normal glucose medium with and without
siRNA or SB203580 (Figure 5G–I and Supplementary Figure S5G–I). Together, these results
indicated that p38MAPK was involved in the regulation of GLUT1 and OS responses.
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Figure 5. p38MAPK inhibition is associated with decreased GLUT1 and alleviated OS responses.
(A–F) Cellular mRNA levels of p38MAPK (A), GLUT1 (B), and apoptotic molecules (C–F) in BeWo
cells handled with the p38MAPK antagonist. (G–I) Cellular protein levels of p38MAPK and GLUT1
by adding the p38MAPK antagonist. Actin and Vinculin served as the internal controls. Data are the
mean ± SEM. * p < 0.05 by a one-way ANOVA test, followed by a post hoc test. S: SB203580.

2.6. Hyperglycemia-Related OS Augment Activated p38MAPK Pathway through AMPKα

Growing evidence showed that AMPKα was involved in glucose uptake through
p38MAPK, particularly in tumor cells. Given the similarities between tumor and placental
tissue in energy metabolism and proliferation, it was rational to hypothesize that p38MAPK
acted as a downstream regulator in GLUT1 expression. As shown in Figure 6A–C, treating
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BeWo with AICAR, an agonist of AMPKα, could effectively inhibit p38MAPK phospho-
rylation and GLUT1 expression, followed by attenuated proapoptotic effects reflected
in decreased mRNA levels of BAX, BAD, and BAK (Supplementary Figure S6F–I). The
transfection of BeWo cells with negative or AMPKα-DN plasmid obtained the same results
(Figure 6D–G).
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(A–C) Cellular mRNA levels of AMPKα (A), p38MAPK (B), and GLUT1 (C)) in BeWo cells treated
with the AMPKα agonist. (D–G) Cellular protein levels of AMPKα, p38MAPK, and GLUT1 in BeWo
cells transfected with negative or AMPKα-DN plasmid. (H–J) Cellular mRNA levels of AMPKα

(H), p38MAPK (I), and GLUT1 (J)) in BeWo cells treated with the AMPKα inhibitor. (K–N) Cellular
protein levels of AMPKα, p38MAPK, and GLUT1 in BeWo cells transfected with siRNA against
AMPKα or scramble siRNA. Actin and Vinculin served as the internal controls. Data are the mean ±
SEM. # p < 0.1, * p < 0.05, and ** p < 0.01 by a one-way ANOVA test, followed by a post hoc test. A:
AICAR. C: Compound C.
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BeWo cells were cultured with Compound C to block AMPKα for establishing its
casual role in regulating p38MAPK-mediated glucose uptake. As shown in Figure 6H–J,
AMPKα inhibition significantly promoted p38MAPK and GLUT1 expression. This was
also accompanied by the increased mRNA levels of BAX and BAD, which were even more
than in normal conditions (Supplementary Figure S7E–H). AMPKα knockdown applying
siRNA technology exhibited similar effects (Figure 6K–N and Supplementary Figure S7I–O).
Together, these results indicated that p38MAPK functioned downstream of AMPKα in
high-glucose-induced OS.

The regulatory mechanism was further verified at the tissue level, in which the pla-
cental explants were cultured in high-glucose DMEM medium and modified by AICAR,
Compound C, and SB203580, respectively. The OS response was attenuated in the AICAR
or SB203580 administration group, as directly indicated by a decreased ROS level, but
without significant differences. The activity of SOD and T-AOC capacity were signifi-
cantly decreased with AMPKα inactivation (Compound C) and significantly increased
with p38MAPK dephosphorylation (SB203580), which were consistent with the ROS level
(Supplementary Figure S8A–D).

2.7. Trp53, Mknk2, Myc, and HIF1-α Targeted on p38MAPK Involving in GLUT1 Regulation

Chronic inflammation and insulin resistance are the main characteristics of diabetes
and could be induced by LPS or TNFα in vitro or in animal models. Thus, transcriptome
profiles generated from control and LPS-exposed mice placentae from the public dataset
were downloaded. The original Ingenuity Pathway Analysis (IPA) found that AMPK
phosphorylation was inhibited, and it activated the p38MAPK signaling pathway, acting
as upstream regulators [31]. The protein–protein interaction network (PPI) analysis was
performed through targeting genes involved in the OS signaling pathway. This indicates
that Trp53, Mknk2, Myc, HIF1-α, Eno2, and Pfkfb3 may regulate p38MAPK phosphory-
lation and be involved in GLUT1 regulation. Then, the functional enrichment analysis
was conducted, and the canonical pathways were mainly enriched on biological functions
associated with apoptosis, oxidative stress, and metabolism (Figure 7).
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analysis (B) of targeted genes generated from the GEO public dataset using IPA.
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3. Discussion

There was much data indicating that HIP-induced OS may entail nutrient transport
disorders in the placenta [32] and biochemical disturbances in fetuses [33]. Consistent with
previous research, this study found that the expression level and activity assays of antioxi-
dants, mainly SOD1 and catalase, were significantly decreased in the HIP pregnancies most
dominant in PGDM [34,35]. Additionally, OS-triggered apoptosis was verified in human
and mouse placentae with a lower expression of BCL-2 [36]. Conversely, Joel Ram rez-
Emilianos et al. found decreased oxidized substances in GDM placentae, suggesting a
protective role against OS damage [37]. Despite strict dietary or insulin control, the glucose
levels of HIP pregnancies were still much higher in the current study (4.71/5.17/5.19 vs.
4.66). The persistent and deleterious glucotoxicity may have already disrupted the adaptive
mechanisms during the development of HIP.

Dysregulation in carbohydrate metabolism characterized by increased glycolysis/
gluconeogenesis and decreased fatty acid metabolism were distinctive features of HIP [38].
These pregnancies showed higher glycolytic rates and increased GLUT1 expression. In
line with this, glycolytic-related genes were upregulated in adipose tissue from women
with GDM (PGK2 and GCK) [39]. Conversely, Amy M. Valent et.al. found that glycolytic
activity was especially suppressed in primary cytotrophoblasts (CTB), and GLUT1 was
downregulated in GDM [40]. Generally, discrepancies in the GLUT1 content were dis-
covered in GDM populations, with the majority indicating an increased density [41–44].
The ambiguous results may be explained by the heterogeneity of participants, different
diagnostic criteria, and glucose control levels. In PGDM, it was widely recognized that
GLUT1 expression was elevated, mainly due to the enlarged surface area of nutrient ex-
change and efficient energy metabolism [13–16,45]. The placental volume was obviously
larger in PGDM pregnancies and thus contributed to greater flows of glucose taken up. In
the correlation analysis, GLUT1 was positively related to fasting glucose (p = 0.045) and
placenta volume (p = 0.07). Combined with the unbalanced OS system and significantly
decreased AMPKα phosphorylation, it is rational to detect an increased glycolytic rate and
GLUT1 level under hyperglycemic conditions. It is worth noting that women with more
advanced PGDM were likely to have severe underlying vascular diseases and abnormal
placenta morphology, which may result in limited vascular resistance and nutrient avail-
ability [46,47]. Further experiments designed to differentiate the metabolic status of STB
and CTB, respectively, were also needed.

On the contrary, no correlation was found between GLUT1 and FBW [37]. In general,
insulin therapy exerted beneficial effects on lowering macrosomia incidences (GDM2
and PGDM group) [48], and there were also no significant differences of FBW among
four groups. Additionally, lipids may possibly serve as another strong contributor in
modulating intrauterine fetal growth, with the presence of positive correlations between
FBW and fatty acid transporter 6 (FATP6) [13].

Whether diabetes develops in the first or a later trimester, the placenta and fetus suffer
from hyperglycemic stress and redundant ROS as a result of spiral artery remodeling with
increased oxygen, and then, angiogenesis is promoted in the placenta to meet the fetal
demands [16]. The accumulated cellular ATP and ROS in the HIP may inactivate AMPKα

and simultaneously stimulate p38MAPK phosphorylation and apoptosis. The inverse
correlation was also shown in p38α-targeted deletion mice and in vitro BeWo cells cultured
in 5 mM and 25 mM medium [27,49]. In addition, adiponectin suppressed p38MAPK
but activated AMPKα in high-glucose-induced apoptosis in NRK-52E cells [26]. The STB
component is the main epithelium of human placenta responsible for nutrient transport,
and thus, FSK was adopted to induce BeWo cell syncytialization to mimic the biological
functions of STB in vivo. Similar results were obtained in cells with those in placental tissue
after high-glucose management. Treating BeWo with p38MAPK inhibitors (SB203580) or
adopting siRNA technologies could significantly suppress GLUT1 expression and relieve
apoptosis. Furthermore, supplementing AMPKα antagonists (Compound C) or siRNA
agents, the p38MAPK and GLUT1 were overexpressed and accompanied by enhanced
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apoptotic responses. The same conclusions were obtained by reverse validations with the
addition of the AMPKα agonist (AICAR) and transfecting plasmids. Based on these results
of the phenotype and mRNA levels, the cells only dealt with a normal medium to further
validate the above mechanisms at the protein level and obtained the same conclusion.
In addition, the placental explants were collected and detected the OS responses (ROS
level, SOD and catalase activity, and T-AOC capacity) after modification of the AMPKα-
p38MAPK cascades, which further confirmed the findings in the cell experiments.

AMPKα can be inhibited through indirect implications on the AMP/ATP ratio or
direct functions on SIRT1 or PP2A, leading to IR [50]. The AMPKα activators exhibited
tremendous benefits in maintaining glucose metabolism homeostasis in diabetes and as-
sociated complications. Metformin is a widely used drug for T2D. It could increase the
AMP/ATP ratio through inhibiting mitochondrial ATP synthesis, resulting in the activa-
tion of AMPKα, a reduction in hepatic glucose production and augmentation of insulin
sensitivity [51]. Therefore, it is speculated that AMPKα activity improvement can provide
promising results in HIP. Other metabolic effects medicated by AMPKα activators (such as
Berberine, A-769662, and polyphenols) involve decreasing the body weight by acting on
the satiety center or improved metabolic status [50]. This may help to prevent excessive
GWG during gestation and avoid other pregnancy complications. Combined with its regu-
latory role on GLUT1 expression, more efficacious and safer agents, such as monoclonal
antibodies to activate the AMPKα pathway in HIP, are warranted. The AMPKα agonist
polyphenols also exerted antioxidant effects and a decreased incidence of cardiovascular
disorder through generating NO in the PI3k/PKB pathway [52]. Suppressing NO synthesis
could aggravate diabetes and complications by stimulating TGFα. This also provides more
evidence for antioxidant therapy in HIP. Improved animal experiments or clinical trials are
needed to mimic the translational gap.

Noteworthily, AMPKα and p38MAPK also show consistent changes in tumors and
other tissues [28]. The differences may be associated with tissue-specific fashions, compre-
hensive regulatory networks, and heterogeneous microenvironments [16]. It is speculated
that other pathways may be involved, such as mTOR [53]. In this study, although it was
confirmed that p38MAPK was a downstream target of AMPKα in regulating GLUT1 expres-
sion, it could not conclude that the regulation was taking place by direct phosphorylation.
The downloaded transcriptome profiles, which were based on the premise that AMPK
phosphorylation was inhibited with the activated p38MAPK signaling pathway due to
intrauterine inflammation [31], did indicate some new transcription factors involved in
the regulation targeting on p38MAPK. Particularly, HIF-1α and its effector Pfkfb3 were
activated in islets from individuals with T1DM and streptozotocin-induced diabetes mouse
liver [54,55]. As a positive regulator of glycolysis, Pfkfb3 was suppressed by metformin,
resulting in TLR4/NF-κB signaling inhibition and corrected OS responses [56]. Human
umbilical cord-derived MSCs could reverse the high-glucose-stimulated ERK/MAPK sig-
naling pathway, mainly targeting P53, Myc, and Mknk2 [57]. In addition, the antioxidant
genes (SOD, catalase, and GSH-Px) were decreased, while biomarkers of glucose glycolysis
(Gck and Eno2) were overexpressed in high-fat-fed rats. This could be reversed by instant
dark tea intervention [58]. Summarily, the new transcription factors played potential roles
in the regulation of OS induced by hyperglycemia and provided evidence for further
basic research.

GLUT3 may play an important role to regulate placental function combined with
GLUT1. It was regulated by AMPKα and downregulated in pregnancies complicated
by GDM, resulting in enhanced apoptosis in HTR8/SVneo cells [18]. GLUT3 was also
regulated by p38MAPK in LP9M80-H-treated mice and thus correlated with the insulin
signaling pathway [59]. In a high-fat diet (HFD)-induced rat or high-glucose-induced
medium, the GLUT3 expression was increased and associated with the activation of hip-
pocampal endoplasmic reticulum stress (ERS) and ERS-mediated apoptosis (Bax and Bcl2).
The excessive ERS attenuated p38/ERK-CREB signaling pathways and activated NLRP3-
IL-1β pathways [60,61]. In Sertoli cells with glucose deprivation, an increase in GLUT1 and
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decrease in GLUT3 expression were shown, accompanied by an activation of the AMPK,
PI3K/PKB, and p38MAPK pathways. However, a possible participation of the AMPK- and
p38MAPK-dependent pathways in the regulation of glucose uptake and GLUT1, but not
GLUT3 expression, was found by using specific inhibitors [62]. Taken together, GLUT3
played an important role in glycolysis, ROS, or apoptosis regulation and was closely associ-
ated with the AMPK or p38MAPK pathway. Further research is needed to confirm its role
through AMPKα-p38MAPK-GLUT1 cascades in regulating the metabolism and oxidative
stress in HIP placentae.

In the current study, pregnancies with different degrees of glucose impairment (GDM
and PGDM) were enrolled, and GDM populations were further sub-grouped according
to insulin treatments or not. In the context of clear medical interventions and glucose
control levels, this study provided robust evidence for OS response and GLUT1 expression
characteristics. Based on this, one novel pathway regulating GLUT1 expression through
p38MAPK premised on AMPKα was demonstrated (Figure 8). This provided more ev-
idence that AMPKα is a potential target for HIP. There were several limitations. Firstly,
GLUT1 was differently expressed in the two plasma membranes of STB: microvillous
membrane (MVM) and basal membrane (BM), and BM GLUT1 expression was positively
correlated with FBW [63]. Therefore, further experiments designed to isolate the STB
membrane and differentiate the metabolic status were needed. Secondly, it is necessary to
explore deeper regulatory mechanisms based on newly discovered transcription factors.
In addition, animal experiments were needed to verify the potential therapeutic effects
of antioxidant agents or AMPKα activators on the maternal and fetal outcomes in the
following study.
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4. Materials and Methods
4.1. Study Participants and Sample Collection

Placenta samples from women with pre-gestational diabetes mellitus (n = 10), gesta-
tional diabetes mellitus (n = 19), and normal pregnancies (n = 14) were collected at Peking
University First Hospital between July 2019 and June 2021. All participants enrolled in this
study had no history of preeclampsia, hypertension disorders, chronic diseases, smoking
or drinking habits, fetal anomalies, intrauterine fetal growth restriction, and infections.
The placenta samples were obtained within 30 min after cesarean sections, and fragments
of villous were isolated from the basal plate at sites located 5 cm from the umbilical cord
insertion site. The tissues were stored at −80 ◦C until further analysis.

This project was approved by the Ethics Committee of Peking University First Hospital
(V2.0/201504.20), and informed consent was obtained from all participants.

4.2. Placental Explant Culture

Placental tissues were collected from uncomplicated pregnancies by cesarean sections
and washed thoroughly in sterile PBS. After dissected into small pieces of approximately
0.5 mm3, the placental explants were cultured in DMEM (Gibco, Grand Island, NY, USA)
supplemented with 10% fetal bovine serum (FBS, Gibco, MA, USA), 100 U/mL penicillin
(Lonza, Basel, Switzerland), 100 U/mL streptomycin (Lonza), and 250 ng/mL amphotericin
B (Lonza) at 37 ◦C. After being allowed to attach for 6–12 h, the explants were treated with
20 µM Compound C, 1 mM 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR),
and 60 µM SB203580 for 8 h, 2 h, and 6 h, respectively. The placental explants were collected
for the subsequent analysis after culturing for 36 h.

4.3. Determination of Oxidative Stress Markers

Equal amounts of placental tissues were dissolved in RIPA buffer, and 10% of the total
homogenate was used to detect OS-associated markers according to the manufacturer’s
standard. Kits for the malondialdehyde content (MDA, A003), total antioxidant capacity
(T-AOC, A015), activity assays of superoxide dismutase (SOD, A001), catalase (CAT, A007),
and L-Glutathione (GSH, A006) were from Nanjing Jiancheng Bioengineering Institute
(Nanjing, China).

4.4. Measurement of Glycolytic Metabolites by LC-MS/MS

The protein was collected by homogenate lysis. Briefly, a 100-mg sample was mixed
with 1 mL cold methanol/acetonitrile/H2O (2:2:1, v/v/v) and sonicated at a low tempera-
ture (30 min/once, twice). After centrifugation, the supernatant was dried in a vacuum
centrifuge and then redissolved in 100 µL acetonitrile/water (1:1, v/v) for LC-MS analysis.
Analyses were performed using a UHPLC (1290 Infinity LC, Agilent Technologies, Palo
Alto, CA, USA) coupled to a QTRAP (AB Sciex 5500) using an ACQUITY UPLC BEH Amide
column (2.1 × 100 mm, 1.7 µm, Waters MS Technologies, Manchester, UK). The MS/MS
Analysis (MRM) was performed in ESI-negative mode. Data acquisition and processing
were accomplished using Multiquant software (AB SCIEX, Boston, MA, USA).

4.5. Cell Culture and Treatments

The human choriocarcinoma originated BeWo cell lines were purchased from the
National Infrastructure of Cell Line Resource (NICR, Beijing, China) and maintained in
Roswell Park Memorial Institute (RPMI) 1640 medium (Thermo Fisher Scientific, Grand
Island, NY, USA) supplemented with 10% (v/v) FBS (Gibco, MA, USA), 100 U/mL penicillin
(Lonza, Basel, Switzerland), 100 U/mL streptomycin (Lonza), and 250 ng/mL amphotericin
B (Lonza) at 37 ◦C in a humidified atmosphere containing 5% CO2. The syncytialization of
BeWo cells was induced by incubation with 20 µM FSK (Selleck, Houston, TX, USA) for
48 h and then incubated with 5 mM D-glucose (control group), 10 mM D-glucose (high-
glucose group simulated for GDM), and 25 mM D-glucose (high-glucose group simulated
for PGDM) for another 48 h. For the mechanism analysis, the AMPKα inhibitor Compound
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C and agonist AICAR were obtained from MedChemExpress (Monmouth Junction, NJ,
USA), and the p38MAPK inhibitor SB203580 was from Selleck (Houston, TX, USA). After
syncytialization induction, 20 µM Compound C, 1 mM AICAR, and 60 µM SB203580
were added to a fresh medium with different glucose concentrations for 8 h, 2 h, and 6 h
separately. Subsequently, the chemical materials were removed and cells continued to be
cultured in the fresh medium.

4.6. Measurement of Intracellular ROS

Cells were seeded at 6000 cells/well in a 96-well plate. After attachment and syncy-
tialization, the cells were incubated with 5 mM, 10 mM, and 25 mM glucose. The medium
was updated every 24 h for a total of 96 h. Thereafter, all groups were treated with a
mixture of DCF-DA (20 µM, Sigma-Aldrich, St. Louis, MO, USA) and Hoechst 33342 (HO,
2.5 µg/mL, Sigma-Aldrich, St. Louis, MO, USA) for 30 min to detect intracellular ROS and
the corresponding number of viable cells. The fluorescence intensity was measured by a
microplate reader after discarding the supernatant and PBS rinse. The excitation/emission
wavelengths were 490/530 nm for DCF-DA and 340/425 nm for HO. The results were
calculated as the ratio of DCF-DA/HO signals per well. All samples were performed in
triplicate. The placental explants were cultured and digested into single-cell suspensions,
and then, the ROS level was measured according to the manufacturer’s standard (E004,
Nanjing Jiancheng Bioengineering Institute).

4.7. Transfection in BeWo Cells

The BeWo cells were cultured to 60–70% confluence and transiently transfected with
a nonspecific negative control small interfering RNA (siRNA) or siRNA against genes
encoding AMPKα and p38MAPK using Lipofectamine RNA iMax (Invitrogen, Karlsbad,
CA, USA) in Opti-MEM reduced serum medium (Invitrogen, Karlsbad, CA, USA). After
24-h transfection, the BeWo cells were treated with fresh medium containing 5 mM, 10 mM,
or 25 mM glucose for further analysis.

For AMPKα overexpress experiments, the BeWo cells were seeded to 70–80% conflu-
ence and transiently transfected with pc-DNA as the negative control and AMPKα-DN
by Lipofectamine 3000 (Invitrogen, Karlsbad, CA, USA) according to the manufacturer’s
protocol. The medium was replaced with a fresh medium after 4–6 h of transfection and
treated with a normal or high-glucose medium after 24 h. Cells were harvested after 48 h
for RT-PCR analysis and 72 h for Western blot analysis.

4.8. RNA Isolation and Reverse-Transcription Polymerase Chain Reaction (RT-PCR)

Total RNA from the cultured cells or tissue samples was extracted using TRIzol
reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions, and
cDNA was synthesized from 2 ug of RNA using the FastKing RT Kit with DNase (Tiangen
Biotech, Beijing, China). The gene expression analysis was evaluated by RT-PCR using
the ABI Power SYBR Green gene expression system (Applied Biosystems, Waltham, MA,
USA) on an ABI 7500 sequence detection system. The primer sequences used are listed
in Supplementary Table S1. The relative expression levels of mRNA were normalized to
β-actin, and the fold changes were calculated using the 2−(∆∆Ct) method.

4.9. Western Blot Analysis

The tissue samples or cells were washed in PBS and lysed in cold RIPA buffer (KeyGen
Biotech, Nanjing, China) supplemented with a protease inhibitor cocktail (Sigma Aldrich,
Merck Millipore, Boston, MA, USA) and phosphatase inhibitors (Roche, Mannheim, Ger-
many). The protein concentration was determined using a Pierce BCA Assay kit (Thermo
Fisher Scientific, Inc.).

Immunoblotting was performed with primary antibodies against AMPKα (5831, Cell
Signaling Technology, Beverly, MA, USA), AMPKα phosphorylated at Thr172 (2535, Cell
Signaling Technology, Beverly, MA, USA), p38MAPK (8690, Cell Signaling Technology,
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Beverly, MA, USA), p38MAPK phosphorylated at Thr180/Tyr182 (4511, Cell Signaling
Technology, Beverly, MA, USA), SOD1 (37385, Cell Signaling Technology, Beverly, MA,
USA), catalase (12980, Cell Signaling Technology, Beverly, MA, USA), GLUT1 (AP21407B,
Abcepta, Suzhou, Jiangsu, China), HERV-FRD (AP13018A, Abcepta, Jiangsu, China), Vin-
culin (ab129002, Abcam, Cambridge, UK), and β-actin (4970, Cell Signaling Technology,
Beverly, MA, USA) overnight at 4 ◦C. Subsequently, the membranes were further incubated
with horseradish peroxidase (HRP)-conjugated secondary antibody (7074, Cell Signaling
Technology, Beverly, MA, USA). The signals were visualized using an ECL kit (Merck
Millipore) and the Syngene GeneGenius gel imaging system (Syngene, Cambridge, UK).
Independent experiments were repeated at least three times using cultured cells. Detected
bands were analyzed with densitometry using ImageJ software.

4.10. Protein–Protein Interaction Network and Functional Enrichment Analysis

Gene expression data were collected from public datasets at the Gene Expression
Omnibus database (GEO: GSE151728) (http://www.ncbi.nlm.nih.gov/geo/, accessed on
7 February 2022). After identifying target genes, the protein–protein interaction network
(PPI) analysis and enrichment analysis were performed on the STRING database (http://
string-db.org, accessed on 7 February 2022) and Metascape, respectively (http://metascape.
org/gp/index.html#/main/step1, accessed on 7 February 2022).

4.11. Statistical Analysis

The results were expressed as the mean ± standard deviation (SD). Comparisons were
performed by the Student’s t-test or the one-way ANOVA, followed by a post hoc test
using SPSS version 26.0 (SPSS Inc., Chicago, IL, USA). The molecular experiments were
conducted independently at least three times. For the association analysis between the
GLUT1 expression level and clinical factors, Person’s correlation coefficient was adopted
with the following selected parameters: maternal pre-pregnancy body mass index (p-BMI),
gestational weight gain (GWG), fasting glucose in the third trimester, placental volume,
fetal birth weight (FBW), and placental ratio and was considered statistically significant at a
p-value of < 0.05. Statistically significant differences were shown as follows: **** p < 0.0001,
*** p < 0.001, ** p < 0.01, * p < 0.05, and # p < 0.1.

5. Conclusions

In the HIP groups, the antioxidant substances were decreased concomitantly with
overexpressed proapoptotic molecules. The GLUT1 expression was also higher and signifi-
cantly correlated with the third trimester glucose level. It could be regulated by AMPKα-
p38MAPK cascades and exert influences on placental transport functions. These findings
supplemented new evidence for the potential therapeutic effect of AMPKα on alleviating
diabetes progression in pregnancy.
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