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Abstract 

Background Recombination signal-binding protein for immunoglobulin kappa J region (RBPJ) is a transcriptional 
regulator that plays an important role in maintaining immune homeostasis. This study aimed to estimate the expres-
sion of RBPJ in rheumatoid arthritis (RA) patients and investigate its relationship with RA.

Methods A total of 83 newly diagnosed RA patients and 70 healthy controls were included. mRNA was extracted 
from peripheral blood mononuclear cells (PBMCs), and the expression of RBPJ was detected using quantitative 
real-time PCR (qRT‒PCR). An RA dataset (GSE89408) was obtained from the Gene Expression Omnibus (GEO) data-
base, and RA synovial tissues were divided into two groups. The differentially expressed genes (DEGs) were selected 
with the “DESeq2” R package.

Results RBPJ expression was lower in RA patients than in health controls and was negatively correlated 
with the DAS28 score, C-reactive protein (CRP) level and erythrocyte sedimentation rate (ESR). RA synovial tissues 
from GSE89408 were classified into RBPJ-low (≤ 25%) and RBPJ-high (≥ 75%) groups according to RBPJ expression, 
and 562 DEGs were identified. Gene Ontology (GO) enrichment analyses revealed that the DEGs significantly affected 
the regulation of T cell activation and lymphocyte/mononuclear cell differentiation. Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis revealed that the most enriched pathways of DEGs were the T cell receptor 
signaling pathway, Th1/2 and Th17 cell differentiation, the PI3K − Akt signaling pathway and cytokine‒cytokine recep-
tor interaction. CytoHubba Plugin revealed that most of the top 10 genes were involved in osteoclast differentiation, 
the T cell receptor signaling pathway and cytokine‒cytokine receptor interaction.

Conclusions RBPJ expression was significantly lower in RA patients and negatively correlated with disease activity. 
GEO dataset analysis demonstrated that RBPJ may be involved in osteoclast differentiation, T cell activation and dif-
ferentiation, and the T cell receptor signaling pathway. Our research may contribute to understanding the potential 
mechanisms by which RBPJ regulates T cell differentiation and cytokine‒cytokine receptor interaction in RA patients.
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Introduction
Rheumatoid arthritis (RA) is a chronic autoimmune 
disease that primarily affects the joints and has the 
highest incidence rate among autoimmune diseases 
[1]. During the progression of RA, a cellular immune 
imbalance develops in the synovial tissue. This imbal-
ance in the immune system causing persistent synovial 
hyperplasia and inflammation, cell infiltration, pro-
duction of proinflammatory cytokine, and persistent 
articular cartilage destruction, which ultimately leads 
to joint pain and loss of function. The levels of proin-
flammatory cytokines and chemokines are reportedly 
increased in the plasma of RA patients [2].

The Notch signaling pathway coordinates numerous 
cellular processes, including immune homeostasis, cell 
differentiation, proliferation, and apoptosis [3, 4]. As 
a transcriptional regulator of Notch signaling, recom-
bination signal-binding protein for immunoglobulin 
kappa J region (RBPJ) plays a key role in maintain-
ing cellular differentiation and homeostasis [5]. Sev-
eral studies in  RBPJ−/− mice have shown that RBPJ 
is involved in the function and development of Th17 
cells,  CD4+ T cells, macrophages, and other myeloid 
cells [6–8]. Research has revealed the transcriptional 
repression of RBPJ in the bone marrow microenvi-
ronment, and RBPJ deletion disrupts hematopoietic 
homeostasis and leads to the upregulation of multiple 
inflammatory cytokines [9]. Increased osteoclastogen-
esis and abnormal generation of osteoclasts lead to 
joint destruction in RA [10, 11]. Research has shown 
that RBPJ plays a crucial role in suppressing inflam-
matory bone resorption, osteoclast differentiation, and 
osteoclastogenesis [12]. Stahl’s group identified RBPJ 
allelic polymorphisms associated with RA susceptibil-
ity through a genome-wide association study (GWAS) 
[13, 14], but the mechanisms of RBPJ in the progres-
sion and pathogenesis of RA are still unclear.

In this study, we collected fresh peripheral blood 
from newly diagnosed RA patients and healthy con-
trols, and then extracted peripheral blood mononu-
clear cells (PBMCs). The expression of RBPJ mRNA in 
PBMCs was detected through quantitative real-time 
PCR (qRT‒PCR) analysis. Moreover, we screened 
the differentially expressed genes (DEGs) between 
high and low levels of RBPJ in RA synovial tissue via 
analysis of the RA dataset (GSE89408) from the Gene 
Expression Omnibus (GEO) database and investi-
gated potential pathways related to RBPJ. This study 
improves our understanding of the target genes and 
potential mechanisms underlying the functions of 
RBPJ in RA patients.

Materials and methods
Study participants
In this study, we recruited 157 newly diagnosed RA 
patients in our hospital. All patients underwent clinical 
assessment by specialists and were diagnosed according 
to the criteria for RA [15]. Fifty patients with no speci-
mens or incomplete clinical information or who were 
under 18 years old or over 75 years old were excluded. 
We also excluded patients with concomitant diabe-
tes, malignancy, infectious diseases, or other autoim-
mune diseases. Finally, 83 RA patients were included 
for testing and analysis (Fig.  1). Demographic data, 
including age, sex, disease duration, morning stiffness, 
swollen joint count, tender joint count, and labora-
tory indices, were collected. The disease activity of RA 
patients was evaluated by the Disease Activity Score in 
28 Joints (DAS28 score) and subsequently divided into 
three groups: patients with a DAS28 ≤ 3.2 were clas-
sified into the low disease activity group, those with 
3.2 < DAS28 ≤ 5.1 were classified into the moderate 
disease activity group, and those with a DAS28 > 5.1 
were classified into the high disease activity group. In 
addition, seventy age- and sex-matched healthy con-
trols were included. The present study was approved by 
the ethics committee of Taizhou Hospital of Zhejiang 
Province.

Quantitative real‑time PCR analysis of PBMCs
We collected fresh peripheral blood from RA patients 
and healthy controls, and PBMCs were isolated from 
peripheral blood via density gradient centrifugation 
using Ficoll (Sigma − Aldrich Co. LLC). TRIzol reagent 
(Thermo) was used to extract total RNA from PBMCs, 
and the RNA quantity was measured with a NanoDrop 
ND-1000 (NanoDrop, Wilmington, DE, USA). A Bey-
oRT™ II cDNA first strand synthesis kit was used to 
generate complementary DNA (cDNA) from total 
RNA. The mRNA expression of RBPJ and six hub genes 
were measured by qRT‒PCR using BeyoFast™ SYBR 
Green qPCR mix (high Rox) with a Step-One Plus Real-
Time PCR system (ABI). The procedure conditions 
were as follows: pre-denaturation at 95 °C for 2 min; 40 
cycles of denaturation at 95 °C for 15 s and annealing/
extension at 60  °C for 30  s; and melting curve analy-
sis at 95 °C for 15 s, 60 °C for 15 s, and 95 °C for 15 s. 
GAPDH was used as the internal reference gene for 
mRNA. Relative mRNA expression levels were evalu-
ated using the  2−ΔΔCT method and compared with those 
of the GAPDH control. The sequences of the primers 
were selected from PrimerBank and synthesized by 
Sangon Biotech (Shanghai, China), and listed in Sup-
plementary Table S1.
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GEO database analyses of RBPJ expression in RA synovial 
tissues
We obtained an RA dataset (GSE89408) from the GEO 
database to study the potential regulatory pathway of 
RBPJ in RA synovial tissues. We subsequently divided 
the RA synovial tissues into two groups according to the 
interquartile range of RBPJ expression: those with RBPJ 
expression levels ≤ 25% were classified into the RBPJ-low 
group (n = 38), whereas those with RBPJ expression ≥ 75% 
were classified into the RBPJ-high group (n = 38). The 
DEGs between the two groups were selected using the 
“DESeq2” R package (version 4.3.1) with the following 
thresholds: adjusted p value < 0.01 and |log2 fold change| 
> 1.2.

DEG enrichment and pathway analysis
The DEG enrichment analyses included Gene Ontology 
(GO) functional annotation and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis and were 
conducted with the R package ‘clusterProfiler’. All DEGs 
were mapped to GO terms for functional enrichment 
analysis, including biological processes (BP), molecu-
lar function (MF), and cellular component (CC). KEGG 
pathway analysis of clusters and hub genes was also per-
formed through KOBAS (http:// kobas. cbi. pku. edu. cn/) 

online. Moreover, gene set enrichment analysis (GSEA) 
was further used for enrichment analysis, and the KEGG 
database was used as the reference gene set.

Construction and analysis of the protein‒protein 
interaction (PPI) network
The PPI network for the interactions among proteins was 
established using the STRING database online (https:// 
string- db. org/) and visualized with Cytoscape (version 
3.9.1). The hub genes were screened and identified by the 
CytoHubba plugin in Cytoscape, and the main clusters 
were determined by the Molecular Complex Detection 
(MCODE) plugin.

Statistical analysis
The relative RBPJ mRNA expression data were analyzed 
by SPSS 23.0 statistical software (IBM Corp., Armonk, 
N.Y., USA) and compared using Student’s t test. The cor-
relations between RBPJ and laboratory indicators were 
determined using Spearman’s correlation analysis. The 
graphs were constructed with GraphPad Prism 8.0 soft-
ware (GraphPad Software, La Jolla, CA, USA) or R soft-
ware (version 4.3.1). An adjusted p value or p value < 0.05 
was considered statistically significant.

Fig. 1 Flowchart of this study

http://kobas.cbi.pku.edu.cn/
https://string-db.org/
https://string-db.org/
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Results
Clinical characteristics and RBPJ expression in RA patients
There were no significant differences of age and sex 
between the RA and healthy controls. Table 1 shows the 
laboratory and clinical characteristics of the RA patients. 
The disease duration of the RA patients was 3.0 (IQR: 
2.0–6.0) months, and 23 (27.7%) patients experienced 
morning stiffness. Our results revealed significantly 
lower RBPJ expression levels in PBMCs extracted from 
RA patients than in those extracted from healthy con-
trols (P < 0.001) (Fig.  2A). Among 83 newly diagnosed 
RA patients, 20 patients were classified in the low dis-
ease activity group, 34 patients in the moderate disease 
activity group, and 29 patients in the high disease activ-
ity group. RBPJ expression was significantly lower in the 
high disease activity group than in the moderate and low 
disease activity groups (P < 0.001) (Fig. 2B, C).

Correlations between RBPJ expression and the clinical 
parameters of RA patients
The correlations between RBPJ expression and the dis-
ease activity and clinical parameters of RA patients were 
investigated (Fig.  3). The results revealed a significant 
negative correlation between RBPJ mRNA expression 
and the DAS28 score (r = -0.388, P < 0.001), erythrocyte 
sedimentation rate (ESR) (r = -0.334, P = 0.002), C-reac-
tive protein (CRP) (r = -0.241, P = 0.028), monocyte 
count (r = -0.221, P = 0.044) and complement 3 level (r 
= -0.290, P = 0.008). However, no relationships between 
RBPJ mRNA expression and anti-cyclic citrullinated 

peptide (anti-CCP) level, rheumatoid factor (RF) level or 
disease duration were detected (P > 0.05).

Identification of differentially expressed genes (DEGs)
The DEGs between the RBPJ-high group and RBPJ-
low group were identified according to the criteria of 
|log2FC| ≥ 1.2 and adjusted P value < 0.01 and deter-
mined to be statistically significant. In total, 562 DEGs 
meeting the criteria were identified, including 486 down-
regulated genes and 76 upregulated genes. The 50 most 
significant DEGs in accordance to the adjusted p value 
are shown in Fig. 4A.

Functional enrichment analysis of DEGs
Both GO functional annotation and KEGG pathway 
analyses were performed on the datasets to clarify the 
functions of the DEGs. The results revealed that 562 
DEGs were significantly enriched in 554 GO terms. 
The 10 most significantly enriched BP, CC, and MF GO 
terms according to the adjusted p value were selected 
(Fig.  4B). The most enriched biological processes were 
the regulation of T cell activation, the regulation of cell‒
cell adhesion, mononuclear cell differentiation, lympho-
cyte differentiation, and leukocyte migration. The most 
enriched cellular components were the external side of 
plasma membrane, the collagen-containing extracellular 
matrix and the secretory granule membrane. The most 
enriched molecular functions were extracellular matrix 
structural constituent, kinase regulator activity, immune 
receptor activity and chemokine activity. The KEGG 

Table 1 Clinical and laboratory characteristics of newly diagnosed RA patients

Quantitative data are presented as median (IQR) or n (%), depending on the distribution

Abbreviation: RA rheumatoid arthritis, HC healthy controls, IQR interquartile range, ESR Erythrocyte Sedimentation Rate, Anti-CCP Anti-cyclic citrullinated peptide, 
RF Rheumatoid factor, CRP C-reactive protein

Variables RA (n = 83) DAS28 ≤ 3.2
(n = 20)

3.2 < DAS28 ≤ 5.1
(n = 34)

DAS28 > 5.1
(n = 29)

Age (y) 55.0 (49.0–62.0) 48.5 (39.5–52.8) 55.0 (50.0–62.0) 61.0 (55.0-65.5)

Female (n, %) 57 (68.7) 14 (70.0) 25 (73.5) 18 (62.1)

Disease duration (m) 3.0 (2.0–6.0) 4.5 (1.5–12.0) 3.0 (2.0–12.0) 2.0 (1.0-3.5)

Morning stiffness (n, %) 23 (27.7) 0 (0) 9 (26.5) 14 (48.3)

ESR (mm/h) 31.0 (17.0–47.0) 8.0 (4.0-22.8) 29.5 (18.8–44.3) 43.0 (30.5–61.0)

Anti-CCP (U/mL) 51.6 (0.9–200.0) 33.9 (0.5–200.0) 52.1 (9.7-130.1) 53.3 (0.6–200.0)

RF (KU/L) 60.5 (13.7-152.7) 45.0 (8.8-174.4) 72.8 (16.0-110.0) 60.5 (11.0-187.2)

CRP (mg/L) 10.3 (2.2–31.6) 1.6 (0.7–6.4) 5.7 (2.2–14.6) 31.6 (13.3–60.9)

White blood cell (×109/L) 7.5 (6.0-8.9) 7.0 (5.8–9.7) 6.6 (5.7–8.2) 8.1 (6.9–9.8)

Neutrophil (×109/L) 5.0 (3.9–6.2) 4.7 (3.5–6.4 4.5 (3.5–5.5) 5.6 (4.6–7.1)

Lymphocyte (×109/L) 1.8 (1.5–2.1) 1.8 (1.4–2.4) 1.8 (1.4–2.1) 1.9 (1.5–2.2)

Monocyte (×109/L) 0.5 (0.4–0.6) 0.45 (0.33–0.60) 0.40 (0.30–0.50) 0.60 (0.40–0.70)

Complement 3 (g/L) 1.21 (1.08–1.36) 1.12 (1.00-1.92) 1.20 (1.07–1.33) 1.31 (1.21–1.42)

Complement 4 (g/L) 0.31 (0.22–0.39) 0.28 (0.23–0.35) 0.31 (0.22–0.38) 0.31 (0.27–0.42)
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enrichment pathway analysis revealed that the most sig-
nificantly enriched pathways were cytokine‒cytokine 
receptor interaction, the PI3K‒Akt signaling pathway, 
ECM‒receptor interaction, the chemokine signaling 
pathway, the T cell receptor signaling pathway and Th17 

cell differentiation (Fig. 4C). Thirty DEGs were enriched 
in cytokine‒cytokine receptor interactions (hsa04060), 
twenty-four DEGs were enriched in the PI3K‒Akt signal-
ing pathway (hsa04151), seventeen DEGs were enriched 
in the ECM‒receptor interaction (hsa04512) and 

Fig. 2 RBPJ expression in peripheral blood mononuclear cells (PBMCs). A. qRT‒PCR revealed RBPJ expression in RA patients and healthy controls. B. 
RBPJ expression among different disease activities of RA patients. C. Clinical and laboratory characteristics of RA patients

Fig. 3 Correlations between RBPJ expression and clinical features of RA. A. DAS28. B. ESR. C. CRP. D. RF. E. Anti-CCP. F. Disease duration. ESR, 
erythrocyte sedimentation rate; CRP, C-reactive protein; RF, rheumatoid factor; Anti-CCP, anti-cyclic citrullinated peptide
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Fig. 4 Differentially expressed genes (DEGs) between RBPJ-high (n = 38) and RBPJ-low (n = 38) groups and DEG enrichment analysis. A. Heatmap 
for cluster analysis of top 50 DEGs between RBPJ-high and RBPJ-low, Z score normalized. DEGs were screened according to (|log2FC| ≥ 1.2 
and adjusted p value < 0.01). B. GO enrichment analysis of DEGs according to the adjusted p value. C. KEGG pathway enrichment analysis of DEGs. D. 
Gene set enrichment analysis (GSEA) of the expression genes between the two groups
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chemokine signaling pathways (hsa04062), fifteen DEGs 
were enriched in the T cell receptor signaling pathway 
(hsa04660), and fourteen DEGs were enriched in Th17 
cell differentiation (hsa04659). Moreover, we performed 
GSEA to further assess the potential signaling pathways 
associated with RBPJ, and the results revealed that RBPJ 
was also involved in ABC transporters, fatty acid metab-
olism, and glycolysis/gluconeogenesis (Fig. 4D).

PPI network analyses
We performed PPI network analyses of the DEGs in the 
RBPJ-high and RBPJ-low groups using the STRING data-
base and then visualized and optimized the networks 
using Cytoscape software. The PPI network of the DEGs 
consisted of 438 nodes and 2982 edges (Fig. 5A). MCODE 
Plugin analysis revealed 4 main clusters (Fig. 5B-E). Clus-
ter 1 comprised 39 genes, which are mainly involved in 
the plasma membrane, immune response, inflamma-
tory response, T-cell activation and differentiation, and 
T cell receptor signaling pathways. The KEGG enrich-
ment pathway analysis revealed that the genes in Cluster 
1 were enriched in the T cell receptor signaling pathway, 
Th17 cell differentiation, cytokine‒cytokine receptor 
interaction and natural killer cell-mediated cytotoxicity 
(Fig.  6A, B). Cluster 2 contained 21 genes, which were 
enriched mainly in extracellular matrix organiza-
tion, the PI3K-Akt signaling pathway, focal adhesion 
and ECM-receptor interaction (Fig.  6C, D). Cluster 3 
contained 12 genes, which were enriched mainly in 

neutrophil chemotaxis, immune response, chemokine-
mediated signaling pathway, and inflammatory response, 
and involved in cytokine‒cytokine receptor interactions 
and the TNF signaling pathway (Fig.  6E, F). Cluster 4 
contained 11 genes, which were enriched mainly in the 
immune response, inflammatory response, transmem-
brane signaling receptor activity and B-cell receptor sign-
aling pathways (Fig. 6G, H).

The hub genes of the PPI network were evaluated with 
the CytoHubba Plugin, and the top 10 hub genes were 
identified, including C-C motif chemokine receptor 7 
(CCR7), Fc gamma receptor IIIa (FCGR3A), Fc gamma 
receptor IIIb (FCGR3B), LCK proto-oncogene (LCK), 
cytotoxic T-lymphocyte associated protein 4 (CTLA4), 
CD27 molecule (CD27), selectin L (SELL), interleukin 
1 beta (IL1B), CD40 ligand (CD40LG) and granzyme B 
(GZMB). GO functional annotation revealed that the 
hub genes were enriched in the plasma membrane, 
immune response, transmembrane signaling receptor 
activity and T cell costimulation. KEGG pathway analysis 
of the hub genes revealed that they were mainly involved 
in osteoclast differentiation, the T cell receptor signal-
ing pathway, natural killer cell-mediated cytotoxicity, 
and cytokine‒cytokine receptor interaction (Fig. 7).

Validation of the relationships between RBPJ and the hub 
genes
To verify the relationships between RBPJ and the hub 
genes, we detected the expression of six hub genes 

Fig. 5 Protein‒protein interaction (PPI) network constructed with Cytoscape. A. PPI network of DEGs. B-E. Four main clusters in the PPI network 
for DEGs were identified by MCODE Plugin analysis. Red nodes represent upregulated genes, and blue nodes represent downregulated genes
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Fig. 6 GO and KEGG pathway enrichment analyses of the 4 main clusters. A. GO enrichment analysis of Cluster 1. B. KEGG pathway enrichment 
analysis of Cluster 1 C. GO enrichment analysis of Cluster 2 D. KEGG pathway enrichment analysis of Cluster 2. E. GO enrichment analysis of Cluster 3 
F. KEGG pathway enrichment analysis of Cluster 3. G. GO enrichment analysis of Cluster 4 (H). KEGG pathway enrichment analysis of Cluster 4
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(CCR7, FCGR3A, LCK, GZMB, CD27 and CD40LG) in 
PBMCs from 40 of the 83 RA patients using qRT‒PCR 
and performed correlation analyses. The expression lev-
els of RBPJ were negatively correlated with those of CCR7 
(r = − 0.464, P = 0.003), LCK (r = − 0.443, P = 0.004), 
GZMB (r = − 0.451, P = 0.003), CD27 (r = − 0.456, 
P = 0.003) and CD40LG (r = − 0.670, P < 0.001) but 

positively correlated with FCGR3A (r = 0.569, P < 0.001) 
(Fig. 8).

Discussion
In our study, we found that the expression level of RBPJ 
mRNA was lower in PBMCs from RA patients than 
in those from healthy controls. In RA patients, RBPJ 

Fig. 7 GO and KEGG pathway enrichment analyses of the hub genes. A. The top 20 enriched GO terms of the hub genes according to the adjusted 
p value. B. The top 20 enriched KEGG pathways of the hub genes

Fig. 8 Associations between RBPJ expression and related hub genes in RA. qRT‒PCR was performed to detect the expression levels of six hub 
genes and RBPJ in RA PBMCs. Spearman’s correlation analysis was used to analyze the correlations between RBPJ and CCR7, LCK1, GZMB, CD27, 
CD40LG and FCGR3A in RA patients
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expression was negatively correlated with DAS28 score, 
ESR, CRP, monocyte count and complement 3 level. In 
addition, we downloaded the GSE89408 dataset from the 
GEO database and identified DEGs related to RBPJ-high 
and RBPJ-low expression in RA synovial tissue. Potential 
pathways revealed that the DEGs were mainly involved in 
T cell activation and differentiation, the T cell receptor 
signaling pathway, Th17 cell differentiation, cytokine‒
cytokine receptor interactions and the PI3K‒Akt signal-
ing pathway. The hub genes were involved mainly in the 
immune response, osteoclast differentiation, the T cell 
receptor signaling pathway, natural killer cell-mediated 
cytotoxicity, and cytokine‒cytokine receptor interaction.

RBPJ is a key transcription factor of the Notch signaling 
pathway that controls numerous cellular biological func-
tions, such as cell differentiation, proliferation, and lym-
phocyte development, the protein encoded by the RBPJ 
gene acts as both a transcriptional activator and repressor 
[16]. Hassed et al. identified loss of function mutations in 
RBPJ causing Adams-Oliver syndrome (AOS), abnormal 
bone development is one of the main defects of AOS [17]; 
The RBPJ mutations that cause AOS are located in highly 
conserved domains, leading to DNA binding defects [18]. 
Previous studies have shown that RBPJ is important for 
skeletal formation, osteoclastogenesis, bone metabolism 
and bone resorption [19–21]. The balance between oste-
oclasts and osteoblasts is disrupted in RA patients, acti-
vated osteoclasts promote bone destruction and erosion, 
which were central features of RA [22, 23]. Moreover, 
research has shown that RBPJ is involved in tumor devel-
opment and growth and that RBPJ deficiency induces 
the activation and transformation of dermal fibroblasts 
into cancer-associated fibroblasts [24]. Previous studies 
have revealed that RBPJ is related to the pathogenesis of 
RA and that the allelic variants of RBPJ polymorphisms 
are risk factors for RA [13, 14]. The rs874040 polymor-
phism is located in a strong enhancer region of RBPJ 
gene, plays a crucial role in increasing susceptibility to 
RA disease [13, 25]. Previous studies have shown that 
 CD4+ T cells in RA synovium were involved in synovial 
inflammation by promoting the secretion of pro-inflam-
matory cytokines. The pathogenic  CD4+ T cells of RA 
patients carry the RBPJ rs874040 polymorphism, which 
may contribute to RA activation by enhancing T activa-
tion inflammatory responses [13, 25]. In addition, the 
expression level of RBPJ was significantly lower in syno-
vial fluid macrophages from RA patients than in mono-
cyte-derived macrophages from healthy controls and 
was also lower in synovial fibroblasts from RA patients 
than in those from arthralgia patients [12, 26]. Inoue K 
et  al. established myeloid-specific RBPJ-deficient mice 
and reported increased expression of osteoclast-related 
genes. They also isolated CD14 positive PBMCs from 

osteoclast precursors of RA patients and healthy controls 
and reported significantly decreased expression of RBPJ 
in  CD14+ PBMCs from RA patients [20]. These findings 
suggest the function of RBPJ in rheumatoid arthritis. Our 
study revealed decreased levels of RBPJ mRNA in RA 
PBMCs compared with those in healthy control PBMCs. 
However, the potential mechanisms of RBPJ in RA devel-
opment and pathogenesis are still unclear.

Our study revealed that the DEGs were mainly involved 
in lymphocyte differentiation, T-cell activation and dif-
ferentiation, the T cell receptor signaling pathway, Th1/2 
and Th17 cell differentiation, which was consistent with 
previous findings. scRNA-seq analysis revealed that 
GZMB, IFNγ and effector-associated molecules were 
increased in RBPJ-deficient cells, indicating enhanced 
cytotoxic and effector features [27]. RBPJ conditional 
deletion in  RBPJf/fMx-Cre mice stopped T lymphopoiesis 
in double-negative stage 1 and lead to the accumulation 
of B cells and the absence of  CD4+ and  CD8+ T cells in 
the thymus [7]. Previous studies revealed that RBPJ medi-
ates T cell differentiation and is associated with Th1/Th2 
cell differentiation [28, 29]. RBPJ is involved in coordi-
nating colonic macrophages and Th17 cells and drives 
the immune response of Th17 cells to eliminate bacterial 
pathogens in the immune response stage of infection [6]. 
 CD4+ T cells and their subsets, such as Th1/Th2, Th17, 
and Treg cells, play important roles in the development 
and progression of RA, and  CD4+ T cells also enhance 
the effector functions of  CD8+ T cells and NK cells [30]. 
Many inflammatory cells are recruited into RA synovial 
tissue, and  CD4+ T cells account for a large proportion of 
inflammatory cells and contribute to synovial inflamma-
tion [31]. Moreover, several studies have indicated that 
Treg cells are enriched in RA synovial fluid and that Treg 
cells maintain their suppressive function and perform 
differentiated effector Treg cell functions in inflamed tis-
sue [32].

RA is a progressive inflammatory disease that affects 
the synovial joints and tissues, and one of the clini-
cal features of RA is excessive synovial hyperplasia [33]. 
Through the analysis of the GEO dataset, this study 
revealed that RBPJ may influence the pathogenesis 
and progression of RA. Moreover, enrichment analysis 
revealed that the RBPJ-related genes were significantly 
enriched in cytokine‒cytokine receptor interaction, 
ECM-receptor interaction and chemokine signaling path-
way. Previous research has shown that these pathways 
are involved in RA chemotaxis, phagocytosis, inflam-
mation, and synovial invasiveness [34, 35]. RA is attrib-
uted to the interaction of immune cells and synovial 
cells. The infiltration of activated macrophages, lympho-
cytes, and neutrophils in synovial tissue promotes the 
production and aggregation of inflammatory cytokines, 
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thereby inducing synovial fibroblasts [36]. Chemokines 
are a family of inflammatory cytokines, and several lines 
of evidence indicate that chemokines and chemokine 
receptors are involved in the infiltration, migration, and 
accumulation of leukocytes and the inflammatory pro-
cess in the synovium of RA patients [37, 38]. The extra-
cellular matrix (ECM) plays a central role in organizing 
synovial cell networks in RA-affected joints by delivering 
abnormal proinflammatory signals to the resident cell 
network. The ECM can be used as a position holder for 
chemokines and to deliver drugs, and targeting the ECM 
and cell networks may be a new strategy to prevent the 
progression of RA [39, 40].

Furthermore, a PPI network related to RBPJ expression 
was constructed and the top 10 hub genes were screened 
with the CytoHubba plugin. Among them, most genes 
are involved in osteoclast differentiation, natural killer 
cell-mediated cytotoxicity, cytokine‒cytokine receptor 
interaction and the T cell receptor signaling pathway and 
are associated with RA pathogenicity, as reported previ-
ously. IL1B is important for maintaining the activation 
of inflammatory cell and immune responses in various 
inflammatory diseases [41]. CCR7 is widely expressed 
in naïve T cells, B cells, Tregs, central memory T cells 
and natural killer cells. Multiple studies have shown 
that CCR7 is involved in promoting the progression of 
RA and is a promising target for RA therapy, since the 
expression levels of CCR7 are elevated in RA patients 
and positively correlated with DAS28 [35, 42, 43]. 
Moschovakis GL et  al. revealed that CCR7 is essential 
for the establishment of collagen-induced arthritis (CIA); 
CCR7 mediates cell migration, which contributes to the 
development of CIA [44]. LCK is expressed in all T line-
age cells and is involved in TCR signaling initiation and T 
cell signaling, which are responsible for RA pathogenesis 
[45]. CD40LG, which is expressed mainly on activated T 
cells, B cells, NK cells and platelets, can promote the pro-
liferation of B cells and enhance platelet activation [46]. 
GZMB is a serine protease. Previous studies revealed 
elevated expression of GZMB in an RA animal model, 
and GZMB silencing delayed RA inflammation, confirm-
ing the important role of GZMB in RA [47]. Moreover, 
Nakajima S et  al. revealed that the  GZMK+  GZMB+ 
 CD8+ T-cell subtype is the dominant and strongest 
inflammatory phenotype in RA synovial tissue, indicat-
ing the important role of GZMB in RA [48]. In addition, 
increased serum soluble CD27 expression is associated 
with immune activity and disease activity in RA patients 
[49]. Neutrophil granulocytes constitute a major inflam-
matory cell population, and many neutrophils migrate to 
the joint cavity and cause joint cartilage damage in RA. 
The efficient influx of neutrophils into inflammatory joint 
tissues is based on the expression of L-selectin (SELL) 

[50]. In summary, molecules such as CCR7, LCK, GZMB, 
CD40LG, and CD27 play important roles in the occur-
rence and progression of RA.

Moreover, the MCODE plugin in Cytoscape revealed 
that RBPJ was associated with the immune response, 
inflammatory response, T-cell activation and differen-
tiation and was enriched in the T-cell receptor signaling 
pathway, Th17 cell differentiation, cytokine‒cytokine 
receptor interaction, natural killer cell-mediated cyto-
toxicity and the PI3K‒Akt signaling pathway, which was 
consistent with previous findings [51–53].

Interestingly, GSEA revealed that RBPJ was associated 
with ABC transporters, fatty acid metabolism, and glycol-
ysis/gluconeogenesis, which are believed to participate in 
the disease progression of RA. For example, several stud-
ies have revealed that fatty acid metabolism is involved 
in the pathogenicity of RA [54, 55]. Basal mitochondrial 
respiration is dependent on fatty acid oxidation, and pre-
vious studies revealed impaired mitochondrial fatty acid 
β-oxidation and decreased mitochondrial respiration in 
RA and RA-risk fibroblast-like synoviocytes (FLSs) com-
pared with control FLSs [54]. Rodgers LC et al. revealed 
that fatty acid metabolism is altered in macrophages 
from synovial fluid and monocytes from peripheral blood 
of RA patients, and that fatty acid oxidation contributes 
to RA pathogenesis by recruiting pathogenic Th17 cells 
and enhancing osteoclastogenesis [56].

Several limitations of the study should be noted. First, 
the expression levels of RBPJ in RA patients need to be 
further explored in a larger sample and other specimen 
types including synovial fluid, synovial tissue and carti-
lage, with a more rigorous experimental design. Second, 
further experiments are needed to verify the functions 
of the DEGs and potential related signaling pathways. 
Moreover, the downstream molecules and pathways of 
RBPJ that may contribute to the occurrence and develop-
ment of RA should be examined.

Conclusions
In summary, the present study revealed significantly 
lower expression levels of RBPJ in the PBMCs of RA 
patients, and RBPJ expression was negatively correlated 
with RA disease activity. GEO dataset analysis revealed 
that RBPJ may be involved in the regulation of T cell acti-
vation, lymphocyte/mononuclear cell differentiation, and 
the regulation of cell‒cell adhesion. The DEGs affected by 
RBPJ were enriched in pathways related to T cell receptor 
signaling, osteoclast differentiation, Th17 cell differen-
tiation and cytokine‒cytokine receptor interaction. Our 
research provides information about the genes associated 
with RBPJ-mediated transcription and contributes to 
understanding the potential mechanisms of RBPJ in RA.
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