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Abstract: The interplay between autophagy and ferroptosis has been highlighted as an important
event to decide cancer cell fate. However, the underlying mechanisms remain largely unclear. In this
study, we systematically explored the expression, prognostic value and functional roles of lncRNA in
autophagy and ferroptosis. By a set of bioinformatics analyses, we identified 363 autophagy- and
ferroptosis-related lncRNAs (AF-lncRNAs) and found 17 of them are dramatically related to the
prognosis of head and neck squamous cell carcinoma (HNSC) patients, named as prognosis-related
AF-lncRNAs (PAF-lncRNAs). Based on six key PAF-lncRNAs, a risk score model was developed
and used to categorize the TCGA-retrieved HNSC patients into two groups (high-risk vs. low-risk).
Functional analysis showed the differentially expressed genes (DEGs) between the two groups were
mainly enriched in immune-related pathways and regulated by a PAF-lncRNA-directed ceRNA
(competitive endogenous RNA) network. Combined with a variety of immune infiltration analyses,
we also found a decreased landscape of immune cell infiltration in high-risk groups. Together,
by revealing PAF-lncRNAs with tumor prognostic features functioned through immune-related
pathways, our work would contribute to show the pathogenesis of a lncRNA-directed interplay
among autophagy, ferroptosis and tumor immunity in HNSC and to develop potential prognostic
biomarkers and targets for tumor immunotherapy.

Keywords: autophagy; ferroptosis; long non-coding RNA; head and neck squamous carcinoma; risk
model; immune cell infiltration

1. Introduction

Autophagy-dependent cell death was described as a form of regulated cell death
(RCD) that mechanistically depends on the autophagic machinery or components [1]. An
increasing number of discoveries have built strong links between autophagy and vari-
ous types of RCD, including ferroptosis [2–4]. Ferroptosis is an iron-dependent form of
regulated cell death, which mainly depends on the accumulation of iron and reactive
oxygen species (ROS) [5]. Studies have found that autophagic machinery could contribute
to ferroptosis by mediating the degradation of ferritin and some genes that are involved
in the crosstalk of ferroptosis and autophagy, and thus contribute to ferroptotic cancer
cell death [4,6]. Thus far, emerging studies have implicated that the interplay between
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autophagy and ferroptosis decides cancer cell fate by activating integrated signaling path-
ways and influencing gene expression programs [3]. However, the underlying molecular
mechanisms are still largely unclear.

Head and neck squamous cell carcinoma (HNSC) is a frequent malignancy worldwide
with an incidence rate of approximately 900,000 new cases and half a million deaths
annually [7]. Most patients are diagnosed at an advanced stage of HNSC, which is usually
associated with a poor prognosis [8]. Although multiple treatment options are available,
such as surgery, radiotherapy, and chemotherapy, the clinical heterogeneity and lack of
early detection of HNSC cause the 5-year survival rate to be less than 50% [9]. Studies have
shown that autophagy and ferroptosis are fundamental cellular events, which have been
found to affect a variety of characteristics of HNSC, including proliferation, migration,
and drug resistance [10–13]. While autophagy occurred in tumor cells, the formation of
double-membrane autophagic vesicles could be observed by using a transmission electron
microscope (TEM) [14]. While ferroptosis occurred in tumor cells, mitochondria were
observed with decreased size, increased mitochondrial membrane densities, reduction or
vanishing of mitochondria crista, and outer mitochondrial membrane under the scope of
TEM [15–17]. In recent years, immunotherapy and targeted therapy have been incorporated
into HNSC treatment and have become promising therapeutic options [18,19]. Increasing
evidence revealed that autophagy and ferroptosis are critically involved in the regulation
of anti-tumor immunity and might provide potential strategies in immunotherapy [20,21].
However, the connection between the HNSC immune landscape, autophagy and ferroptosis
have not been elucidated.

Long non-coding RNAs (lncRNAs) represent a group of regulatory RNAs that are
larger than 200 nucleotides. Increasing evidence has shown that lncRNAs are important
regulators in almost all the physical and pathological events, including the occurrence
and development of HNSC [22,23]. For example, our previous work showed that lncRNA
7SK could promote tongue squamous cell carcinoma’s RCD and thus act as an anti-tumor
factor [24]. Recent studies have found that lncRNAs are involved in regulating autophagy
through activating autophagy-related enzymes and shared clinical relevance with ferropto-
sis [25,26]. The key roles of lncRNAs as regulators of the immune response in cancer have
progressively emerged [27]. However, it remains largely unclear about the comprehensive
picture of lncRNAs’ engagement in autophagy, ferroptosis, and tumor immunity.

In the present study, we focused on investigating the engagement of lncRNAs in
autophagy and ferroptosis. We identified 363 both autophagy- and ferroptosis-related
lncRNAs (AF-lncRNAs), and six of them, namely key prognosis-related AF-lncRNAs (PAF-
lncRNAs), have exhibited superior prognostic value for HNSC patients. A risk model
based on these PAF-lncRNAs was further developed and used to divide the samples into
two groups (high-risk vs. low-risk). Functionally, we found that the differentially expressed
genes (DEGs) between high- and low-risk groups were dramatically enriched in immune-
related pathways and regulated by a PAF-lncRNA-directed ceRNA network. Furthermore,
the low-risk group patients were marked by high immune infiltration levels in the majority
of the immune cell signatures, while the high-risk group patients were marked by low
immune infiltration levels in the majority of the immune cell signatures. Together, our
results comprehensively unveiled the engagement of autophagy- and ferroptosis-related
lncRNAs in shaping the landscape of the HNSC immunity.

2. Materials and Methods

The flowchart of data collection and analysis is shown in Figure 1. We elaborate on
each step in the following sub-sections.

2.1. Data Resources

The RNA-sequence data (fragments per kilobase of exon model per million mapped,
FPKM), clinical information and phenotype information of 527 HNSC patients were ob-
tained from the XENA GDC database (http://xena.ucsc.edu/, accessed on 27 March

http://xena.ucsc.edu/
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2020) [28]. We selected 493 tumors with complete follow-up information and survival time
longer than 30 days. Phenotype and survival information of these patients are shown in
Table S1. A total of 376 autophagic genes were gathered from the overlap of the Autophagy
database (http://tp-apg.genes.nig.ac.jp/autophagy, accessed on 22 March 2021) [29] and
Human Autophagy Modulator database (HAMdb, http://hamdb.scbdd.com, accessed
on 22 March 2021) (Table S2) [30]. A total of 184 human ferroptotic genes were obtained
from the FerrDb database (www.zhounan.org/ferrdb, accessed on 19 March 2021) [31] and
literature studies (Table S2) [32,33].
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Figure 1. The flow-chart of data collection and analysis in HNSC.

2.2. Identification of Prognostic Autophagy- and Ferroptosis-Related LncRNAs

Firstly, 416 autophagy-related lncRNAs were identified by Pearson correlation anal-
ysis within mRNA and lncRNA expression according to the criteria of |Correlation Co-
efficient| > 0.4 and p-value < 0.05 (limma R package, Version:3.46.0) [34]. Second, we
screened ferroptosis-related lncRNAs based on autophagy-related lncRNAs by using the
same method. Then, we defined both autophagy-related lncRNAs and ferroptosis-related
lncRNAs as autophagy- and ferroptosis-related lncRNAs (AF-lncRNAs).

In order to construct an AF lncRNA prognostic model, 493 patients were divided
into a training set (60%, 294 samples) and testing set (40%, 199 samples). Univariate Cox
proportional hazards analysis was used to identify prognosis-related AF-lncRNAs in the
training set. Subsequently, multivariate Cox analysis was used to construct the prognostic
risk model by employing the survival R package.

http://tp-apg.genes.nig.ac.jp/autophagy
http://hamdb.scbdd.com
www.zhounan.org/ferrdb
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2.3. Development and Assessment of the Prognostic Risk Model

According to multivariate Cox analysis, the risk score was calculated by the following
formula: risk score = coef (lncRNA1) × exp (lncRNA1) + coef (lncRNA2) × exp (lncRNA2)
+ . . . + coef (lncRNAn) × exp (lncRNAn) [35–37]. The coefficient values (coef) were
calculated following previously reported methods [37]. The coef represents the coefficient
of the corresponding lncRNA, which was calculated by using the survival coxph function of
the R package. The “exp” represents the expression of corresponding lncRNA. Based on the
median risk-score, HNSC patients in the training set and testing set were divided into high-
and low-risk groups, respectively. The univariate and multivariate Cox regression analyses
were used to calculate the prognostic value of risk-score and clinical features by survival R
package. The landscape of survival status was described between the high- and low-risk
patients by using the ggplot2 and pheatmap R packages. The principal component analysis
(PCA) was applied to verify the classification between high- and low-risk groups. Then
Kaplan–Meier survival analysis was performed to estimate the survival difference between
these two groups by using the survival and survminer R packages. In order to estimate
the sensitivity and specificity of PAF-lncRNAs signatures, we employed time-dependent
receiver operating characteristic (ROC) curves and multi-factor ROC curves by using the
timeROC (Version:0.4) and survivalROC R package (Version:1.0.3).

2.4. Functional Analysis of the DEGs between High- and Low-Risk Groups

The differentially expressed genes between high- and low-risk groups were screened
out by the limma R package with the criteria of |log2 (fold change)| > 1 and p < 0.05.
The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were
performed by limma and clusterProfiler R packages. We used GOplot and ggplot2 R
packages to display the result of the functional enrichment analysis.

2.5. Estimation of Immune Cell Infiltration Proportion

An estimation algorithm was used to calculate the stromal score, immune score, and
estimate score by estimate and utils R packages [38]. ImmuCellAI and CIBERSORT algo-
rithms were used to estimate the proportion of immune cell infiltration, respectively. For
ImmuCellAI, the estimated immune cell proportion of 24 types were calculated by the Im-
mune Cell Abundance Identifier website (ImmuCellAI) [39]. For the CIBERSORT algorithm,
the 22 human hematopoietic cell phenotypes file (LM22.txt) was obtained and the immune
cell proportion of 22 types were estimated by performing “source (“CIBERSORT.R”)” [40].

2.6. Network of ceRNAs and lncRNA-RPB

The interactions of miRNA, PAF-lncRNAs and DEGs were collected from ENCORI (
http://starbase.sysu.edu.cn/index.php, accessed on 13 May 2021) [41]. The interactions
between PAF-lncRNAs and RBP were predicted in the RNAct database (https://rnact.crg.
eu/, accessed on 1 June 2021) [42] and collected from ENCORI. Networks were constructed
and visualized by using Cytoscape software (version 3.8.0) [43].

2.7. Statistical Analysis

All statistical analyses were performed by using R software (version 4.0.3). For each
analysis, statistical significance was set at p < 0.05 without special description. Non-
normally distributed variables were analyzed using the Wilcoxon test, and the Benjamin
Hochberg method was used to calculate FDR. The survival curves between high- and low-
risk groups were assessed by using the Kaplan–Meier survival analysis with the log-rank
test.

3. Results
3.1. Identification of Autophagy- and Ferroptosis-Related lncRNAs (AF-lncRNAs) in HNSC

To identify the autophagy and ferroptosis correlated lncRNAs in HNSC, we used
autophagic and ferroptotic genes to construct co-expression networks in HNSC patients ac-

http://starbase.sysu.edu.cn/index.php
http://starbase.sysu.edu.cn/index.php
https://rnact.crg.eu/
https://rnact.crg.eu/
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cording to the criteria of |Correlation Coefficient| > 0.4 and p < 0.05 by Pearson correlation
analysis. Our results revealed 363 autophagy- and ferroptosis-related lncRNAs, namely,
AF-lncRNAs (Figure 2a, Table S2).
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Figure 2. Identification of the prognosis-related AF-lncRNAs (PAF-lncRNAs). (a) Sankey diagram shows the correlation of
lncRNA-mRNA between autophagy and ferroptosis by co-expression correlation analysis. (b) Forest diagram shows the HR
(95% CI) and p-value of 17 PAF-lncRNAs by univariate Cox proportional hazards analysis.

3.2. Construction of a Prognostic Risk Model in the TCGA Cohort Based on the Identified
Prognostic AF-lncRNAs in HNSC

To investigate the prognostic value of AF-lncRNAs in HNSC patients, we performed
univariate Cox analysis to estimate the prognostic relationship between AF-lncRNAs and
overall survival (OS) in 493 HNSC samples from TCGA. Our result showed that 17 lncR-
NAs, referred to as prognostic AF-lncRNAs (PAF-lncRNAs), were significantly associated
with the survival of HNSC patients (p < 0.01, Figure 2b, Table S3). We subsequently per-
formed the multiple stepwise cox regression analysis to investigate the impact of these
17 prognostic-associated AF-lncRNAs on patient survival time and clinical outcomes.
PCED1B-AS1, AL512274.1, AL354836.1, MIR9-3HG, MIR4435-2HG and LINC02541 were
found to be independent factors in HNSC (Figure 3a, Table S3). Then, we identified a
network between the six key PAF-lncRNAs and autophagy and/or ferroptosis genes. Most
of these genes, including CDD4, ELAVL1, FKBP8, NBR1, RB1CC1, and ZEB1, were corre-
lated with patients’ overall survival, which again supports that the PAF-lncRNAs were
correlated with the process of autophagy and/or ferroptosis (Figure 3b and Figure S1).

Utilizing the aforementioned independent PAF-lncRNAs, we next constructed a prog-
nostic predictive model. The risk-score of each patient was calculated according to the
following formula (Table S4):

Risk Score = (0.3242 × ExpMIR4435-2HG) + (−0.3983×ExpPCED1B-AS1) + (−0.1779 × ExpAL512274.1) +
(0.2019 × ExpLINC02541) + (−0.1783 × ExpAL354836.1) + (−0.2507 × ExpMIR9-3HG).

By using univariate and multivariate Cox regression analysis, we compared the
prognostic significance of risk-score and different clinical characteristics in HNSC. Our
results showed that only age and risk-score calculated by the six PAF-lncRNAs were
dramatically correlated with HNSC OS, and the risk-score was shown to be the most
significant parameter (p < 0.05, Figure 3c,d). Together, these data suggested the intimated
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connection of six PAF-lncRNAs with autophagy and ferroptosis, and their relationship is
associated with HNSC prognosis.
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Figure 3. Development and assessment of prognostic risk model based on six key PAF-lncRNAs in
HNSC. (a) Forest diagram shows the HR (95% CI) and p-value of six key PAF-lncRNAs in a risk model
derived from multivariate Cox proportional hazards analysis. (b) LncRNA-protein network between
PAF-lncRNA, autophagic and/or ferroptotic proteins. Left: the lncRNA-protein networks collected
from RNAct database. Right: the lncRNA-protein networks collected from ENCORI database
(http://starbase.sysu.edu.cn/index.php; accessed on 13th May 2021). Edges: the associations of
lncRNA-protein; red nodes: PAF-lncRNAs; blue nodes: autophagic proteins; green nodes: ferroptotic
proteins; yellow nodes: autophagic and ferroptotic proteins. (c,d) Independent prognostic analysis of
risk model and clinical features by univariate Cox analysis and multivariate Cox analysis.

3.3. The Risk Model Exhibited Robust Predictive and Discriminative Ability for HNSC Patients

Based on the risk model, HNSC patients from TCGA were divided into high- and low-
risk groups by calculating median risk-score. The PAF-lncRNAs expressions, survival status
and risk-scores of these patients were displayed in Figure S2. To assess the accuracy of the
stratification, we conducted a set of bioinformatic analyses. First, principal component analysis
(PCA) results suggested that risk-score works well in distinguishing high-risk patients with
low-risk groups in the TCGA training, testing, and entire sets (Figure 4a). Second, Kaplan–Meier
analyses showed the patients’ OS rate was dramatically lower in the high-risk group compared
to patients in the low-risk group in the TCGA training, testing, and entire sets (Figure 4b). Third,
time-dependent receiver operating characteristic (ROC) curves were calculated, and the area

http://starbase.sysu.edu.cn/index.php
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under the ROC curves (AUC) of risk-scores at 1, 2, 3 and 4 years for survival prediction were all
above 0.6, which suggested the risk-score had moderate prediction accuracy in TCGA training,
testing, and entire sets (Figure 4c). In addition, the AUC of the risk-score exhibited moderate
performance compared to other measured phenotypes in predicting the prognosis of HNSC
patients in TCGA training, testing, and entire sets (Figure 4d). Taken together, these results
suggested that the risk model based on the six PAF-lncRNAs has good predictive ability and
stratification accuracy for HNSC patients.
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Figure 4. Validation of the prognostic risk model in HNSC patients. (a) The principal component
analysis (PCA) shows the distinguished distribution of high- and low-risk patients based on the
risk model. (b) The overall survival of the high- and low-risk patients in the indicated training,
testing, and entire sets. (c) Time-dependent ROC curves (1, 2, 3, 4 years) analysis for survival
prediction verified the prognostic performance of the risk-score model in the indicated training,
testing, and entire sets. (d) The ROC curves exhibit superior performance of risk-score compared to
other measured characteristics in the indicated training, testing, and entire sets.

3.4. Differentially Expressed Genes (DEGs) between High- and Low-Risk Groups Were
Dramatically Enriched in Immune-Related Pathways

To study the differences between high- and low-risk groups at the whole genome-wide
level, we performed differential expression analysis. A total of 437 DEGs (down-regulation: 411
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and up-regulation: 26) between two groups were identified (Table S5), and the expressions of
them were displayed in a heat map (Figure 5a). We also constructed a PAF-lncRNAs ceRNA
network through the ENCORI database to explore the interaction between lncRNAs and DEGs
(Figure 5b). We found that there are 3 PAF-lncRNAs, AL512274.1, MIR4435-2HG, and MIR9-
3HG, which might regulate the 56 DEGs through 26 miRNAs. The majority of the DEGs, e.g.,
SOX11, TBX21, FAM3B, FGF5, HNF1A, MYB, and PLAC8 have been reported to function as
promoters or biomarkers in various cancer types [44–50]. Among these, PLAC8 were found
to regulate autophagy-related functions in a variety of cancers [51,52]. In addition, numerous
DEGs were reported to be involved in the proliferation and differentiation of immune cells
and could regulate immune functions, including CD226, IRF4, LY9, MS4A1, TBX21, TNFRSF17,
FCRLA, and SLAMF6 [45,53–58].
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in high- and low-risk groups. (b) The ceRNA network between AF-lncRNAs, miRNAs, and DEGs.
(c) Functional enrichment of the DEGs in high- and low-risk groups by GO analysis (p < 0.05).
(d) Pathway enrichment of the DEGs in high- and low-risk groups by KEGG analysis (p < 0.05).
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To further characterize and understand the biological insights of these DEGs, we
performed gene ontology (GO) and KEGG analysis. The DEGs were mainly enriched in
immune-related processes, such as T cell differentiation, B cell activation, immune receptor
activity, cytokine receptor binding, regulation of lymphocyte and CD4-positive, alpha-beta
T cell activation (Figure 5c). KEGG also displayed that the DEGs were related to immune
pathways (Figure 5d). Together, these results indicated PAF-lncRNAs might mediate the
generation of immune microenvironmental differences of HNSC high- and low-risk groups.

3.5. Distinct Immune Landscapes between High- and Low-Risk HNSC Patients Were Identified

Following the aforementioned results, we then systematically investigated the immune
landscape of the two risk groups. Firstly, we compared the tumor immune microenviron-
ment between high- and low-risk groups (Figure 6a, Table S6). Our data showed that the
high-risk group was marked by higher tumor purity and lower immune infiltration levels
than the low-risk group (Figure 6b). Secondly, we compared the immune cell composi-
tion of the tumor immune microenvironment by using the ImmuCellAI and CIBERSORT
algorithm, respectively (Figure 6b). According to the ImmuCellAI calculation results,
the largest proportion of infiltrating immune cells in HNSC patients were cytotoxic T
cells (Tc), CD4 + T cells, CD8 + T cells, NK cells, Tfh and Th1 (Figure 6C, Table S7). The
relative proportion of these immune cells was significantly higher in low-risk patients
than in high-risk patients (p < 0.05; Wilcoxon test, Figure 6c). However, the proportions
of dendritic cells, monocytes, macrophages and neutrophils in the high-risk group were
significantly higher than the low-risk group (p < 0.05; Wilcoxon test, Figure 6c). Specifically,
the CIBERSORT algorithm can distinguish the subtypes of macrophages. By using this
algorithm, we found a higher proportion of the M2 macrophages in the high-risk group,
while M1 macrophages were higher in the low-risk group (Figure 6d, Table S7). As reported
in previous studies, macrophages undergo a switch that leads to differentiation into either
inflammatory (M1) or regulatory (M2) subtypes. Among these, M1 is mainly involved
in tumor killing, while M2 is mainly involved in supporting tumor growth [59]. Our
results suggested that the polarization of macrophages might be a regulatory mechanism
for the difference of survival between the high- and the low-risk group. Thirdly, the two
groups showed significant differences in immune checkpoint and immune activation gene
expression levels (p < 0.05; Figure 6e, Table S8). The high-risk group was associated with
relatively lower immune checkpoint and activation signal expression levels, whereas the
low-risk group was associated with the higher expression level.

In summary, our results revealed that immune-driven cells are associated with the low-
risk group, while immune-regulatory cells tend to be more common in the high-risk group.
The consistency between the immune profile and prognostic profile in the two groups also
implied that our classification method is scientific and reasonable. As previous studies
have shown that the abundance of T cell subsets, particularly that of tumor infiltrating T
cells, could influence clinical curative effects and prognosis [60,61], our risk model has the
potential to be applied for predicting the immunotherapy response.
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Figure 6. Comprehensive analyses of immune microenvironment and immune checkpoints between high- and low-risk
groups. (a) The boxplot shows the immune infiltration and tumor purity between high- and low-risk groups. (b) The heat
map shows the proportions of various types of immune cell infiltration in each HNSC patient by two algorithms. (c) The
difference of immune cell infiltration proportions between high- and low-risk groups from the ImmuCellAI algorithm.
(d) The difference of immune cell infiltration proportions between high- and low-risk groups by the CIBERSORT algorithm.
(e) The differential expression of immune checkpoints and immune activation signals between high- and low-risk groups.
* p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

As two closely linked forms of RCD, increasing evidence has shown that autophagy
and ferroptosis are intimately associated with tumor progression [62–64]. However, the
engagement of lncRNAs in HNSC autophagic and ferroptotic processes have not been
thoroughly and systematically studied. In the present study, we systematically investigated
the expression and prognostic relevance of 363 autophagy- and ferroptosis-related lncRNAs
(AF-lncRNAs) in HNSC. Previous reports have shown the connection between lncRNAs
and RCD, and their relationship is associated with tumor progression [65–67]. In this paper,
by performing univariate cox regression analysis, multiple stepwise cox regression analysis,
survival analyses and ROC analyses, etc., a total of six key PAF-lncRNAs in HNSC were
identified, including MIR4435-2HG, PCED1B-AS1, AL512274.1, LINC02541, AL354836.1,
and MIR9-3HG. Previous studies have reported that the expression of MIR4435-2HG,
PCED1B-AS1, AL512274.1, AL354836.1, MIR9-3HG were associated with tumorigenesis and
regulated cell death in various tumor types, which support the further identification and
exploration in HNSC [68–72]. For example, overexpression of MIR4435-2HG will promote
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tumor cell proliferation while knockdown of MIR4435-2HG will lead to cell death [73–76].
In addition, researchers have found that inhibition of MIR4435-2HG would downregulate
Nrf2, which would alter the resistant status of head and neck cancer cells to a more sensitive
status to ferroptosis and eventually promote ferroptotic cell death [13,74].

Functional analyses revealed that these PAF-lncRNAs have a close relationship with
several autophagic and/or ferroptotic genes, including FANCD2, CD44, PROM2, ZEB1,
IGF1R, AKT1S1, FKBP8, NBR1, RB1CC1, and ELAVL1. Among these, IGF1R, AKT1S1,
FKBP8, NBR1, and RB1CC1 have been reported to function as regulatory factors, such as
autophagic adaptors or receptors, to regulate the autophagic processes [77–81]. FANCD2,
PROM2, and ZEB1 have been reported to regulate ferroptosis through regulating the ac-
cumulation of lipid ROS and intracellular iron export, etc. [82–84]. As for ELAVL1 and
CD44, they have been reported to regulate the interplay of autophagic and ferroptotic pro-
cesses [85–87]. For example, ELAVL1 could promote ferroptosis by regulating autophagy
in myocardial ischemia/reperfusion injury [85]. Autophagic flux impairment induced a
high expression of CD44 and thus induced mitochondrial dysfunction, oxidative stress
and cancer cell death [86]. The interaction between PAF-lncRNAs and these autophagic
and/or ferroptotic genes indicated that PAF-lncRNAs might participate in the regulation of
autophagy and ferroptosis and thus mediate autophagic and ferroptotic tumor cell death
through these genes. However, its detailed molecular mechanism still needs further future
genetic and experimental studies.

We then produced a risk model based on these PAF-lncRNAs. The ROC analysis re-
vealed that these PAF-lncRNAs signatures have better diagnostic capability of selecting the
high-risk HNSC patients with poor prognosis. Based on the risk model, 493 HNSC patients
from TCGA were divided into high- and low-risk groups. The divided high- and low-
risk patients showed distinct gene expression patterns, and the DEGs were dramatically
enriched in many immune-related pathways.

Tumor immunity and RCD have been linked together from recent reports [88,89].
Although several findings have supported the importance of immunology in HNSC [90–92],
the underlying molecular mechanism and potential modulation between tumor immunity
and RCD, especially autophagy and ferroptosis, are largely unclear. In this paper, GO and
KEGG analyses based on the DEGs enriched many immune-related biological processes
and pathways. For instance, T cell differentiation is the process in which precursor cell
types acquire characteristics of more mature T cells to achieve immune effects, while B cell
activation is defined by the change in morphology and behavior of mature or immature B
cells. The function of immune receptor activity is to receive signals and transmit them into
cells to initiate the immune response. In addition, we established a connection between
56 DEGs and PAF-lncRNAs from the ENCORI database, which was based on the CLIP-
seq data. Numerous independent studies have validated the regulatory roles of the six
PAF-lncRNA on those DEGs through competitive binding of the miRNA regulators. For
example, PCED1B-AS1 could inhibit tumor cell death by cooperating with the miR-194-
5p/PCED1B axis in glioma [93], and MIR4435-2HG could regulate cancer proliferation
through sponging miR-206, miR-802, miR-128-3 and miR-1224-5p and regulated YAP1,
FLOT2, et al., in various cancers [73,94–96]. Among all these DEGs, nearly half (24/56)
have been reported to be involved in activation and differentiation of immune cells or
regulation of the immune response [45,53–58]. One of them, placenta associated 8 (PLAC8),
has been reported to regulate autophagy by suppressing the production of IL-18, which is
a pro-inflammatory cytokine that is capable of stimulating interferon gamma production
and of regulating T helper cell responses [97]. These pieces of evidence support the idea
that the PAF-lncRNAs might participate in regulating HNSC through the tumor immunity
process.

HNSC is a disease that was previously characterized by immunosuppression [98].
Recently, considerable progress has been made in immune checkpoint inhibitor (ICI)-based
HNSC treatment. However, the response rate of recurrent or metastatic HNSC to PD-1/PD-
L1 inhibitors is only 13.3–22%, as per previous clinical trials [98]. Therefore, the selection of
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patients that can effectively respond to ICIs is crucial. For this reason, we estimated the
immune cell infiltration of HNSC tumor samples, and results revealed the discriminated
immune microenvironment landscapes of distinct risk groups. The infiltration ratio of
effective T cells, NK cells, T helper cells, B cells and M1 macrophages that were related
to anti-tumor effects were higher in the low-risk group. Effective T cells and B cells play
critical roles in tumor control, and T helper cells can stimulate B cells for an immune
response. The natural killer (NK) cells were discovered for their ability to recognize and kill
tumor cells [99] and to release a number of cytokines that regulate both innate and adaptive
immune responses [100]. As for M2 macrophages, the proportions of dendritic cells (DCs),
mast cells and neutrophils that related to pro-tumor effects were significantly higher in the
high-risk group than low-risk group by both algorithms. Due to the complex phenotype
and cancer heterogeneity, the infiltration of dendritic cells and mast cells have controversial
results in predicting clinical outcomes in different tumors [101–103]. Because parameters
of the immune contexture have been associated with treatment efficacy, it is important to
characterize the baseline HNSC immune milieu to clarify the composition and property of
tumor-infiltrating immune cells [104]. Together, these results supported the involvement
of PAF-lncRNAs in regulating HNSC tumor immunity. Thus, the identification of PAF-
lncRNAs not only provides a potential target for anti-cancer immunotherapy but also build
a bridge between RCD and immunogenicity of HNSC, which might shed new light on
revealing another layer of lncRNA-directed immunogenicity of cancer cells.

5. Conclusions

In summary, we systematically explored the expression and prognostic value of
autophagy- and ferroptosis-related lncRNAs by a series of bioinformatics analyses in HNSC.
Our study revealed six prognosis-related AF-lncRNAs and developed a novel prognostic
model based on these lncRNAs. This model proved to be an independent prognostic factor,
which has a favorable predictive effect on prognosis for HNSC. In addition, we revealed
these AF-lncRNAs functioned through multiple critical tumor immune-related processes.
Our results would contribute to show the pathogenesis of HNSC and to develop new
treatment targets and prognostic molecular markers.
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AF-lncRNAs autophagy- and ferroptosis-related lncRNAs
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RCD regulated cell death
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lncRNAs long non-coding RNAs
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miRNAs microRNAs
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