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When scanning across a scene, luminance can vary by up
to 100,000-to-1 (high dynamic range, HDR), requiring
multiple normalizing mechanisms spanning from the
retina to the cortex to support visual acuity and
recognition. Vision models based on standard dynamic
range (SDR) luminance contrast ratios below 100-to-1
have limited ability to generalize to real-world scenes

with HDR luminance. To characterize how orientation
and luminance are linked in brain mechanisms for
luminance normalization, we measured orientation
discrimination of Gabor targets under HDR luminance
dynamics. We report a novel phenomenon, that abrupt
10- to 100-fold darkening engages contextual facilitation,
distorting the apparent orientation of a high-contrast
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central target. Surprisingly, facilitation was influenced by
grouping by luminance similarity, as well as by the
degree of luminance variability in the surround. These
results challenge vision models based solely on activity
normalization and raise new questions that will lead to
models that perform better in real-world scenes.

Introduction

Vision is an inherently ambiguous process of
estimating and predicting the true three-dimensional
(3D) world from a two-dimensional retinal image, and
the apparent ease of vision is belied by the fact that
nearly half of the brain is devoted to visual processing.
Understanding luminance normalization, how the
brain untangles myriad factors to estimate reflectance
and shape, is important both for modeling the brain’s
computational principles and for building resilient
machine sensing for real-world environments.

Depending on the context of a visual scene, almost
any luminance can appear as any shade of gray.
This is because the luminance of the brightest and
darkest areas of a scene can vary by a factor of up to
100,000-to-1 (Figure 1), whereas the surface reflectance
information that is useful for estimating object shape
and identity typically varies by a factor of only 20-to-1
(i.e., 4%–80% of the light illuminating the surface)

(Gilchrist et al., 1999). Even slight (<0.5%) changes
in illumination, due to variations in atmospheric
haze or sun position, for example, can produce large
(50%) average changes in luminance in a natural scene
(e.g., due to cast shadows, foliage, or anisotropic
reflectance effects such as microshadows) (Foster &
Amano, 2019; Moore, 2010). Large dynamic changes,
such as from flare effects and wind blowing on the
leaves in a forest canopy (Marathe et al., 2017),
can disrupt navigation and targeting algorithms
that are overly reliant on texture patterns and on
static luminance and illumination to compute optic
flow. For autonomous ground vehicles, navigation
is problematic because luminance normalization is
not yet solved for recognizing distant targets (e.g.,
potholes, buried explosives) under multiple layers of
optic flow, especially at high speeds and under degraded
and novel conditions. This poses serious longstanding
challenges to the real-world credibility and acceptability
of autonomous maneuvering and targeting, with
potentially catastrophic consequences (e.g., from
false-positive or false-negative misclassifications).

For efficient and resilient recognition behavior, the
human visual system has many automatic mechanisms
to estimate reflectance and 3D shape, as demonstrated
by brightness illusions (Adelson, 2000; Bach, 2019;
Motoyoshi, Nishida, Sharan, & Adelson, 2007). Our
understanding of these mechanisms, as quantified by
models of normalization and visual salience, is limited

Figure 1. (A) Two examples of high dynamic range (HDR) luminance in naturalistic scenes: cockpit view (left) and view of a cave
opening (right). These are examples of commonly encountered environments where combinations of indoor and outdoor luminance
can exceed a 10,000-to-1 maximum-to-minimum luminance ratio. The scene at the right is a blended image across multiple
exposures, illustrating our ability to see multiple targets (three uniforms and one car) across vast luminance differences in the same
view. Actual views of these scenes appear even more vivid because of the brain’s luminance normalization processes. (B) Standard
dynamic range (SDR) 8-bit cameras are highly dependent on exposure, and machine vision systems that are highly dependent on
texture patterns can easily miss targets due to under- or over-exposure. Exposure examples are at 10× increments.
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because it is based on studies using displays with
standard dynamic range (SDR) luminance (100-to-1
luminance ratio between the brightest and darkest
pixels). Recent reports show that key theories such
as Wallach’s ratio rule, which states that the apparent
lightness of a surface depends on the ratio of its
luminance to the background, break down at high
dynamic range (HDR) luminance (Allred, Radonjic,
Gilchrist, & Brainard, 2012; Radonjic Hung, & Roe,
2011), in agreement with previously demonstrated
deviations from the rule at SDR luminance such as
disk annulus figures (Rudd, 2017). To investigate and
understand these mechanisms and thereby improve
the real-world performance of vision models, it is
necessary to investigate perception under HDR
luminance.

To achieve illumination-resilient recognition,
biological visual systems gradually transform the
retinal image from a luminance-based representation to
reflectance-approximated, feature-based representations
(Janssen, Vogels, Liu, & Orban, 2001; Roe et al., 2012;
Wachtler, Sejnowski, & Albright, 2003; Zhou,
Friedman, & Von Der Heydt, 2000). Evidence from
anatomy, electrophysiology, and behavior shows that
this process is supported by a hierarchy of over 30
visual cortical areas that combine recurrent and lateral
processes with feedback mechanisms for contextual
normalization (Ramsden et al., 2001; Tanigawa, Wang,
Q., & Fujita, 2005). The brain areas that support
normalization are highly specialized and include
specific domains for luminance and color processing
within multiple visual cortical areas, including the
primary visual cortex (area V1, the first brain area to
receive input from the retina and thalamus) (Conway,
Moeller, & Tsao, 2007; Kremkow, Jin, Wang, &
Alonso, 2016; Lim, Wang, Xiao, Hu, & Felleman,
2009; Roe et al., 2012; Schroeder, Mehta, & Givre,
1998; Wang, Xiao, & Felleman, 2007). The circuitry
underlying these processes is less understood, but there
is evidence for tight coupling between processes for
luminance/color and processes for form perception,
including feedback circuitry from the last stage of the
visual form pathway to V1 (Clavagnier, Falchier, &
Kennedy, 2004; Hung, Ramsden, & Roe, 2007; Hung,
Ramsden, & Roe, 2010; Ts’o, Roe, & Gilbert, 2001).
Rather than simply remapping the color histogram or
normalizing an image for nearby luminance, automatic
mechanisms are thought to depend on factors such as
co-orientation, co-linearity, co-circularity, co-planarity,
junctions, feature grouping, and transparency issues,
such as smoke and rain (Adelson, 2000; Anderson,
1997; Li, Song, Xu, Hu, Roe, & Li, 2019; Zemach &
Rudd, 2007; Zucker, David, Dobbins, & Iverson, 1988).
Biologically driven models are increasingly capable
of explaining visual illusions (Blakeslee & McCourt,
2004; Li, 2011) and predicting gaze patterns based on
saliency (Kümmerer, Wallis, Gatys, & Bethge, 2017;

Wang, Shen, Xie, Cheng, Ling, & Borji, 2019), but
they are data-limited to SDR images and require HDR
experimentation to extend their generalizability to
real-world vision.

We investigated contextual mechanisms for
luminance normalization by testing for interactions
between orientation and HDR luminance processing.
Previous reports of contextual orientation effects found
that flankers drive a facilitating response (making a
co-oriented target easier to detect) if the target is low
contrast, and this observation was initially attributed
to horizontal fibers linking V1 neurons that prefer
the same orientation (Ts’o, Gilbert, & Wiesel, 1986).
However, at higher contrast, a co-oriented target
becomes more difficult to detect than an orthogonal
target, an effect that is consistent with suppression
of the target visibility or assimilation of the target
to surrounding co-oriented patterns, possibly due to
feedback from higher pattern-sensitive cortical areas.
Both phenomena have also been attributed to the
balance of local recurrent excitatory and inhibitory
mechanisms in V1, but they have thus far only been
investigated for static luminance displays and uniform
patch luminance (Chen & Tyler, 2001; Chen & Tyler,
2002; Chen, Kasamatsu, Polat, & Norcia, 2001; Li,
1998; Li, 2011; Polat & Sagi, 1993; Polat & Sagi,
2006; Polat, Mizobe, Pettet, Kasamatsu, & Norcia,
1998).

We reasoned that in naturalistic vision, our gazes
often shift across regions with large (100×) differences
in luminance. How does the visual system normalize
quickly, perhaps even predictively (perisaccade), across
large luminance changes, and can we discover such a
normalizing mechanism (e.g., linking luminance and
form vision) by observing how shape perception is
altered when shifting one’s gaze from light to dark
areas of the visual scene during visual search? Would
strong darkening lead to contextual facilitation, even
for high-contrast targets, or suppression/assimilation?
Also, would the contextual effect be driven by the
brightest flankers, consistent with models of recurrent
excitation/inhibition and divisive or subtractive
normalization, or would the effects be driven by
the flankers that are most similar in luminance to
the target, consistent with assimilation or feedback
from higher brain areas? To answer these questions,
we took the novel approach of combining (1) a
luminance transition of 1×, 10×, or 100×; (2) the
5-by-5 array pattern of recent HDR luminance
studies (Radonjic, Allred, Gilchrist, & Brainard,
2011); and (3) oriented lines (flanker Gabors) that
surround the target and affect target visibility (classic
contextual orientation effects discovered with static
SDR displays; Chen & Tyler, 2002). We then measured
how these contextual HDR luminance manipulations
affect orientation discrimination of a central
target.



Journal of Vision (2020) 20(7):9, 1–16 Hung et al. 4

Methods

Subjects

Nine subjects (six male) 18 to 70 years old
participated in all experiments. Potential subjects were
excluded if they self-reported that they, their parents,
or their siblings had photosensitive epilepsy; if they
previously had head trauma or other disorders thought
to be associated with excitatory/inhibitory balance
(epilepsy, schizophrenia, autism, depression, attention
deficit hyperactivity disorder) (Jiang et al., 2013); if they
had atypical brain development; or if they had used
mind-altering drugs in the past week. Potential subjects
were also screened via the Canadian Longitudinal
Study on Aging–Epilepsy Algorithm (Keezer, Pelletier,
Stechysin, Veilleux,Jetté, & Wolfson, 2014). Subjects
were de-identified via random letters. All experiments
were conducted at the Army Research Laboratory
at Aberdeen Proving Ground, MD, according to a
protocol approved by the Army’s Human Research
Protection Program.

Vision screening

Prior to beginning experimental tasks, subjects were
screened for normal or corrected-to-normal (at least
20/40) visual acuity and normal color vision via a
Titmus i500 Vision Screener (Honeywell, Charlotte,
NC). Visual acuity under dynamic luminance was also
assessed via a custom logMAR acuity task (Hung et al.,
2019; Hung, Callahan-Flintoft, et al., 2020).

HDR display and eye tracking

All images were projected from a DLA-RS600U
4K Reference Projector (JVC, Kanagawa, Japan) and
displayed biocularly on an HD projection screen (Hung
et al., 2019; Hung, Callahan-Flintoft, et al., 2020).
Images spanned 1920 × 1080 pixels in resolution (48.7
cm × 27.3 cm, width × height) and were observed from
a chin-rest-stabilized viewing distance of 78 cm, thus
spanning a 34.7° × 19.9° viewing angle with pixel size
0.0181° × 0.0184°. Gaze and pupil size were tracked
monocularly via an infrared eye tracker (EyeLink
1000 Plus; SR Research, Ltd., Kanata, ON, Canada),
synchronized via Lab Streaming Layer software (Swartz
Center for Computational Neuroscience, University
of California San Diego, San Diego, CA) (Kothe &
Makeig, 2013). To maintain a constant peak luminance
in the visual field, all tasks included static 400 cd/m2

light anchors (Gilchrist et al., 1999), 1° × 1° in size, at
the four corners of the screen.

Images were displayed at 60 Hz and pseudo 11 bits
(10.7 bits; 11 bits red and 11 bits green but only 10

bits blue, because all of the color information needs to
fit into 32 bits) grayscale precision via a framebuffer
procedure using Psychtoolbox 3.0 (Kleiner, Brainard, &
Pelli, 2007) for GNU/LinuxX11 software running under
MATLAB 64-bit version 2016b (MathWorks, Natick,
MA) on Ubuntu 16.04 (Canonical Ltd., London,
UK) and an AMD FirePro W8100 graphics card
(Advanced Micro Devices, Santa Clara, CA). We used
the Psychtoolbox command PsychImaging(‘AddTask’,
‘General’, ‘EnableNative11BitFramebuffer’) to disable
and bypass the hardware’s gamma color lookup table
and switch the framebuffer into 11-bpc mode, verified
by spectrophotometer (PR-745; Photo Research, Los
Angeles, CA). We then applied a 75-point log-linear
gamma correction, and the resulting gray levels spanned
a range of 636.4 cd/m2 (u, v = 0.1953, 0.3199; x, y =
0.3200, 0.3494; 6037K) to 0.006055 cd/m2 at regular
log-linear steps, for a maximum contrast ratio of over
100,000-to-1 in a single image (static projector iris)
(Hung, Callahan-Flintoft, et al., 2020). This range
spans mesopic vision (0.001–3 cd/m2, when both cones
and rods are required to support vision) to the lower
end of photopic vision (10–108 cd/m2), consistent with
seeing in mixed indoor/outdoor environments and
in twilight (e.g., nighttime street, outdoor lighting,
aviation lighting).

HDR target discrimination task

We developed a two-alternative forced-choice
HDR target discrimination task comprised of five
experimental blocks to test for interactions between
luminance dynamics and orientation. In three blocks,
we tested different luminances of an adapting blank
screen, including 4 cd/m2 (HDR gray, no change), 40
cd/m2 (HDR light gray), and 400 cd/m2 (HDR white),
followed by an HDR target and flanker array. We
tested two additional control blocks, one consisting of
a 40-cd/m2 light gray adapting blank followed by a
narrower luminance range SDR target and flanker array
(SDR block), and the other a dynamic variant of classic
flanker stimuli with a 40-cd/m2 light gray adapting
blank followed by a 4-cd/m2 uniform background and
uniform flanker orientation (uniform block). Blocks
consisted of 400 trials each and were presented in the
following order: uniform, HDR light gray, SDR light
gray, HDR gray, and HDR white.

The target and flanker array consisted of 45° and
135° Gabors, 4 cycles/degree and 1° full width at half
maximum Gaussian envelope, cropped to 1° × 1° and
presented on a 5 × 5 array of 1° × 1° luminance patches
(Figure 2A, top). The spatial frequency of the Gabors
is consistent with the stimulus preferences of single
neurons in primary visual cortex with receptive fields at
3° eccentricity (Chu, Chien, & Hung, 2014).
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Figure 2. Stimulus and task design. (A, top) Example stimulus with target contrast mixture of 60% A (45°) and 40% B (135°). (A,
bottom) Time course of adapting blank screen, keypresses, and array and target presentations. (B) Schematic of example trial types
for the brightest condition for the example stimulus. In this condition, the brightest flankers are the flankers of interest (red lines) and
are oriented at either 45° (flanker condition A) or 135° (flanker condition B). Only two of five possible target contrast mixtures (A/B)
are shown (30%/70%, 40%/60%, 50%/50%, 60%/40%, 70%/30%). For the similar condition (not shown), the flankers of interest would
be flankers that were most similar in luminance to the target. The brightest and similar condition trials were pseudorandomly
interleaved within a block. (C) Orientation/luminance relationship of 24 flankers for flanker condition A (angle labels above diagonal)
and flanker condition B (below diagonal) in the brightest (top) and similar (bottom) conditions. Red highlights indicate the flankers of
interest for each condition, and the green square indicates the target. In each of the HDR luminance blocks, flanker patches span 40
to 0.4 cd/m2 (133–0.12 cd/m2 full range including Gabors). This range is reduced to 12.6 to 1.26 cd/m2 (42–0.378 cd/m2 full range)
for the SDR block.

Across all blocks, the target was a contrast mixture
of two Gabors at 45° (A, tilted right) and 135° (B,
tilted left), presented at the central patch at a fixed
mean luminance of 4 cd/m2, and subjects indicated via
keypress the orientation of the stronger target Gabor.
At full contrast (100%), the pixels of each Gabor
spanned 3.3× to 0.3× its patch luminance (less than the
requested range of 10× to 0.1× patch luminance, due to
projector light scatter) (Hung, Callahan-Flintoft, et al.,
2020; Hung, Larkin, et al., 2020). The target was shown

at one of the five possible A:B contrast mixtures of
70%:30%, 60%:40%, 50%:50%, 40%:60%, or 30%:70%.
These contrast mixtures were logarithmically applied
to each full-contrast Gabor, such that 50%:50% means
that the brightest and darkest pixels of both Gabors are
1.8× and 0.55× the target patch luminance. The five
target mixtures were tested in all blocks and conditions.
All Gabor patterns were well above the threshold
contrast visibility for normal vision. At the minimum
average luminance of 0.4 cd/m2, in a field of view 1° by
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1°, and at a modulation frequency of 4 cycles/degree,
Barten (Barten, 2003) reported a minimum visible
contrast ratio of 1.03; for a field of view 0.5° by 0.5°,
the minimum visible contrast ratio increased only to
1.06.

The flanker patches evenly log-linearly spanned a
luminance range from 40 to 0.4 cd/m2 (10× to 0.1×
the target patch luminance) for HDR blocks and
from 12.6 to 1.26 cd/m2 (3.16× to 0.316× the target
patch luminance) for the SDR block, and they were
uniformly 4 cd/m2 for the uniform block. The pixels of
each Gabor spanned a range from 3.33× to 0.3× its
patch luminance, resulting in a peak contrast including
Gabors of 1111-to-1 (133–0.12 cd/m2) for the HDR
blocks, 111-to-1 (42–0.378 cd/m2) for the SDR block,
and 11-to-1 (13.3–1.2 cd/m2) for the uniform block.

We tested two orthogonalized conditions in
which we assigned flankers of interest to different
orientation/luminance combinations to determine
whether the behavioral biases were driven by the
brightest flankers or the flankers that were most similar
to the target in luminance. Each 5 × 5 grid consisted of
an inner ring of eight patches and an outer ring of 12
patches. The flankers of interest were balanced within
each ring, such that they had the same number of
co-oriented and orthogonal flankers, and their locations
were spatially balanced in the horizontal and vertical
directions to avoid highly asymmetric patterns. In the
brightest condition, the flankers of interest were the 12
brightest patches. In the similar luminance condition,
the flankers of interest were the 12 patches most similar
in luminance to the target patch. For both conditions,
we defined flanker condition A as the case in which
the Gabor flankers of interest were oriented 45° and
the remaining flankers were 135°, and vice versa for
flanker condition B. The brightest and similar trials
were pseudorandomly interleaved within a block.

At the start of every trial, a black fixation cross
appeared at the center of the adapting blank screen.
After a minimum blank of 500 ms, pressing the
spacebar initiated a sequence that began with the offset
of the blank screen and fixation cross, replaced by a
black screen (0.006055 cd/m2) (Figure 2A, bottom). The
5 × 5 flanker array including the 4 cd/m2 target patch
appeared 50 ms later and then the target Gabors 17 ms
after that. The target Gabors remained on the screen
for 250 ms and then offset, leaving the flankers on the
screen until the participant hit the left or right arrow
key to report the orientation of the stronger target
Gabor. After a keypress, the blank screen reappeared
after 500 ms, ending the trial.

Behavioral analysis

Behavioral choices were fitted with a psychometric
function based on a cumulative Gaussian distribution,

using Psignifit software running in Python (Fründ,
Haenel, & Wichmann, 2011). Psignifit estimates a free
guessing and lapse rate parameter (options.expType =
‘YesNo’) to fit the behavior via maximum likelihood.
Compared to classic logarithmic fitting tools, Psignifit
is thought to provide better confidence intervals by
avoiding two critical assumptions of stability and
binomial distribution to account for factors such as
learning, fatigue, and fluctuations of attention.

To analyze the significance of the flanker-induced
bias for each condition, we defined a significant
behavioral effect as cases where the 5% to 95%
confidence interval at the 50%-choose-A threshold of
each curve did not cross the other curve for the two
curves from flanker condition A and flanker condition
B. We analyzed this bias separately for the brightest
and similar conditions and for each of the blocks. For
population analysis, we defined each subject’s bias as
the difference in the target mixtures of the two curves
at the 50%-choose-A threshold. We then applied a
one-sample, two-tailed t-test to examine the significance
of this bias for each condition, versus a null hypothesis
of zero bias across the population. We also compared
these biases across the brightest and similar conditions
via two-tailed, paired t-test. Significance tests were not
corrected for multiple comparison.

Results

Study design

Previous reports of contextual effects on target
orientation discrimination were based on uniform
flanker orientations against a uniform, static
background luminance. In previous reports, the
visibility of a low-contrast target Gabor was enhanced
by surrounding co-aligned flankers (facilitation), but
the visibility of a moderate-contrast target was reduced
(suppression or assimilation), and we confirmed
this during pilot testing. In electroencephalogram
recordings, flanker co-linearity also produced an
increased midline occipital positive polarity between
80 to 140 ms after stimulus onset, consistent with a
mechanism in area V1 (Khoe, Freeman, Woldorff, &
Mangun, 2004; Polat & Norcia, 1996). This dichotomy
of contextual facilitation versus suppression to static
SDR stimuli has formed the basis of computational
models of V1, based on a balance of recurrent
excitation and inhibition (Chen & Tyler, 2002; Li, 2011).

To understand and model the contextual mechanisms
of luminance normalization under real-world luminance
dynamics, we introduced two changes to the classic
flanker task: (1) a preceding adapting blank background
to mimic the luminance change across gaze shifts, and
(2) a 5 × 5 array of luminance patches spanning a
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10- or 100-fold difference in luminance to mimic the
conjunction of form and luminance in naturalistic
scenes. This combination of adapting blanks, patches,
and Gabors resulted in a total luminance range
of 3333-to-1: 400 cd/m2 for the brightest adapting
blank versus 0.12 cd/m2 for the darkest Gabor
pixel.

We tested this combination via a two-alternative
forced-choice task in which subjects reported the
orientation of the stronger of two Gabor targets
shown at the center of the 5 × 5 array (Figure 2A). By
fitting the behavioral responses across target contrast
mixtures with a psychometric function, we were able to
determine whether the flankers induced a facilitatory
or suppressive/assimilation effect under real-world
luminance dynamics. Additionally, by manipulating the
conjunction of patch luminance and patch orientation
via two orthogonalized conditions, we were able
to test alternative hypotheses about normalization
mechanisms that predict whether the brightest flankers
or the flankers having a luminance most similar to the
target would have stronger effect.

To examine how contextual luminance and
orientation combine to affect target discrimination,
we manipulated the conjunction of luminance and
orientation across the 5 × 5 array of patches. Figure 2B
illustrates schematic examples of such stimuli for the
brightest condition in which the flankers of interest
(indicated by red lines) are at the brightest patches. In
the upper left example of Figure 2B, corresponding to
the stimulus example in Figure 2A, the target mixture
is 60%/40% and the flanker condition is A, so both the
target and the flankers of interest are tilted to the right
(45°). The comparison condition with the identical
target mixture is flanker condition B (lower left), in
which the flankers of interest are tilted to the left (135°).

Figure 2C (top) illustrates this comparison of
orientations for flanker condition A (red open circle,
angles above diagonal) versus flanker condition B
(blue open circle, angles below diagonal) for the
brightest condition, sorted by patch luminance. The red
highlights indicate the flankers of interest (the brightest
patches in this brightest condition).

If the behavioral bias were driven by the brightest
flankers, we would expect to see a difference in
the target report between flanker condition A and
flanker condition B in the brightest condition. The
same direction of bias should be present across a
range of target mixtures, including when the target
mixture is 40%/60% (upper and lower right examples
in Figure 2B).

Conversely, if the behavioral bias were driven by the
flankers that are most similar in luminance to the target,
the effect would be stronger in the similar condition,
in which the flankers of interest are at the 12 patches
most similar to the target in luminance (Figure 2C,
bottom). The effect should be abolished in the brightest

condition, when flankers near the target luminance are
both co-oriented and orthogonal.

Individual subject examples

Figure 3 shows an example of the behavioral results
for one subject, VO. As expected, the subject tended
to choose A (45° target) when the target contrast
mixture was 60%/40% or 70%/30% and B (135° target)
when the target contrast mixture was 30%/70% or
40%/60%, indicating that the subject was generally able
to correctly perceive the dominant orientation of the
target. For the brightest condition (Figures 3A–3C),
the psychometric function did not significantly differ
between flanker conditions A (red circles) and B (blue
circles) across all three adapting blank luminance levels
400, 40, and 4 cd/m2, indicating that the brightest
flankers failed to bias behavioral choice.

Conversely, the flankers induced a significant bias on
target choice behavior in the similar condition when the
flankers of interest were at the 12 patches most similar
in luminance to the target. The effect was facilitatory;
there was a bias in the subject’s response toward the
orientation of the flankers of interest, as indicated by
the leftward shift of the red curve (increased likelihood
of choosing A 45° when the flankers of interest were A
45°) and the rightward shift of the blue curve (increased
likelihood of choosing B when the flankers of interest
were B 135°) in Figures 3D and 3E. This flanker-induced
bias was significant for the two brightest adapting blank
screen luminances, 400 cd/m2, and 40 cd/m2 (threshold
bias, the difference in target contrast mixture for flanker
condition A vs. B at the 50%-choose-A threshold, was
19.8 at 400 cd/m2 and was 3.7 at 40 cd/m2; p < 0.01 and
p < 0.05, respectively), but it was not significant when
the luminance at the target patch was unchanged at 4
cd/m2 adapting blank (Figure 3F). In pilot testing, we
also observed no significant bias for darker adapting
blank screens of 0.04 and 0.4 cd/m2. In the uniform
block (Figure 3G), when a 40-cd/m2 adapting blank
was followed by all flankers having the same orientation
and the same 4-cd/m2 patch luminance, subject VO’s
report was significantly biased away from the flanker
orientation, consistent with suppression or assimilation
(threshold bias = –9.9; p < 0.01). In pilot tests without
the adapting blank screen, we also observed the same
bias across all subjects, consistent with previous reports
of suppression at higher target contrasts.

Another subject, AH, also showed a flanker-induced
bias toward facilitation, but it was significant in both
the brightest and similar conditions for the 400-cd/m2

HDRwhite adapting blank (threshold biases= 35.5 and
18.0, respectively; p < 0.01 in both cases) (Figures 4A
and 4D). The strength of this bias, a difference of 35.5%
in the brightest condition, is illustrated by the fact that,
even when the target mixture was 70% B, the subject
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Figure 3. Subject VO’s perceptual report of the target Gabor orientation, broken out by block and condition. Adapting blank screens
were 400 cd/m2 white (A, D), 40 cd/m2 light gray (B, E, G), or 4 cd/m2 gray (C, F). Red curves and data show perceptual reports when
the flankers of interest were tilted to the right (45°, flanker condition A); blue curves and data show perceptual reports when the
flanker of interest were tilted to the left (135°, flanker condition B). Threshold bias (�-thresh) is the difference in target contrast
mixture at a 0.5 proportion of choosing A. Positive threshold bias (red curve left of blue curve) indicates that the subject tended to
choose A when the flankers of interest were also A. (G) In the uniform block, when all flankers were the same orientation and 4 cd/m2

luminance, subject VO’s bias was away from the flanker orientation. Error bars show 5% to 95% confidence intervals from 200 trials
per figure panel, based on Psignifit.

chose A 60% of the time under flanker condition A,
and the subject chose B 97% of the time under flanker
condition B. Conversely, when the target was 70% A,
the subject chose A 90% of the time under flanker
condition A, but chose B 45% of the time (chose A 55%
of the time) under flanker condition B. As with subject
VO, subject AH also showed a facilitatory bias for the
similar condition in the 40-cd/m2 HDR light-gray block
(Figure 4E) and no significant bias in the remaining
HDR blocks (Figures 4B, 4C, 4F). However, unlike
subject VO, subject AH showed no significant bias in
the uniform condition.

All subjects

Across subjects, there was a strong flanker-induced
bias toward facilitation when the adapting screen was
much brighter than the Gabor display; that is, there was
a strong bias to report targets as co-oriented with the

flankers of interest (Figure 5). At the brightest adapting
blank of 400 cd/m2 (100× brighter than the target
patch, HDR white), this flanker-induced facilitation
was strong and significant for both the brightest and
similar conditions (threshold biases = 12.0 ± 12.1 and
14.8 ± 7.2; p = 0.018 and p = 0.0003, respectively), and
there was no significant difference between these two
conditions, indicating that both the brightest flankers
and the flankers similar to the target in luminance
contributed to the facilitation.

The effect depended on the magnitude of the
luminance change. When the adapting blank was only
10× brighter than the target patch (HDR light gray),
the flanker-induced facilitation was significant for
the similar condition (threshold bias = 3.1 ± 3.1; p
= 0.016), but this bias was abolished in the brightest
condition, indicating that it was not driven by the
brightest flankers (–1.2 ± 4.0; p = not significant). This
difference between similar and brightest conditions was
significant (p = 0.034, two-tailed, paired t-test).
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Figure 4. Subject AH’s perceptual report of the target Gabor orientation, broken out by block and condition as in Figure 3.

Figure 5. Results for all subjects. Filled symbols show cases where the subject’s perceptual report depended significantly on the
orientation of the flankers of interest, consistent with facilitation (positive bias) or suppression/assimilation (negative bias). Thick
boxes show population means, and lines connect the brightest and similar conditions for the same subject. The upper statistics show
the significance of each condition for all subjects (n = 9; 200 trials per condition per subject; unpaired t-test), and the lower statistics
show the significance of the pairwise comparison across the brightest and similar conditions of the same block. For the uniform block,
connected squares in the left and right columns show the results of split trials, 200 trials per square, indicating the precision of the
measurement for each subject.
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When the adapting blank was the same luminance
as the target patch (HDR gray), there was a weak but
significant bias toward suppression in the brightest
condition (–1.7 ± 1.8; p = 0.022), consistent with
previous reports of suppression to high-contrast targets
at static luminance. This bias was abolished in the
similar condition (–0.06 ± 3.0; p = not significant), but
the difference between conditions was not significant.

Could these effects have been observed with an
SDR display? We tested an SDR light-gray condition
in which the array patch luminances spanned only
12.6 to 1.26 cd/m2 (3.16× to 0.316× the target patch
luminance, a 10× range) versus 40 to 0.4 cd/m2 (10×
to 0.1× the target patch luminance, a 100× range) in
the HDR array. As with the HDR light-gray condition,
there was a significant flanker-induced facilitation in the
similar condition (1.9 ± 1.0; p = 0.0013), but this effect
was abolished in the brightest condition (–0.5 ± 2.5;
p = not significant). The difference between these two
conditions approached significance (p = 0.053). Thus,
the effect was much weaker under SDR conditions but
was consistent with the results under HDR conditions.

Across subjects, the uniform condition resulted in
a wide variation of individual biases (–1.0 ± 9.4),
ranging from significant facilitation (18.0; p < 0.01)
to significant suppression (–11.8; p < 0.01). The bias
was not due to noise in the measurement, as randomly
splitting the trials resulted in almost no change to
individual biases (Figure 5, pairs of connected squares).
The direction of this individual bias did not appear to
be related to the magnitude of facilitation in the HDR
and SDR conditions. The wide range of individual
biases under the uniform condition contrasts with
the narrower range of biases in the HDR conditions,
especially the SDR light-gray similar condition (1.9 ±
1.0). It also contrasts with previous reports (and our
pilot results) of target suppression to static uniform
flankers, indicating that our addition of the adapting
light-gray blank substantially altered the conditions to
produce unexpected behavior. We speculate that the
blank, although only 10× brighter than the target patch,
may increase ambiguity and enable the emergence of
strong priors, based on the subjects’ false expectation of
a relationship (match or mismatch) between the target
and flankers.

Effect of the degree of flanker patch luminance
variability

In the lightness constancy literature, it has been
suggested that structural complexity in the surrounding
framework (articulation), including luminance
variability, increases the degree of veridical lightness
judgment and anchoring to that framework (Gilchrist
et al., 1999; Zemach & Rudd, 2007). Although

our subjects’ task was orientation discrimination,
not lightness judgment, the facilitation observed
in the similar condition suggests that orientation
discrimination is influenced by grouping by luminance
similarity. To what extent is this grouping-related
facilitation effect titrated by the degree of luminance
variability in the flankers, for the same level of abrupt
darkening? Conversely, is it stronger for flankers that
are identically the same luminance rather than merely
similar?

In five subjects, we tested two variants of the HDR
white block in which we manipulated the degree of
luminance variability in the 12 flankers that were nearest
in luminance to the target by adjusting them to either
the identical luminance as the target (low variability or
same, slope 0) or half the original luminance stepping
(medium variability or similar, slope 0.5) (Figures 6A
and 6B), with the original HDR white condition having
high variability (slope 1.0). As in the standard blocks,
the positions of the flankers of interest were balanced
within each image. Notably, the number of patches
and their rules for spatial arrangement were identical
between the medium and high luminance variability,
and the brightest and darkest luminances remained the
same, thus holding constant many factors of concern
for lightness theories based on articulation, lightness
anchoring, and edge integration (Zemach & Rudd,
2007).

At medium luminance variability, all five subjects
had a significant bias toward facilitation in the
similar condition (p < 0.05 for each subject, Psignifit
of 200 trials per condition per subject; population
bias 13.9 ± 7.1; p = 0.012, unpaired t-test; n = 5),
which was abolished in the brightest condition in
all except one subject who had a significant bias
toward suppression/assimilation (–3.0 ± 4.8; p = not
significant; n = 5) (Figure 6C). The stronger bias toward
facilitation in the similar versus brightest conditions
was significant (p = 0.015, two-tailed paired t-test).

Comparing the similar conditions at medium versus
high luminance variability, the magnitude of the
facilitation was not significantly different (medium,
13.9 ± 7.1; high, 17.0 ± 8.9; p = not significant,
paired t-test; n = 5). This suggests that a medium
degree of luminance variability in the similar condition
is sufficient to induce facilitation. In the brightest
condition, the difference was significant (medium, –3.0
± 4.8; high, 16.8 ± 12.2; p = 0.012). The fact that
the facilitation was abolished, rather than weakened,
in the medium variability condition suggests that the
12 patches at medium luminance variability may have
anchored the target more strongly to this framework,
such that its mixture of 45° and 135° Gabor orientations
outweighed the contextual effects from the six brightest
flankers.

For low luminance variability, one subject had
a significant bias toward facilitation in the similar
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Figure 6. Effect of degree of flanker patch luminance variability.
(A) Variants of the HDR white block in which the 12 flankers
most similar in luminance to the target were either the same
luminance as the target (low luminance variability, slope 0) or
at half the original luminance range (medium variability, slope
0.5). Compare with the original luminances (high variability,
slope 1, in Figure 2A). The remaining 12 flankers were identical
across the three blocks. (B) Patch luminances for low, medium,
and high luminance variability, identical for both similar and
brightest conditions. (C) Threshold bias effects of similar versus
brightest conditions for blocks at low, medium, and high
luminance variability. Filled triangles indicate significant effects

→

condition, and two subjects had a significant bias
toward suppression in the brightest condition. Across
subjects, there was no consistent bias in either the
similar or brightest conditions (p = not significant for
both). These mixed results for low luminance variability
are consistent with the mixed results in the uniform
block. This is not entirely unexpected, as 12 flankers
were identical among low luminance variability, similar
condition, and the uniform block, and their subjective
experiences were similar.

Overall, the results across low, medium, and high
luminance variability indicate that the degree of
luminance variability in the surround of the target
influences the threshold bias in this task. Furthermore,
in the medium variability condition, there was an
additional clear relationship between luminance
similarity and threshold bias. We surmise that the
medium luminance variability invoked stronger
grouping by luminance similarity than the high
luminance variability condition, in which all patches
were evenly log-linearly spaced in luminance. Notably,
these results clearly support luminance similarity, not
luminance identity, demonstrating a strong contextual
effect on facilitation, consistent with the idea of
articulation that providing additional gray surfaces
near the target luminance may increase their use in
computing contextual effects. Our results suggest that
articulation matters not only for lightness constancy
but also for facilitation, reinforcing the suggestion that
strong ties exist between luminance and edge processing
in early visual cortex (Hung et al., 2007; Hung et al.,
2010).

Discussion

An ongoing challenge to Army modernization is
how to develop autonomous teammates that can
function in the real world for effective teamwork.
Recent advances in machine vision, based on deep
neural networks (DNNs) trained on large SDR
photographic and synthetic databases, have resulted in
substantial improvements in machine vision capability,
but a substantial problem remains of unexpected
misclassifications, thus limiting machine vision
credibility and requiring too many user interventions
to be practicable. For example, a recent report showed

←
at p < 0.05 based on Psignifit of 200 trials per brightest or
similar condition per block per subject; open triangles are
non-significant. Upper and lower statistics are based on
unpaired t-tests of individual conditions (200 trials) and paired
t-tests across conditions (400 trials); n = 5 subjects.
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that DNNs trained on ImageNet photographs were
overly reliant on texture for object classification and
were easily fooled by synthetic images in which object
surfaces were replaced by other textures (Baker, Lu,
Erlikhman, & Kellman, 2018; Geirhos, Rubisch,
Michaelis, Bethge, Wichmann, & Brendel, 2018).
Whereas biological vision has many mid-level processes
to support resilient generalization, such processes are
absent in DNNs. This is evidenced by the limited
ability of DNNs to explain brain activity in many
visual areas and by the ongoing challenge to resolve the
disjunction between machine and human patterns of
classification errors. A strategy to resolve this capability
gap is to incorporate biological resilience into machine
vision.

Our investigation of HDR luminance normalization
aligns with this strategy by building on biology’s
advantage in normalizing HDR images, with the further
aim of building tone-mapping and saliency models that
can feed into DNNs, augmented reality, and cockpit
displays to improve overall performance. We took the
approach of focusing on contextual processing in V1,
which has been well explored for the case of static SDR
images and is supported by a large body of work in
human and animal behavior, anatomy, and physiology.
We advanced it toward real-world application by
adding HDR luminance dynamics consistent with gaze
shifts in naturalistic scenes. We obtained unexpectedly
strong behavioral results showing contextual facilitation
following abrupt darkening, even for high-contrast
targets, and an unexpected phenomenon of contextual
luminance-similarity-dependent facilitation that is
consistent with traditional Gestalt theories of grouping.
Both of these results challenge models based solely
on divisive or subtractive normalization and recurrent
excitation and inhibition that would predict stronger
effects from the brightest flankers (Carandini & Heeger,
2012; Chen & Tyler, 2001; Chen & Tyler, 2002; Foley,
2019; Li, 1998; Li, 2011).

The results cannot be explained by factors such as
contrast-dependent sensitivity of neurons to surround
stimuli (Sceniak, Ringach, Hawken, & Shapley, 1999)
or retinogeniculate adaptation effects, because these
factors were balanced across the brightest and similar
conditions. One possibility is that, because the display
used in these experiments was considerably more
complicated than those in classic flanker studies,
including temporal luminance transients and patch
edges that do not exist in traditional flanker displays,
the spatial frequency energy of the patch edges may
have contributed to these effects. Notably, some
contemporary theories of lightness (edge integration
theories) posit that edges, or more precisely, spatially
directed luminance change, may be the signal that
the brain uses to compute lightness percepts (Rudd,
2017). Our results are consistent with and expand
upon edge integration theories and cannot be

explained solely by mechanisms based on divisive
normalization.

The results open a new direction for modeling,
supported by reports of luminance representation
in V1 neurons (Kremkow et al., 2016; Yeh, Xing, &
Shapley, 2009), that contextual effects are supported
by luminance-specific processes. Our future work will
be to incorporate these results into computational
modeling, based on modeling of luminance, recurrent
excitation/inhibition, and feedback processes and on
HDR saliency.

These results highlight a limitation of standard
laboratory displays for studying biological vision—
namely, the limited generalizability to real-world
luminance dynamics. By simply widening the luminance
range and adding an abrupt darkening, we observed
novel phenomena (facilitation to high-contrast targets,
flanker effects driven by luminance similarity to
the target, and dependence on degree of luminance
variability) that should be useful for bringing models of
lightness constancy more in line with real-world vision.

Variability across subjects

We note that in extreme cases, where the flankers
had the same versus merely similar luminance (e.g.,
low luminance variability and uniform blocks vs.
medium luminance variability), the lack of luminance
variability produced highly variable results across
subjects; that is, the lack of strong articulation in
terms of luminance variability may have weakened the
anchoring framework needed for facilitation, enabling
the emergence of top-down attention or heuristics
(Gardner, 2019). Put another way, luminance variability
in the surround causes the observer to preferentially
compare the target to similar features in the background
scene in order to reduce cognitive load, and when
that luminance variability is missing individual biases
emerge regarding the relationship between target and
surround.

Interestingly, individual variability was also high in
the high luminance variability condition. We considered
that target visibility may be challenging after strong
(100×) darkening, and indeed the psychometric curves
became shallower and confidence intervals wider
(Figures 3A, 3D, 4A, 4D). However, it would not
explain why the grouping by luminance similarity was
consistent across subjects in the medium luminance
variability condition with the same strong 100×
darkening. It is more likely that, as in the case of low
luminance variability, the evenness of the log-linear
steps at high luminance variability weakened the
strength of grouping effects (articulation), compared
with the medium luminance variability condition,
and this was compounded by the strong darkening.
Further investigation of luminance adaptation effects,
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such as considering the time allowed for adaptation, is
warranted in future studies.

We also note the consistency of the results at medium
and high luminance variability in the similar condition,
indicating that these effects were sustained within
subjects across an interval of over 1 year, indicating
that the core effect is robust to changing heuristics
and slow changes in visual experience, and they do
not decline with familiarity. The overall consistency
and reproducibility of the HDR and SDR facilitation
supports the suggestion that these facilitation results are
primarily driven by automatic grouping mechanisms
in early visual cortex but individual heuristics may
emerge under ambiguous conditions when articulation
is weaker.

Generalizability

The generalizability of these results is limited by
several factors. First, our test range of 3333-to-1
is still well below the 100,000-to-1 range of some
natural scenes. However, by capturing a substantial
portion of both mesopic and photopic ranges, our
display captured the key transition between indoor
and outdoor illumination that poses some of the
most frequent HDR luminance challenges. Another
limitation is that in our target discrimination task,
the subject maintained fixation while the luminance
changed, whereas such luminance changes typically
occur across gaze shifts in a static scene. An important
difference is that, in gaze shifts, the visual system has
pre-saccadic information about the luminances at the
target post-saccade. It is unknown whether this would
alter our behavioral results, and it would be worthwhile
to repeat this experiment under controlled free viewing,
where the subject shifts his gaze from bright to dark
regions in a static image, and to investigate how these
effects are modulated by temporal dynamics (Burr
& Morrone, 1996). Finally, another factor limiting
the generalizability of these results is that optimal
machine vision may need to encompass both human
capabilities and super-human capabilities. Depending
on constraints such as size, weight, and processing
power, it may not be optimal from a teaming framework
perspective for the machine vision to exactly match
biological vision. However, we would argue that in most
expected uses of autonomy, where the drone or vehicle
is mostly autonomous at the front line, reducing the
frequency of required user interventions means that the
largest sources of misclassification failure should be
rooted out. A common denominator of many failures is
improper normalization of the visual input, so tackling
this issue while taking advantage of DNN advances for
later processing efficiently leverages ongoing advances
in biological and machine vision.

Conclusions

These results advance our capability to model
biological vision under real-world luminance and to
develop resilient and intuitive real-world machine
vision, by discovering contextual HDR luminance
mechanisms associated with the primary visual cortex.
We showed for the first time that abrupt darkening (as
would occur during gaze shifts) induces facilitation
for high-contrast targets. Surprisingly, the degree of
facilitation depended on the degree of luminance
variability in the surround. The effect required an HDR
stimulus to be observed and was much weaker (but
significant) under SDR conditions. Furthermore, there
is an additional clear relationship between luminance
similarity and threshold bias. At medium luminance
variability (10× darkening, or 100× darkening plus
medium luminance variability for 12 patches), the
facilitation effect was abolished in the brightest
condition but preserved in the similar condition,
supporting a role for grouping by luminance similarity
and orientation in models of vision. We also showed
that by simply adding darkening, the classic case of
suppression by uniform flankers became ambiguous,
with large individual variations toward both facilitation
and suppression, and that this ambiguity extended to
uniform flankers embedded among the HDR flankers.
These discoveries were enabled by our development
of an HDR display research platform with improved
characteristics of over 100,000-to-1 contrast ratio and
pseudo 11 bits, compared to standard SDR displays
that are typically limited to below 1000-to-1 contrast
ratio and 8 to 10 bits. Together, these results raise new
questions for modeling visual perception of real world
scenes, leveraging biology’s substantial advantages in
handling high-dynamic-range images.

Keywords: luminance normalization, orientation
discrimination, target recognition, machine vision,
computer vision
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