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The goal of human disease genetics is to

connect genetic variation with disease risk,

but the optimal study design for gene

mapping varies widely with the underlying

genetic architecture of the disease. Family

based linkage studies made the identi-

fication of genetic defects that directly

cause rare single gene diseases, like cystic

fibrosis and sickle cell disease, routine. By

contrast, the goal of identifying the genes

that explain the heritability of complex

diseases has remained elusive because they

are affected by a host of genetic and

environmental factors. More recently,

however, genome-wide association
studies (GWAS) have identified many

common variants associated with complex

traits. In some cases these studies have

provided valuable insight into disease

pathogenesis [1–3] but each associated

variant often confers only a modest

increase in risk (odds ratios [ORs]

typically range from 1.1 to 1.5). One

consequence of these small effects is that,

even in aggregate, these discoveries fail to

explain most of the heritability of complex

disease. Identifying sources of this missing

heritability is one of the most active areas

of complex disease genetics research [4],

and the relative contribution of rare (,1%

minor allele frequency [MAF]), low-fre-

quency (1%–5%), and common (.5%)

causal variants remains unknown. GWAS

have deeply probed the role of common

variation by exploiting the fact that a

subset of single nucleotide polymorphisms

(SNPs) can act as proxies for (or ‘‘tag’’) the

majority of common SNPs. This efficiency

has allowed inexpensive microarrays,

which directly genotype half a million

SNPs, to indirectly capture .80% of

common variation [5]. While this design

underpins the success of the GWAS

approach, it also presents a drawback:

associations to rare and low frequency

SNPs are typically missed because they do

not have a strongly correlated tag on

GWAS chips.

Dickson et al. [6], in a recent simula-

tion-based experiment, argue that com-

mon variant associations arising from

GWAS may actually reflect multiple low

frequency causal variants rather than a

single common causal variant (Figure 1).

They demonstrate that ‘‘synthetic associa-

tions,’’ where a cluster of low-frequency,

highly penetrant mutations occurs stochas-

tically more frequently with one allele than

the other at a common SNP, can cause

association signals at these common vari-

ants. If synthetic associations were wide-

spread they could in theory explain an

appreciable fraction of the missing herita-

bility. Furthermore, the proportion of

GWAS signals attributable to synthetic

associations has profound implications for

the design of GWAS follow-up studies.

Therefore, while Dickson et al. argue that

synthetic associations are an ‘‘obvious

theoretical possibility,’’ it is worthwhile to

broadly assess, in light of other theoretical

and empirical evidence, the prevalence of

synthetic associations in complex human

disease.

NOD2 and Crohn’s Disease: A
Synthetic Association

The synthetic association paradigm is

supported [7] by the well-known associa-

tion between Crohn’s disease and NOD2

[8], where three rare coding variants

(G881R – MAF:0.04, R675W –

MAF:0.01, and L980fs – MAF:0.02)

confer high risk for Crohn’s (ORs for a

carrier and homozygote are 3 and 38,

respectively) [9]. None of these variants

are present on current GWAS arrays, nor

are they individually well-tagged. Never-

theless, extremely strong association is

seen at nearby common variants because

the aggregate effect size of the low-

frequency causal mutations is sufficiently

large that it creates genome-wide signifi-

cant association even at very weak,

common, tag SNPs (Figure 1). For exam-

ple, in the Wellcome Trust Case-Control

Consortium (WTCCC) Crohn’s genome-

wide association study, the most strongly

associated SNP in the region is rs4471699

(P = 1.6610222, risk allele frequency: 0.52,

odds ratio: 1.52) [10]. Furthermore, in a

subset of the WTCCC data where cases

[11] and controls [8,12] have been

genotyped for the three low-frequency

coding mutations, testing for association

while conditioning on carrier status of one

of these mutations completely ablates the

signal at the common SNPs (minimum

unconditional P-value = 1.261026, condi-

tional P-value = 0.52) (Figure 2). Thus,

NOD2 fulfills two important predictions

of the synthetic association model: a

cluster of low-frequency, high-effect vari-

ants can create a GWAS signal, and that

signal vanishes when the causal alleles are

taken into account.
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Linkage Versus GWAS: Power to
Detect Synthetic Association

NOD2 also illustrates an important

property of the underlying genetic model

proposed by Dickson et al. [6] that leads to

synthetic association, namely that such loci

should be amenable to linkage mapping.

NOD2 has been consistently mapped by

linkage [13–17], in contrast to nearly all

other reported linkage results for common,

complex human disease. The cluster of

low frequency variants at the NOD2 locus

that confer high risk for disease, which

embodies the synthetic association model

more generally, is highly tractable by

linkage analysis. Therefore, the relative

power of linkage and association can be

used to make inferences about the rate at

which synthetic associations occur.

Recently, the Type-1 Diabetes Genetics

Consortium (T1DGC) conducted a ge-

nome-wide linkage scan of 2,658 affected

sib-pairs with type-1 diabetes [18]. Using

formulae outlined by Risch and Merikan-

gas [19] it is straightforward to assess the

power of this study to detect linkage given a

model specifying the number of risk

variants and their effect sizes. Figure 3

compares, under various models consistent

with synthetic association, the power of the

T1DGC linkage scan to the power of a

GWAS with 2,000 cases and 2,000 controls

[6]. When individual odds ratios are $3, or

there are many independent risk variants,

linkage (rather than association) is the more

powerful approach. If synthetic associations

are common, this observation yields a

testable prediction: either GWAS signals

should overlap substantially with results

from well-powered linkage scans, or all

synthetic associations arise from the rela-

tively small parameter space where linkage

is poorly powered but GWAS is not.

The T1DGC linkage scan shows signifi-

cant linkage to the HLA region on chromo-

some 6p21 (LOD = 213.2), and suggestive

linkage (2.2,LOD,3.6) to regions on

chromosomes 2q32, 11p15, 19p13 and

19q12. Because the well-known underlying

genetic effects in the HLA region (OR = 5.5)

and 11p15 (INS, OR = 2.4) are among the

Figure 1. SNPs in the NOD2 region as an
example of synthetic association. Left
panel represents ten control chromosomes
sampled randomly; right panel represents ten
random Crohn’s disease patient chromosomes.
Colored circles represent variant alleles at SNPs
genotyped on a GWAS chip, colored explosions
represent the three known causal variants in the
gene. While none of the GWAS SNPs are strongly
correlated with any of the individual causal
alleles (the tag SNP theory which underlies the
GWAS design), the collective effect of the three
causal SNPs is to distort the frequencies of the
GWAS SNPs in cases and controls. This collective
effect of several low frequency SNPs different
distances from a common SNP has been termed
a ‘‘synthetic association.’’
doi:10.1371/journal.pbio.1000580.g001

Figure 2. Evidence of association between Crohn’s disease and the NOD2 region. Grey points: results from a logistic regression test of
association. Black points: results from a logistic regression test of association after conditioning on compound carrier status for three rare NOD2
mutations (highlighted by red triangles). The NOD2 gene region is denoted by the orange track. The complete eradication of the signal at the
common SNPs after conditioning on the rare SNPs demonstrates that the GWAS signal is a synthetic association driven by these rare SNPs.
doi:10.1371/journal.pbio.1000580.g002
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strongest documented in complex disease, the

linkage results at these two loci are unsur-

prising. The linkage signal on 2q32 could in

theory be driven by synthetic associations

directly under the peak (CTLA4 (OR = 1.2)

and STAT4 (OR = 1.1) [20]), but could also

be amplified by three other associations also

on 2q. No documented associations (synthetic

or otherwise) lie under either peak on

chromosome 19. To investigate the possibility

that some GWAS loci may be contained

within regions displaying weak evidence of

linkage (LOD.1.5), we extended the search

to include an extra four such loci but did not

identify any further overlaps. The remaining

47 type 1 diabetes risk loci [20] therefore

show no evidence of linkage. Indeed, for

complex diseases more generally there has

been little overlap in the genomic regions

identified using linkage and association [21].

Thus, either synthetic association is confined

to a relatively narrow set of genetic models

that are detectable only by GWAS or it does

not account for many known associations.

Fine-Mapping of GWAS Regions

Many groups have followed up GWAS

by sequencing associated regions in large

numbers of samples, with the hope of

identifying common causal variants as well

as additional less common, more highly

penetrant mutations. The WTCCC, for

instance, sequenced hundreds of samples in

16 GWAS regions (hundreds of kilobases to

a megabase surrounding the most signifi-

cant SNP), a design that is able to identify

nearby variants causing a synthetic associ-

ation. Indeed, had NOD2 been sequenced,

all three low frequency causal mutations

would have been discovered. No clear

examples of synthetic association were

reported [22], which suggests that synthetic

association is not commonplace. Nonethe-

less it is clear that both low- and high-

frequency alleles do play a role in complex

disease. Nejentsev et al. [23] recently

sequenced several genes identified in a

GWAS of type 1 diabetes in pools of cases,

and discovered four rare coding mutations,

each conferring an approximately two-fold

increase in risk for diabetes. In contrast to

the synthetic association model, however,

these rare SNPs are not correlated with the

common GWAS SNP, and a conditional

analysis including these rare mutations did

not affect the strength of association at the

common GWAS SNP.

The dearth of synthetic associations

reported to date could be due to the low-

frequency variants residing outside the

resequenced interval [7]. For example,

analysis of a GWAS of sickle cell anemia

demonstrated that strong GWAS signals

can be observed at large distances from

causal alleles. The genome-wide signifi-

cant (P,561028) signal indeed spans

multiple LD blocks (2.5 Mb in total), due

to the fully penetrant causal (recessive)

genotype, in stark contrast to the small

increase in risk from typical GWAS hits.

Even so, the most associated SNP

(P = 1.16102136) is within 10 kb of the

Figure 3. Comparative power of linkage and GWAS to detect synthetic association. Solid lines indicate power for the T1DGC linkage
analysis (2,658 affected sibpairs), assuming a risk allele frequency of 0.01, and a= 161024, for N = 3 (black), 5 (red), or 9 (blue) independent risk alleles.
Dashed lines indicate power to detect these synthetic associations in a GWAS of 3,000 cases and 3,000 controls (data taken from Dickson et al.
Figure 2). Linkage is more powerful than GWAS except for situations with few causal alleles of relatively modest effect.
doi:10.1371/journal.pbio.1000580.g003
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known functional variant in HBB [6]. The

notion that GWAS signals are typically

located close to underlying functional

elements is further supported by their

frequent proximity to candidate genes

associated with related Mendelian condi-

tions or identified by pathway analyses

[24,25]. For example, eight of ten proteins

involved in the Th17-differentiation sig-

naling pathway have been associated with

one or more auto-inflammatory diseases

[26]. Identifying so many candidate genes

within the narrow intervals around GWAS

signals suggests that causal variants are not

routinely located megabases away from

the most strongly associated common

SNP.

While these studies are not exhaustive,

they provide three insights into the

functional architecture of complex disease.

First, both low-and high-frequency risk

alleles can independently exist within a

single locus. Second, GWAS signals often

map closely to underlying functional

elements. Finally, the more general lack

of variants with obvious functional conse-

quences that would explain the association

in GWAS regions suggests that sequencing

of larger sample sets, as well as better

functional annotation of regulatory ele-

ments, will be required.

Population Genetics of
Synthetic Associations

In contrast to common SNPs, most low-

frequency SNPs are not shared across

diverged populations because they have

either arisen relatively recently or their

frequencies have been influenced by

population history (e.g., the out-of-Africa

expansion or natural selection). Since the

synthetic associations proposed by Dickson

et al. are created by low-frequency vari-

ants, they are therefore less likely to be

shared among diverged populations. The

Crohn’s disease synthetic association at

NOD2 is again illustrative, as it is restricted

to populations of European or Jewish

descent [27–29]. The three rare causal

mutations are not observed in Asian

populations, so the common variant

(which is observed at similar frequency to

that seen in individuals of European

descent) is not associated with Crohn’s

disease in individuals of Asian descent. In

contrast, many disease loci initially iden-

tified via GWAS have been widely repli-

cated across divergent populations, sup-

porting the hypothesis that the causal

mutations are, in fact, common [30–32].

Some population-specific GWAS signals

do exist [6], but caution is required in the

interpretation of small-scale, population-

specific replication studies of loci originally

identified in meta-analyses involving thou-

sands of samples. Larger sample sizes from

populations around the world are needed

to resolve the fraction of GWAS hits that

are population-specific.

Conclusions

Complex human diseases are influenced

by common, low-frequency, and rare

mutations, and a hypothesis invoking

multiple rare variants (as proposed by

Dickson) is compatible with the common

disease common variant hypothesis [4].

Large-scale sequencing studies of thou-

sands of cases and controls will be required

to fully understand the genetic architec-

ture of complex disease. Since the preva-

lence of synthetic association acutely

affects the design of these studies (i.e., in

terms of the sample composition and

width of genomic region sequenced) it is

worth carefully evaluating its contribution

to missing heritability. The balance of

current evidence suggests that this contri-

bution is likely to be small. Linkage results,

preliminary evidence from targeted se-

quencing studies, pathway analyses and

transcontinental replication indicate that

common SNP associations arising from

GWAS are just that: common SNP

associations.
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Box 1. Glossary

Odds ratio: the ratio of odds of disease between two groups that differ for a
variable of interest. In genetics, the variable is genotype at a particular location in
the genome; therefore the odds ratio is a measurement of the effect size of that
genetic variant on disease risk. Single-gene disorders, where a particular mutation
essentially guarantees disease, have infinitely large odds ratios, whereas common
risk variants for complex diseases typically have odds ratios around 1.1–1.5.

Linkage study: a gene-mapping approach that searches for genomic segments
that are co-inherited with disease within a family. Linkage scans have been most
successful in the study of diseases caused by rare mutations in a single gene.

Association study: another gene-mapping study design based on comparing
allele frequencies between cases and controls. Inexpensive genotyping technol-
ogies coupled with large patient collections (thousands of individuals with a
disease) have enabled genome-wide association studies that are well suited to
detecting small effects at common SNPs.
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