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Abstract

Background: Protein structure prediction has achieved a lot of progress during the last few decades and a greater
number of models for a certain sequence can be predicted. Consequently, assessing the qualities of predicted protein
models in perspective is one of the key components of successful protein structure prediction. Over the past years, a
number of methods have been developed to address this issue, which could be roughly divided into three categories:
single methods, quasi-single methods and clustering (or consensus) methods. Although these methods achieve much
success at different levels, accurate protein model quality assessment is still an open problem.

Results: Here, we present the MQAPRank, a global protein model quality assessment program based on learning-to-
rank. The MQAPRank first sorts the decoy models by using single method based on learning-to-rank algorithm to
indicate their relative qualities for the target protein. And then it takes the first five models as references to predict the
qualities of other models by using average GDT_TS scores between reference models and other models. Benchmarked
on CASP11 and 3DRobot datasets, the MQAPRank achieved better performances than other leading protein model
quality assessment methods. Recently, the MQAPRank participated in the CASP12 under the group name FDUBio and
achieved the state-of-the-art performances.

Conclusions: The MQAPRank provides a convenient and powerful tool for protein model quality assessment with the
state-of-the-art performances, it is useful for protein structure prediction and model quality assessment usages.
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Background
In the last two decades, various protein three-
dimensional structure prediction methods have been
developed and much progress has been made in this
area [1]. Generally, numerous predicted decoy models
are generated for a given protein sequence, and cor-
rectly ranking these models and selecting the best pre-
dicted model from the candidate pool remain
challenging tasks. Over the past years, a number of
methods have been developed to address this issue [2,
3], and these methods could roughly be divided into
three categories: single methods, quasi-single methods
and clustering (or consensus) methods. The single
methods evaluate the model quality using the inputted
model only [4–6] and often use three conceptual ap-
proaches: the physical model, the statistical model and

the comparison between predicted properties and the
properties extracted from decoy models. The quasi-
single methods identify a few high-quality models as
references, and evaluate the subsequent models by
comparing them with the reference models [7, 8]. The
clustering methods often use clustering algorithm to
cluster a set of models generated by structure predic-
tion programs for target sequence [9–12]. The cluster-
ing methods generally outperform single-model
methods when numerous models are available [13, 14],
however, the clustering methods perform poorly if most
models are of low qualities or only a few models are
available.
In this work, we developed a novel program based on

learning-to-rank for protein model quality assessment
(MQAPRank). First, the MQAPRank formulates the
protein model quality assessment task as a ranking task
and uses single method to sort the decoy models, the
features include knowledge-based mean force potentials
and evaluation scores from other state-of-the-art
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MQAP (model quality assessment program). Then, the
MQAPRank takes the first five decoy models ranked by
the learning-to-rank algorithm as the reference models
and the predicted qualities of other models are the
average GDT_TS score of the target models with the
five reference models. The MQAPRank has been evalu-
ated on the CASP11 (11th Community Wide Experi-
ment on the Critical Assessment of Techniques for
Protein Structure Prediction) dataset and participated
in the CASP12 (12th Community Wide Experiment on
the Critical Assessment of Techniques for Protein
Structure Prediction) recently, it achieves the state-of-
the-art performances on those two datasets.

Implementation
Overview
The MQAPRank formulates the model quality assess-
ment of protein models as a ranking problem, and the
protein decoy models are sorted by their similarities
with the corresponding native structures. Such similar-
ities can be measured by various structure comparison
programs and in the MQAPRank the GDT_TS score is
adopted. The assessment procedure of MQAPRank
consists of three steps and its overall flowchart is
shown in Fig. 1. First, the MQAPRank extracts two
kinds of features from the decoy models: knowledge-
based mean force potentials and the evaluation scores
of several programs for protein model quality assess-
ment. The knowledge-based potentials used in the
MQAPRank include Boltzmann-based potentials,
DFIRE potential, DOPE potential, GOAP potential and
RWplus potential. The evaluation scores from other
protein model quality assessment programs include
Frst, ProQ, RFMQA, SIFT and SELECTpro software,
detailed descriptions of those features are shown in the
features section. Then, each decoy model is repre-
sented as a feature vector and a pair of feature vector
from the same protein is represented as an instance.
These instances are inputted into learning-to-rank
algorithm to predict the relative ranking relation of

any two models from the same protein. Finally, the
MQAPRank takes the first five models as the reference
models and the predicted qualities of other models are
the average GDT_TS score of the target models with
the reference models.
In summary, the MQAPRank uses various features

to predict the ranking relation of protein decoy
models based on learning-to-rank algorithm and
chooses first five best decoy models as references to
score other decoy models. In order to provide more
valuable assessment information, the MQAPRank will
output both the initial learning-to-rank based score
(MQAPRank score) and the final predicted score
(quasi-MQAPRank score).

Learning-to-rank algorithm
Learning-to-rank is a machine learning algorithm
which constructs a ranking strategy and sorts new
objects according to their relevance or importance to
the target object. Learning-to-rank has been applied
effectively to solve information retrieval problems, such
as document retrieval, collaborative filtering, spam de-
tection, etc. The existing learning-to-rank algorithms
can be categorized into three approaches: pointwise ap-
proach, pairwise approach, and listwise approach, and
different approaches model the process of learning-to-
rank in different ways. The pairwise approach could
apply existing methodologies on regression and classifi-
cation and generally outperforms pointwise approach,
thus we adopt the pairwise via-classification approach
(SVMrank [15]) to deal with the protein model quality
assessment problem. Specifically, the pairwise approach
takes pairs of decoy models (represented as feature vec-
tors) as instances for learning, and formalizes the task
of ranking decoy models as that of classification. In
learning, it first collects decoy model pairs from the
decoy model list of a certain protein, and then assigns a
label representing the relative qualities of the two decoy
models for each pair. The final process is to train a

Fig. 1 The overall flowchart of the proposed MQAPRank
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classification model with the labeled data and to make
use of the model to rank new decoy models.

Features
The MQAPRank extracts two kinds of features from the
decoy models: knowledge-based mean force potentials
and the evaluation scores of several programs for protein
model quality assessment.

Knowledge-based potentials
The knowledge-based potentials include Boltzmann-based
potentials [16], DFIRE potential [17], DOPE potential [18],
GOAP potential [19] and RWplus potential [20].
The Boltzmann-based potentials are widely used

mean force potentials that is derived from the inverse
Boltzmann law, and the corresponding non-linear
forms are proposed in our previous study [16]. The
five Boltzmann-based potentials include the DIH po-
tential [21], the DFIRE-SCM potential [22], FS poten-
tial [23], HRSC potential [24], T32S3 potential [25].
The DFIRE potential [17] is a distance-dependent

structure-derived potential, which sums the interactions
of all pairs of non-hydrogen atoms (167 atomic types).
The DOPE (Discrete Optimized Protein Energy)

potential [18] is based on an improved physical reference
state that corresponds to non-interacting atoms in a
homogeneous sphere with the radius dependent on a
sample native structure. Its variants (DOPE-normal
(Normalized DOPE by z score) and DOPE-HR (the bin
size is 0.125 Å, a higher resolution than DOPE)) are also
used in the MQAPRank.
The GOAP potential [19] is a generalized orienta-

tion and distance-dependent all-atom statistical poten-
tial, which depends on the relative orientation of the
planes associated with each heavy atom in interacting
pairs.
The RWplus potential [20] is based on the pair-wise

distance-dependent atomic statistical potential function
RW [26], and contains a side-chain orientation-
dependent energy term.

Evaluation scores from other MQAPs
The evaluation scores from other model quality assess-
ment programs are also extracted as additional features,
which include the Frst [27], ProQ [5], RFMQA [28],
SIFT [29] and SELECTpro [30].
The output of the Frst [27] is based on four

knowledge-based potentials: RAPDF potential, SOLV
potential, HYDB potential, and TORS potential, and the
Frst energy is a weighted linear combination of the four
potentials. Besides the combination potential, the indi-
vidual potentials are also used as the features in the
MQAPRank.

The ProQ [5] is a neural-network-based method to
predict the protein model quality. It uses structural
information which contains the frequency of atom
contacts and residue contacts, solvent accessibility
surfaces, the fraction of similarity between predicted sec-
ondary structure and the secondary structure in the
model, and the difference between the all-atom model
and the aligned C-alpha coordinates from the template.
The RFMQA [28] is a random forest based model

quality assessment using structural features and
knowledge-based potential energy terms. Here we used
an analogous strategy as RFMQA to extract four pro-
tein secondary structure features and two solvent ac-
cessibility features. For protein secondary structure
features, the focus is the consistency between pre-
dicted and actual secondary structures of a target pro-
tein. For each decoy model, we use DSSP [31] to
calculate its secondary structures and PSIPRED [32] to
predict the secondary structures of the target se-
quence. The fraction of consistent secondary structural
element (alpha-helix, beta-strand and coil) between the
DSSP label and the PSIPRED output is calculated by
dividing the consistency number by its total chain
length, and the total consistency RFMQA-SS-total
score is also used as a feature. For solvent accessibility
features, the absolute solvent accessibility of the model
is computed by DSSP and relative solvent accessibility
is computed by ACCpro5 [33]. These two vectors are
compared and transformed into a Pearson Correlation
Coefficient and a cosine value as two features.
The SIFT [29] is a program which uses averaged (i.e.

amino acid independent) radial distribution functions
(RDF) to discriminate properly packed models from mis-
folded ones. It produces two alternative scores: one
based on RDF only and the other based on a combin-
ation of RDF and other sequence-independent filters.
The SELECTpro [30] is a structure-based model

assessment method derived from an energy function
comprising physical, statistical, and predicted struc-
tural terms that include predicted secondary structure,
predicted solvent accessibility, predicted contact map,
β-strand pairing and side-chain hydrogen bonding.

Usage
Web Server
We offer a web server to non-commercial users at
http://dase.ecnu.edu.cn/qwdong/MQAPRankWebServer/
server. Non-commercial users could upload decoy
models of protein targets to the server and get predicted
GDT_TS values of corresponding models by the
learning-to-rank (MQAPRank score) and the predicted
GDT_TS value by the quasi-clustering method (quasi-
MQAPRank score) from the result page.
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Stand-alone Program
The standalone program of MQAPRank is imple-
mented in Python 2.7.6. The source code, installation
tutorial and test example are freely available to non-
commercial users at http://dase.ecnu.edu.cn/qwdong/
MQAPRankWebServer/software. To reduce the com-
plexity of the usage, the MQAPRank uses one call

script to execute the task. The input of MQAPRank is
a text file which contains the full path of protein
models to be evaluated. Users could chose the struc-
ture similarity metric (GDT_TS or TMscore) to be
used by MQAPRank. The output is a text file that con-
tains three items in every line: full path of the model,
the predicted value of the corresponding model by the

Table 1 The performances of the MQAPRank and several leading methods on CASP12 dataset based on GDT_TS score

Method Method Type Best 150a Sel20b

Diffc↓ MCCd↑ AUCe↑ Lossf↓ Diff↓ MCC↑ AUC↑ Loss↓

MQAPRank quasi-clustering 5.17 0.87 0.98 6.91 5.76 0.41 0.93 7.18

MUfoldQA_C clustering 5.51 0.84 0.98 7.46 3.82 0.15 0.96 0.82

Davis-consensus clustering 6.78 0.83 0.98 7.68 5.61 0.00 0.78 15.56

ModFOLD6_cor quasi-single 6.75 0.86 0.98 10.55 6.70 0.86 0.99 1.28

MUfoldQA_S single 8.90 0.71 0.93 13.15 3.60 0.76 0.98 2.56
aBest 150: the dataset comprised of the best 150 models submitted on a target according to the benchmark consensus method. bSelect 20: the dataset comprised
of 20 models spanning the whole range of server model difficulty on each target. cDiff: The average difference between the predicted and GDT_TS scores.
dMCC: Matthews correlation coefficient (the threshold is 50 GDT_TS). eAUC: The area under the ROC curve. fLoss: The loss in quality between the best available
model and the predicted best model. Bold value indicates highest performance

Fig. 2 Comparison of the performance on Diff metric between the MQAPRank and other methods. a MUfoldQA_C. b Davis-consensus. c
ModFOLD6_cor. d MUfoldQA_S. (Line x = y is shown for reference. Due to smaller Diff value indicates better performance, the method
with less scatter points is better in this figure.)
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learning-to-rank (MQAPRank score) and the predicted
value of the corresponding model by the quasi-
clustering method (quasi-MQAPRank score).

Results and discussion
Performance comparison on CASP12 dataset
The MQAPRank has participated in the CASP12
under the group name FDUBio. Its performances and
corresponding performances of four selected methods
in CASP12 are shown in Table 1. All of the perfor-
mances on the CASP12 dataset are obtained from the
CASP12 official website (http://www.predictioncen-
ter.org/casp12), three of the four selected methods are
leading methods with best performances in their
corresponding categories based on the Diff metric.
Specifically, the MUfoldQA_C is the leading method
in clustering category, the ModFOLD6_cor and
MUfoldQA_S are the leading methods in quasi-single
category and single category respectively. The Davis-
consensus is the reference clustering method for
assessing progress in protein model quality assessment
field. On the CASP12 dataset, compared with three
leading methods and the reference method Davis-
consensus, the MQAPRank outperforms other leading
methods on all metrics on the best 150 dataset and
achieves comparable performances on the select 20
dataset. Fig. 2 shows scatter plots of the Diff metric
comparison between the MQAPRank and other four
methods. It should be noted that smaller Diff value in-
dicates better performance, so the method with less
scatter points is better. As shown in the figure, most

of decoy model qualities are better predicted by the
MQAPRank.
Three factors contribute to the success of the MQA-

PRank. The first one is the learning-to-rank framework
which can give reasonable ranking of protein decoy
models for a protein target. The MQAPRank formu-
lates the protein model quality assessment problem as a
ranking problem and sorts protein decoy models by
their similarities with the corresponding native struc-
tures. The second one is the features which are the
complementary outputs of various methods. These fea-
tures reflect qualities of protein decoy models from dif-
ferent aspects, so the ranking could be more reasonable
and comprehensive. The third one is the quasi-
clustering (or quasi-single) strategy. The MQAPRank
selects reference models based single method, which
could avoid the typical shortcoming of clustering
method and reduce the dependency of the distribution
of decoy model qualities. In order to specifically dem-
onstrate the success of MQAPRank, we select the pro-
tein target T0912 from CASP12 best 150 dataset as an
example. The T0912 protein target is a long sequence
protein with 624 residues and contains three domains,
its tertiary structure is relatively hard to predict. The
top 15 decoy models based on GDT_TS score are
shown in Table 2, and the top five scored by GDT_TS
and five methods are highlighted in bold. From the
Table 2, we can see that four out of the first five decoy
models ranked by the MQAPRank are consistent with
those ranked by the GDT_TS score. The other decoy
models predicted by the MQAPRank have quite similar
scores with those scored by GDT_TS score. The

Table 2 The GDT_TS scores and predicted scores from different methods for the first 15 decoy models of target T0912 on best 150 dataset

Decoy model GDT_TS MQAPRank MUfoldQA_C Davis-consensus ModFOLD6_cor MUfoldQA_S

T0912TS005_1 46.74 57.49 32.58 25.02 32.24 34.87

T0912TS220_1 45.47 57.19 34.96 26.41 34.37 36.12

T0912TS005_3 45.15 55.80 33.20 25.49 32.75 35.14

T0912TS005_4 44.83 56.63 31.95 24.55 32.00 34.32

T0912TS479_1 44.15 43.79 39.92 29.87 36.60 42.58

T0912TS005_5 43.85 47.40 33.32 25.56 33.01 35.65

T0912TS005_2 43.77 53.51 32.24 24.88 32.63 34.62

T0912TS479_4 42.47 42.06 38.18 28.47 34.80 41.02

T0912TS183_4 41.31 41.76 38.53 28.62 36.13 41.19

T0912TS287_1 40.79 41.63 37.45 28.41 35.20 38.94

T0912TS357_2 40.63 40.36 38.03 28.28 33.78 39.15

T0912TS236_1 40.63 41.52 37.47 28.43 35.05 38.99

T0912TS220_2 40.38 40.31 32.43 24.82 33.17 34.19

T0912TS357_3 40.10 39.83 37.91 28.20 33.79 39.15

T0912TS357_1 39.94 39.93 37.94 28.19 33.59 39.05

Bold value indicates the first five decoy models withhighest GDT_TS score

Jing and Dong BMC Bioinformatics  (2017) 18:275 Page 5 of 8

http://www.predictioncenter.org/casp12
http://www.predictioncenter.org/casp12


MQAPRank successfully identifies high-quality decoy
models from decoy model pool by using the learning-
to-rank framework and complementary features, and
then it takes the first five decoy models as references to
reasonably score other models.

Performance comparison on CASP11 dataset
We have performed a benchmark evaluation on the
CASP11 dataset to verify the ability of MQAPRank [34].
Referencing to the strategy of CASP [35], we use CASP10
dataset as the training set and make tests on the CASP11
dataset (Best 150 dataset and Select 20 dataset). We
select four leading groups (Pcons-net, MULTICOM-
CLUSTER, MULTICOM-REFINE and MQAPsingleA)
from different categories and the CASP official refer-
ence method (DAVIS-QAconsensus) as references.
Among these methods, the Pcons-net, MULTICOM-
REFINE and DAVIS-QAconsensus are clustering
methods, the MULTICOM-CLUSTER is a single method
and the MQAPsingleA is a quasi-single method. We
downloaded the performances of these four methods from
the CASP11 official website (http://www.predictioncen-
ter.org/casp11/index.cgi) and evaluated them by using
metrics used in CASP12 and two more Pearson’s correl-
ation coefficients between the predicted and GDT_TS
scores. The evaluation results are shown in Table 3. As
shown in the table, the MQAPRank achieves the state-of-
the-art performances on the CASP11 dataset. These re-
sults are similar with those on the CASP12 dataset, which
demonstrates the robustness of the MQAPRank.

Performance comparison on 3DRobot dataset
We also evaluated the MQAPRank on a large dataset,
3DRobot dataset. The decoy models of 3DRobot are
generated by the 3DRobot [36], a program devoted
for automated generation of diverse and well-packed
protein structure decoys. The 3DRobot dataset con-
tains structural decoy models of 200 non-homologous
proteins comprising by 48 α, 40 β, and 112 α/β
single-domain proteins and the length of these pro-
teins ranges from 80 residues to 250 residues. Each
protein has 300 structural decoys with RMSD ranging
from 0 Å to 12 Å, so there are 60000 decoy models
in the 3DRobot dataset. We performed a benchmark
evaluation of the MQAPRank on this dataset by using
the five-fold cross-validation. We select one part
(decoy models of 40 targets) as the test dataset and
the remaining four parts (decoy models of 160 tar-
gets) as the train dataset each time. This process re-
peats five times and the prediction results of five test
parts are integrated together finally.
In the meantime, we assessed decoy model qualities of

the 3DRobot dataset by using three stand-alone pro-
grams (RFMQA [28], ModFOLDclust2 [37] and Pcons
[14]) as references. The evaluation results are shown in
Table 4. Table 4 shows that the MQAPRank outperforms
other three methods, especially on the Diff metric. Com-
pared with CASP datasets, the 3DRobot dataset contains
much more decoy models for each protein target, and
the distributions of decoy model qualities in it are more
uniform. Due to these factors, the clustering methods
(ModFOLDclust2 and Pcons), which are based on

Table 3 The performances of the MQAPRank and several leading methods on CASP11 dataset based on GDT_TS score

Method Method Type Best 150 Sel20

Diff MCC AUC Loss mPCCa PCCb Diff MCC AUC Loss mPCC PCC

MQAPRank quasi-clustering 5.78 0.87 0.98 4.32 0.74 0.95 6.47 0.78 0.97 9.55 0.77 0.91

MULTICOM-REFINE clustering 6.06 0.87 0.98 7.62 0.68 0.94 7.99 0.61 0.98 5.20 0.90 0.92

DAVIS-QAconsensus clustering 6.17 0.87 0.98 7.74 0.68 0.94 7.33 0.62 0.98 5.51 0.90 0.95

Pcons-net clustering 7.50 0.81 0.98 5.28 0.71 0.94 9.08 0.57 0.98 2.79 0.91 0.93

MULTICOM-CLUSTER single 13.2 0.66 0.91 7.06 0.43 0.79 12.4 0.62 0.92 9.47 0.71 0.82

MQAPsingleA quasi-single 13.8 0.60 0.90 8.95 0.65 0.75 9.66 0.68 0.95 3.64 0.92 0.88
amPCC: mean Pearson’s correlation coefficient between the predicted and GDT_TS scores of per target protein
bPCC: Pearson’s correlation coefficient between the predicted and GDT_TS scores on overall models. Bold value indicates highest performance on corresponding
evaluation metric

Table 4 The performances of the MQAPRank on 3DRobot dataset based on GDT_TS score

Method Method Type Diff MCC AUC Loss mPCC PCC

MQAPRank quasi-clustering 0.68 0.98 0.99 0.80 0.99 0.99

RFMQA single 9.73 0.74 0.96 1.70 0.92 0.87

ModFOLDclust2 clustering 11.42 0.80 0.99 7.51 0.95 0.90

Pcons clustering 25.12 0.17 0.99 5.19 0.96 0.90

Bold value indicates highest performance on correspondingevaluation metric
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majority voting strategy, could not achieve ideal perfor-
mances. While the MQAPRank still performs well by
using learning-to-rank and quasi-clustering strategy.

Conclusions
Assessing the qualities of protein decoy models in
perspective is one of the key stages of protein structure
prediction, but it is still an open problem. Here we
propose the MQAPRank, which is a global protein
model quality assessment program based on learning-to-
rank, for protein structure prediction and protein model
quality assessment usages. The evaluation results on the
CASP12, CASP11 and 3DRobot datasets show that the
MQAPRank could provide the state-of-the-art perform-
ance and is available for protein structure evaluation.
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