
REV IEW ART ICLE

Neuroinflammation in mouse models of Alzheimer’s disease
Takashi Saito1,2 and Takaomi C. Saido1

1RIKEN Center for Brain Science, Laboratory for Proteolytic Neuroscience, Wako, Japan, 2Department of Neuroscience and Pathobiology, Research

Institute of Environmental Medicine, Nagoya University, Wako, Japan

Keywords

Alzheimer’s disease; glial cell; mouse model;

neuroimmune communication;

neuroinflammation

Correspondence

Takashi Saito and Takaomi C. Saido, Laboratory

for Proteolytic Neuroscience, RIKEN Center for

Brain Science, 2-1 Hirosawa, Wako-city, Saitama

351-0198, Japan.

Tel: +81-48-462-1111 (Ext. 7615)

Fax: +81-48-467-9716

Emails: takashi.saito.aa@riken.jp,

takaomi.saido@riken.jp

This is an open access article under the terms

of the Creative Commons Attribution License,

which permits use, distribution and

reproduction in any medium, provided the

original work is properly cited.

Received: 1 August 2018; accepted: 19 August

2018.

Abstract

Alzheimer’s disease (AD) is the most common type of neurocognitive disor-

der. Although both amyloid b peptide deposition and neurofibrillary tangle

formation in the AD brain have been established as pathological hallmarks

of the disease, many other factors contribute in a complex manner to the

pathogenesis of AD before clinical symptoms of the disease become appar-

ent. Longitudinal pathophysiological processes cause patients’ brains to

exist in a state of chronic neuroinflammation, with glial cells acting as key

regulators of the neuroinflammatory state. However, the detailed molecular

and cellular mechanisms of glial function underlying AD pathogenesis

remain elusive. Furthermore, recent studies have shown that peripheral

inflammatory conditions affect glial cells in the brain through a process of

neuroimmune communication. Such disease complexities make it difficult

for the pathogenesis of AD to be understood, and impede the development

of effective therapeutic strategies to combat the disease. Relevant AD ani-

mal models are thus likely to serve as a key resource to overcome many of

these issues. Furthermore, as the pathogenesis of AD might be linked to

conditions both within the brain as well as peripherally, it might become

necessary for AD to be studied as a whole-body disorder. The present

review aimed to summarize insights regarding current AD research, and

share perspectives for understanding glial function in the context of the

pathogenesis of AD.

Introduction

Neurodegenerative disorders, such as Parkinson’s

disease, amyotrophic lateral sclerosis, Huntington’s

disease and Alzheimer’s disease (AD), are proving to

be the most difficult diseases to prevent or treat, and

remain as unmet medical needs. AD is the primary

cause of neurocognitive disorders in the elderly, and

poses a huge socioeconomic burden for modern soci-

ety. The number of patients with dementia is esti-

mated to be >46 million people worldwide, and is

increasing unabated each year. To the present time,

only some symptomatic treatments have been found

to be effective. To overcome this impasse and to

develop effective treatments, elucidation of the

molecular and cellular mechanisms underlying the

pathogenesis of AD with a view to identifying drug-

gable targets must be a priority.

Senile plaques composed of extracellular amyloid

b peptide (Ab) and neurofibrillary tangles (NFT),

which are the aggregates of intracellular hyperphos-

phorylated tau protein, are hallmarks of the AD

brain.1 Ab deposition and NFT formation in the cor-

tical region of the brain begin appearing 25–30 years

and 15 years, respectively, before the clinical onset

of AD (Fig. 1a).2 Ab is generated proteolytically from

amyloid precursor protein (APP) to subsequently

form oligomeric Ab, which aggregates into senile

plaques. Although microtubule-associated protein

tau stabilizes microtubules in the axon, pathological

tau mislocalizes through an unknown mechanism

and forms NFT aggregates in the neuronal dendrites

and cell body. These protein aggregates in the brain

environment induce the activation of microglia and

astrocytes, which results in microgliosis and astrocy-

tosis around the pathological structures.

© 2018 The Authors. Clinical and Experimental Neuroimmunology published by John Wiley & Sons Australia, Ltd
on behalf of Japanese Society for Neuroimmunology

211

Clinical and Experimental Neuroimmunology 9 (2018) 211–218

Clinical & Experimental 

Neuroimmunology

http://orcid.org/0000-0002-9659-9251
http://orcid.org/0000-0002-9659-9251
http://orcid.org/0000-0002-9659-9251
https://orcid.org/0000-0003-1970-6903
https://orcid.org/0000-0003-1970-6903
https://orcid.org/0000-0003-1970-6903
mailto:
mailto:
http://creativecommons.org/licenses/by/4.0/


Glial cells are thus chronically activated in the

brain before the onset of AD,3 with the associated

chronic inflammation contributing to the pathogene-

sis of AD. In the AD brain, microgliosis and astrocy-

tosis as a consequence of the presence of senile

plaques and NFTs can be detected immunohisto-

chemically, with these glial cells showing a pathol-

ogy-specific morphology (Fig. 1b). Although the

extent of gliosis is correlated with cortical thickness

and neurodegeneration, the roles of different glial

cells in neurodegenerative processes remain

unclear.4 Relevant animal models are required for

these processes to be investigated in greater detail.

Animal models for AD and neuroinflammation

Animal models representing relevant pathologies

with as few artifactual anomalies as possible are nec-

essary. To this end, a number of AD mouse models

have been developed,5 with APP overexpressing

mice, such as APP transgenic (APP Tg) mice, having

been used widely,6,7 although they are associated

with considerable technical and physiological issues.

For example, amyloid plaques in some APP Tg mice,

particularly Tg2576 and APP23 mice, were found to

be very large in size and composed mainly of Ab40,8

making the plaques decidedly different from those

seen in AD patients (Fig. 2). These findings were

due to technical limitations associated with the ani-

mal models, which were based on an APP overex-

pression paradigm. To overcome these drawbacks,

we created two strains of App knock-in (KI) mice,9

named AppNL-F KI and AppNL-G-F KI. AppNL-F KI mice

harbor the Swedish mutation (NL) and the Iberian

mutation (F), whereas AppNL-G-F KI mice also harbor

the Arctic mutation (G). Both App KI mouse strains

showed relevant amyloid deposition composed of

pathological Ab42, similar to that in AD patients

(Fig. 2).9 Advantages associated with using the App

KI strains have been described,10,11 with these

mouse strains showing fewer artifactual anomalies

compared with APP overexpressing mice.12,13 How-

ever, we did not observe NFT in the App KI mice

during their lifespan, suggesting that the mice might

also be useful as preclinical AD mouse models to

investigate the pathological role of amyloidosis and

amyloid-associated neuroinflammation. Hama et al.

succeeded in using 3-D visualization of resting and

activated microglia in the brains of App KI mice and

AD patients using an optical clearing technique, and

showed that microglia are frequently associated with

diffuse plaques in the AD brain.14 Zhang et al. fur-

ther reported that App KI mice show mushroom

spine loss,15 which could reflect microglia-mediated

synapse loss in AD.16 Furthermore, Castillo et al.

reported amyloidosis-dependent transcriptomic pro-

files in 3xTg AD mice17 and AppNL-G-F KI mice.18 In

contrast to 3xTg AD mice, AppNL-G-F KI mice express

genes in common with AD patients, such as neu-

roinflammation-related genes (C4a/C4b, Cd74, Ctss,

Gfap, Nfe212, Phyhd1, S100b, Tf, Tgfbr2 and Vim) and

AD risk factor genes (Abi3, Apoe, Bin2, Cd33, Ctsc,

NFTs
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Figure 1 (a) Time-course of Alzheimer’s dis-

ease (AD) progression. Amyloid b peptide (Ab)

deposition begins >25 years before the onset

of AD and is followed by neurofibrillary tangles

(NFT) formation. This leads to neurodegenera-

tion and neuronal cell death. Both amyloid-

associated and tauopathy-associated neuroin-

flammation might facilitate AD pathogenesis.

(b) Immunohistochemical staining of gliosis in

the human AD brain. 1-Fluoro-2,5-bis(3-car-

boxy-4-hydroxystyryl)benzene (blue fluores-

cence) binds to b-sheet structures, such as

dense-cored Ab plaques (left panel) and NFTs

(right panel), respectively, with ionized calcium

binding adaptor molecule 1 (Iba1)-positive

microgliosis shown in red and glial fibrillary

acid protein (GFAP)-positive astrocytosis in

green. Scale bar, 20 lm.
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Dock2, Fcer1g, Frmd6, Hck, Inpp5D, Ly86, Plcg2, Trem2

and Tyrobp).18 Thus, App KI mice might overcome

some of the previous limitations associated with

APP overexpression-based mouse models, and

could thus serve as a useful research tool for further

investigations.

Various tauopathy mouse models have also been

generated,19 with most tau transgenic models har-

boring tau mutations known to be associated with

frontotemporal dementia with parkinsonism linked

to chromosome 17 (FTDP-17), and not associated

with AD.20 The mutations accelerate the self-aggre-

gation of tau or give rise to an isoform shift from 3-

repeat to 4-repeat tau. In any case, tau transgenic

mice containing FTDP-17 mutations form NFT with-

out amyloid plaque deposition, meaning that these

mouse models might contribute to elucidation of the

role of tauopathy-associated neuroinflammation. The

microglial phenotype changes from a ramified type

to an amoeboid type during the development of

tauopathy in rTg4510 mice.21 P301S-tau Tg mice

show reactive gliosis before tau aggregation, whereas

immunosuppression of P301S-tau Tg mice with

FK506 attenuates tau pathology.22 In another sce-

nario, amyloid deposition exacerbates NFT formation

in JNPL3 transgenic mice.23 Although the patho-

molecular mechanisms linking Ab deposition to NFT

formation, or NFT formation to neurodegeneration

and neuronal cell death remain unclear, these out-

comes suggest that neuroinflammation could link

amyloid pathology and NFT formation as an impor-

tant pathophysiological event in the development of

AD. To further elucidate a pathological role of neu-

roinflammation in AD, different strategies using

immune challenge-based models and neurotoxin-

induced AD models have been used.24 In virtually

all scenarios considered, animal models will be indis-

pensable for elucidating the molecular and cellular

mechanisms of AD pathogenesis, and for developing

effective strategies to prevent and treat the disease.

Neuroinflammatory glial responses (relevance to

the brain’s microenvironment)

Microglia, the principal innate immune cells in the

brain, carry out macrophage-like phagocytic actions

to remove pathogens and to protect neurons from

toxic species. However, microglia produce and

release molecules, such as reactive oxygen species

and nitric oxide, that are neurotoxic.25 They also

APP23

AppNL-F KI

AD

AppNL-G-F KI

Figure 2 Pathological differences in amyloido-

sis between mouse models and human brain

tissue. Double staining for Ab (anti-Ab anti-

body: 82E1, red) and ionized calcium binding

adaptor molecule 1-positive microgliosis

(green) was carried out using brain sections

obtained from amyloid precursor protein (APP)

23 mice, App knock-in mice and post-mortem

brain tissue from an Alzheimer’s disease (AD)

patient. Scale bar, 25 lm. F, Iberian mutation;

G, Arctic mutation; NL, Swedish mutation.

© 2018 The Authors. Clinical and Experimental Neuroimmunology published by John Wiley & Sons Australia, Ltd
on behalf of Japanese Society for Neuroimmunology

213

Takashi Saito and Takaomi C. Saido Neuroinflammation in Alzheimer’s disease



generate pro-inflammatory cytokines and chemoki-

nes in response to danger signals, and communicate

with astrocytes.26 To this end, the dysregulation of

microglial activity has been associated with AD

pathogenesis in the aged brain.27 Recently, it was

reported that TREM2, as well as CD36 and the

receptor for advanced glycation end-products, work

as Ab sensor molecules and activate microglia.28 A

consistent and elevated expression of TREM2 was

described in AppNL-G-F KI mice.18 Activated microglia

also produce the pro-inflammatory cytokines CCL3/

MIP-1a and interleukin (IL)-6,28 the latter being a

key component of the senescence-associated secre-

tory phenotype,29 which might provide a pathophys-

iological connection between cellular/tissue

senescence and age-related chronic diseases in the

brain, including AD. Furthermore, pro-inflammatory

gene polymorphisms, including CCL3/MIP-1a and

IL-6, have been identified as risk factors for AD.30

The genetic modulation of inflammation-related

factors has been investigated in various transgenic

models of AD.31 These studies commonly showed

that the modulation of inflammatory factors alters

amyloid pathology and tau phosphorylation in the

mouse models used. Interestingly, the inflamma-

some, a key inflammatory signaling platform in

immune cells that activates IL-1b and IL-18 through

NLRP3/ASC/Caspase1 activation,32 in microglia

might contribute to AD pathogenesis in APP/PS1

mice.33,34 To this end, microglia-derived ASC (a con-

stituent of the inflammasome) has been shown to

regulate amyloidosis in APPswe/PSEN1dE9 mice.35

Modulation of glial function through the manipula-

tion of cytokines/chemokines and their receptors has

also been investigated.31,36 These studies provided

evidence that the microglial fractalkine receptor

(CX3CR1) could potentially exacerbate tau pathol-

ogy and neuronal cell death,37,38 and that microglia

also expand tau propagation through the exo-

some.27,39 These findings support the notion that

reactive microglial neuroinflammation accelerates

AD pathogenesis, particularly by linking tau pathol-

ogy with neurodegeneration.

Astrocytes serve multiple functions, including pro-

viding support to endothelial cells that form neu-

rovascular units in the blood–brain barrier, supplying

nutrients to the central nervous system, maintaining

the extracellular balance of electrolytes and water,

and repairing or remodeling tissue during the process

of traumatic brain injury or neuroinflammation. As

shown in Figure 1b, reactive astrocytes can be

typically observed in the vicinity of amyloid plaque

(plaque-associated astrocytes). Although the primary

function of the plaque-associated astrocytic response

remains unclear, deletion of the glial filament pro-

teins glial fibrillary acid protein and vimentin in

APP/PS1 mice increased the number of dystrophic

neurites,40,41 whereas astrocyte-producing kallikrein-

related peptidase 7 contributed to Ab degrada-

tion.42,43 Astrocytes also contribute to the clearance

of Ab and other debris from the brain through astro-

cytic transport, the so-called “glymphatic system”.44

As the glymphatic system is comparable with the

lymphatic system in peripheral organs, astrocytes

might act as a gateway from the brain to the blood

vessels. Recently, phagocytic astrocytes were

observed at ischemic sites of the brain.45 Astrocytic

phagocytosis has been suggested to engulf and

degrade plaque-associated synaptic dystrophies in

APP/PS-1 mice and AD brain.46 Furthermore, neuro-

toxic A1 astrocytes are induced by activated micro-

glia;47 to this end, a glucagon-like peptide-1 receptor

agonist was postulated to act as a potential neuropro-

tective agent through the suppression of A1 astro-

cytes in a mouse model of Parkinson’s disease.48

Although further classification of astrocyte cell types

is required, plaque-associated reactive astrocytes

could protect neurons surrounding amyloid plaques

in the early stages of AD pathogenesis. While these

glial cells thus serve as “guardians” of the brain

microenvironment, any dysregulation of glial com-

munication could lead to a neurotoxic state.

The receptivity and responsiveness of glial cells are

different with respect to amyloid plaques compared

with NFT in the AD brain. Plaque-associated astro-

cytes surround amyloid plaques, whereas microglia

attack the inside of the plaques. However, microglia

are unable to reach the inside of amyloid plaques in

APP23 mouse brains due to the unphysiologically

large size of these plaques (Fig. 2). Consequently,

the microglial response in APP Tg mice is likely to be

different from that in App KI mice and in the AD

brain. The morphological pattern of reactive astro-

cytes and microglia in response to FSB-positive NFT

(ghost tangles) was different from that in response

to Ab deposition (Fig. 1b). Regulation of the glial

response might therefore change markedly depend-

ing on the pathological stage of tauopathy.21,49 How-

ever, it is still unclear which glial cells, astrocytes or

microglia, recognize these abnormal protein aggre-

gates as danger signals, and how this is achieved,

especially considering that the communication

between astrocytes and microglia is regulated by

pathology-associated cytokines/chemokines.

In summary of the above literature, the cytokines

induced by amyloidosis are different from those
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induced by tauopathy in the different mouse models,

meaning that it might be possible to distinguish

amyloidosis-associated glial responses (neuroinflam-

mation) from tauopathy-associated neuroinflamma-

tion, as shown in Figure 1a.18,31,36–38 Indeed, in a

manner similar to that describing amyloidosis and

tauopathy in the AD brain, glial pathology in amy-

loidosis mouse models is different from that in

tauopathy mouse models. Furthermore, at the stage

when both amyloid and tau pathologies exist, dys-

regulation of glial communication in the brain

microenvironment along with the long-lasting

abnormal activation of glial cells might facilitate the

pathogenesis of AD.

Neuroinflammation and the interaction between

brain and peripheral tissue (whole-body

macroenvironment)

Evidence from epidemiological studies pointed to a

possible link between the use of non-steroidal anti-

inflammatory drugs (NSAIDs) and a decreased risk

of AD in people with rheumatoid arthritis.50 Subse-

quently, the long-term use of NSAIDs was found to

potentially protect individuals against AD, but not

against vascular dementia.51 A number of studies

using different AD mouse models also suggested that

NSAIDs improve Ab-mediated brain dysfunction.

Although the protective mechanisms by which

NSAIDs exert their effects remain unclear, inflam-

mation in the brain and/or periphery could be

involved in the pathogenesis of AD. In contrast to

the epidemiological evidence, a recent meta-analysis

on the effects of NSAID treatment reported no bene-

ficial effect on AD.52 These conflicting results suggest

that NSAIDs do not improve AD pathogenesis

directly in the brain, but that systemic inflammation,

such as that seen with rheumatoid arthritis, might

affect the brain pathologically. Recent evidence also

suggests that inflammatory diseases, such as osteo-

porosis,53 diabetes,54 cancer55 and infection,56 are

possibly implicated in brain disorders, and that these

diseases could affect brain function through immune

responses elicited in the periphery; that is, through

neuroimmune communication. Furthermore, treat-

ment strategies against such diseases might influence

brain function and the macroenvironment, as

reported for cancer-related cognitive impairment57

or HIV-associated neurocognitive disorder,58 possibly

leading to the onset of brain disorders. Recently,

accumulating evidence has suggested a role of

peripheral immune cells, particularly CD4+ T cells,

in the central nervous system. CD4+ T cells have

been suggested to affect the activation of microglia,

and to alter the Ab burden in APP Tg mice and AD

patients.59–61 Thus, future investigations need to

clarify the role of both tissue resident immune cells

and circulating immune cells in the pathogenesis of

AD.

Interestingly, gut microbiota and associated

metabolites have been described to influence brain

dysfunction62,63 and to modulate the host immune

system.64 This “gut–brain axis” has consequently

received attention in several research fields. While it

was reported that factors, such as obesity,65 exer-

cise,65 diet/nutrition,65 circadian rhythm,66 sleep,67

stress68 and aging,69 modulate gut microbiotic condi-

tions, such factors might also affect brain function

and brain disorders. The body’s macroenvironment,

particularly the role played by inflammatory factors

and immune cells including microglia and astrocytes,

almost certainly contributes to the correct physiolog-

ical functioning of the brain, as well as to the patho-

genesis of brain disorders when this environment is

disturbed. Taken together, these observations shed

new light on the notion that the pathogenesis of AD

might be linked not only to conditions within the

central nervous system, but also to peripheral condi-

tions, thus making it a whole-body disorder. To fur-

ther investigate such whole-body interactions,

studies using relevant animal models and the in vivo

imaging of neuroinflammation will be critical to

understanding the mechanisms underlying AD and

to predicting therapeutic outcomes.70

Conclusion

Numerous AD studies showing the time-course of

disease development and the complex nature of

pathological processes in the brain attest to the diffi-

culty of elucidating the molecular and cellular mech-

anisms underlying AD pathogenesis. To promote

further investigation, animal models will be critical if

progress is to be made. However, some AD mouse

models do not accurately or reproducibly reflect AD

in humans, and might thus need to be re-evaluated

as suitable models. As highlighted here, neuroin-

flammation is an important process in the pathogen-

esis of AD, and contributes a rate-limiting

component that potentially links Ab amyloidosis

with neurodegeneration and neuronal cell death

through tauopathy. However, the pathological roles

of neuroinflammation based on the brain microenvi-

ronment, as well as that contributed by the whole-

body macroenvironment, remain elusive. Under-

standing glial cell interactions associated with AD
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and other neurodegenerative disorders according to

the newly coined term “gliostasis” (homeostasis of

glial cells) might serve as a promising starting point.

Relevant animal models will again be necessary to

initiate such studies, and will serve as a fundamental

research tool to elucidate the pathogenetic mecha-

nisms underlying AD development and to develop

preventive or therapeutic interventions to combat

the disease.
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