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Abstract: Circulating levels of lipopolysaccharide-binding protein (LBP) and soluble cluster of
differentiation 14 (sCD14) are recognized as clinical markers of endotoxemia. In obese men,
postprandial endotoxemia is modulated by the amount of fat ingested, being higher compared
to normal-weight (NW) subjects. Relative variations of LBP/sCD14 ratio in response to overfeeding
are also considered important in the inflammation set-up, as measured through IL-6 concentration.
We tested the hypothesis that postprandial LBP and sCD14 circulating concentrations differed in obese
vs. overweight and NW men after a fat-rich meal. We thus analyzed the postprandial kinetics of LBP
and sCD14 in the context of two clinical trials involving postprandial tests in normal-, over-weight
and obese men. In the first clinical trial eight NW and 8 obese men ingested breakfasts containing
10 vs. 40 g of fat. In the second clinical trial, 18 healthy men were overfed during 8 weeks. sCD14,
LBP and Il-6 were measured in all subjects during 5 h after test meal. Obese men presented a
higher fasting and postprandial LBP concentration in plasma than NW men regardless of fat load,
while postprandial sCD14 was similar in both groups. Irrespective of the overfeeding treatment,
we observed postprandial increase of sCD14 and decrease of LBP before and after OF. In obese
individuals receiving a 10 g fat load, whereas IL-6 increased 5h after meal, LBP and sCD14 did not
increase. No direct association between the postprandial kinetics of endotoxemia markers sCD14 and
LBP and of inflammation in obese men was observed in this study.

Keywords: LBP; sCD14; postprandial kinetics; high-fat diet

1. Introduction

Metabolic diseases, including obesity and type 2 diabetes, are associated with a chronic
inflammatory state and increased plasma levels of lipopolysaccharides (LPS), also called endotoxins [1].
Endotoxins are components of the outer membrane of Gram-negative bacteria, which are dominant
in the healthy human gut microbiome [1]. During lipid digestion, some endotoxins are translocated
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in the bloodstream, and thereby contribute to the onset and maintenance of low-grade inflammation
during the postprandial phase following a fat-rich meal [2–5]. Indeed, Clemente-Postigo et al.
(2012) reported an increase in the plasma level of endotoxins after a fat overload in morbidly
obese humans [6]. This includes the binding of LPS to LPS-binding protein (LBP) and its transfer
to the receptor CD14, present in both soluble (sCD14) and membrane-bound (mCD14) forms [7].
The activation of the LPS-LBP-CD14 complex leads to the secretion of pro-inflammatory markers and
contributes to the inflammatory state [8]. LBP and sCD14 are now recognized as clinical markers of
endotoxin exposure [9] and have been associated with obesity and metabolic disorders [10]. LBP is
synthesized and released into the bloodstream in the presence of LPS, and is considered as a surrogate
biomarker for the activation of LPS-induced innate immune response regarding its relative long half-life
(24–48 h) [11]. Moreno-Navarrete et al. have also shown that the increase of plasma LBP in vivo may
contribute to a vicious cycle that prevents white adipose tissue (WAT) expansion, and exacerbates the
inflammatory response in WAT [12]. It was further shown that serum LBP and sCD14 are markers
of Crohn’s disease [13]. The relative variations of LBP/sCD14 ratio are also considered important in
the inflammation set-up [14]. Furthermore, higher plasma LBP concentrations have been observed
in obesity [7,13,15] and plasma LBP concentration is associated to abdominal obesity [16]. We have
recently shown that increase of plasma IL-6 is linked to a rise of LBP/sCD14 ratio in both humans [14]
and mice [17]. More recently, Sakura et al. have suggested that plasma LBP concentration is associated
with arterial stiffness, independently of traditional cardiovascular risk factors and especially in men
with type 2 diabetes [18,19]. In children and adults, obesity and obstructive sleep apnea are also
associated with increased LBP concentrations, and the presence of both conditions may enhance LBP
concentration [20,21]. Concerning sCD14, it has been reported in mice that sCD14 presents protective
effects in inflammatory bowel disease [22]. Therefore, the literature shows that LBP and sCD14 are
important factors implicated in low-grade inflammation during metabolic diseases. We have previously
demonstrated in obese men that postprandial endotoxemia is modified by ingested fat amount with
a higher postprandial endotoxemia compared with normal-weight subjects after a higher fat load
(40 g vs. 10 g) [23]. More recently, a study of healthy premenopausal women has suggested that the
consumption of a pre-meal yogurt improves the postprandial metabolism and decreases metabolic
endotoxemia, LBP and sCD14 [24]. However, the postprandial variations of LBP and sCD14 after a
mixed meal with different amount of lipids remain poorly described in humans of different weight
status. We thus analyzed the postprandial kinetics of both markers of endotoxin exposure in the
context of two clinical trials involving postprandial tests in normal weight, overweight and obese
men. We hypothesized that postprandial LBP and sCD14 after a fat-rich meal differed in obese vs.
overweight and normal weight men, hence, contributing to different IL-6 responses after a fat load
or OF.

2. Materials and Methods

2.1. Clinical Trials and Subjects

The present work relies on two previous clinical trials performed in the Human Nutrition Research
Centers (CRNH) of Rhône-Alpes and Auvergne. The first clinical trial, called the Lipinflox study,
was approved by the Ethics Committee of Lyon-Sud-Est-II and AFSSAPS and was registered at
ClinicalTrials.gov (NCT01249378). The second one, called the Overfeeding Study, was approved by
the Ethics Committee of Lyon (RG/FL-2005-067) and registered at clinicalTrials.gov (NCT00905892).
The eligibility criteria of included subjects and postprandial metabolic explorations for both trials have
been described elsewhere [23,25,26]. Briefly, in the crossover Lipinflox Study, 8 normal weight (20
< BMI < 25 kg/m2) and 8 obese (30 < BMI < 35 kg/m2 and waist circumference > 94 cm) men were
submitted to a fat load of 10 g or 40 g at breakfast. The test breakfast contained 10 or 40 g of anhydrous
milk fat with bread and a glass of skim milk (282 kcal and 551 kcal, respectively). Blood samples were
collected from an antecubital arm vein through a catheter at baseline and at regular intervals during
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5 h, following ingestion of fat load. Plasma was separated by centrifugation (1500 g, 10 min, 4 ◦C)
and stored at −80 ◦C until further analysis. In the overfeeding clinical trial, 18 healthy young men
(lean to overweight, BMI 25.8 ± 0.8 kg/m2, age 30.6 ± 2.1 years) were submitted to an overfeeding
during 56 days. During this period, the subjects added to their daily diet +760 kcal/day as previously
described [25]. Fasting plasma sampling was performed at Day 0 and Day 56. In this article, we focused
on a subcohort of eight subjects that consumed a test meal (882 kcal) and performed a postprandial
test including endotoxemia analyses, as described previously [25]. The mixed meal contained 33 g of
fat (291 kcal) and was composed of 200 mL of Fortimel (enteral emulsion), 23 g of margarine, 9.4 g of
butter, 1 g of olive oil, 85 g of bread, 20 g of jam and 200 g of banana. The body composition (fat and
lean mass) was performed in 18 subjects. All subjects gave written consent after being informed of the
nature, purpose, and possible risks of the clinical trial. Both clinical trials were approved by the ethics
committee of Lyon Sud-Est, according to the French“Huriet-Serusclat” law and the Second Declaration
of Helsinki.

2.2. Plasma sCD14 and LBP

To measure the plasma concentrations of circulating LBP and sCD14, plasma samples were
assayed using sandwich ELISA kits (CliniSciences and R&D Systems; Nanterre, France), following the
manufacturer’s instructions.

2.3. Plasma Analyses

Endotoxins were determined using the limule amoebocyte lysate assay in kinetic chromogenic
conditions (Biogenic; Pérols, France) [15]. Serum high-sensitive C-reactive protein was assessed by
immunonephelometry on an image analyzer (Beckman-Coulter; Villepinte, France). For the overfeeding
trial, IL-6 was measured in serum using ELISA kits (Quantikine; Abingdon, UK). For Lipinflox, plasma
hsIL-6 levels were measured using a sandwich Ultrasensitive ELISA kit (Invitrogen; Illkirch, France).
The liver enzymes ASAT and ALAT were routinely measured during the screening visit (Pentra C400;
Horiba, Kyoto, Japan) in order to exclude patients if the values were not biologically normal. In fact,
as patients were submitted to a fat load, or to an overfeeding, it was important that they had no
liver disease.

2.4. Anthropometry and Body Composition

As previously described by Alligier et al., body composition was determined before and after
overfeeding by dual-energy X-ray absorptiometry (Hologic, Inc.; Bedford, MA, USA), and abdominal
adipose tissue distribution by magnetic resonance imaging (Magnetom Symphonie 1.5 Tesla;
Siemens AG, Munich, Germany) [25].

2.5. Statistical Analysis

Data are presented as means ± SEM and were analyzed with Graph Pad Prism® (version 7.0,
San Diego, CA, USA) and with R (version 3.6.3, Saint Louis, USA). Clinical characteristics of the subjects
of the two clinical trials (before vs. after overfeeding and lean vs. obese subjects) were performed using
Student’s t-test with Graph Pad Prism. To evaluate possible relationships among the various outcomes,
Spearman correlations were performed using Graph Pad Prism Software. For the Overfeeding Study,
postprandial kinetics of plasma LBP, sCD14, LBP/sCD14 ratio and IL-6 were each analyzed by two-way
ANOVA for repeated measurements in both factors (time and overfeeding), followed by Bonferroni’s
post hoc test, using Graph Pad Prism. For the Lipinflox study, postprandial kinetics of plasma LBP,
sCD14 and IL-6 were each analyzed with a linear mixed-effects model, analogous to a 3-way ANOVA
for repeated measurements, where the factors with fixed effects were time, obese status, fat load
and their 2- and 3-way interactions, while the factor with random effects was the subject identifier.
This analysis was carried out with R, using the lme function of the nlme package. The main effects
and the interactions effects were tested using marginal (Type III) sums of squares like in GraphPad
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Prism. For the Lipinflox study, postprandial kinetics of plasma LBP, sCD14 and IL-6 were each
analyzed with a linear mixed-effects model, where the factors with fixed effects were time, obese status,
fat load and their 2- and 3-way interactions, while the factor with random effects was the subject
identifier. This approach is similar to a three-way repeated-measures ANOVA but is more robust to
missing data (we lacked IL6 data for one of the ten lean subjects). A posthoc analysis was carried
out to assess the effect of obesity on the estimated marginal means at all time points. Specifically, the
significance of the difference of the two marginal means (lean versus obese, collapsing the fat load) was
assessed at each time point with a t-test based on the standard errors of the estimated marginal means.
The five raw p-values obtained for each response in this posthoc analysis were adjusted using the False
Discovery Rate (FDR) correction, in order to correct for multiple testing. This posthoc analysis was
carried out with the emmeans package. A p-value (or a FDR-corrected p-value) lower than 0.05 was
considered significant.

3. Results

3.1. Characteristics of the Subjects

The characteristics of the eight subjects, lean to overweight, from the overfeeding clinical trial
(OF) and from the 16 subjects (normal weight and obese) from Lipinflox clinical trial are shown Table 1.
As expected weight, BMI and waist circumference were significantly higher after OF, compared to
before, and higher in the obese than in normal weight (NW) subjects. Concerning body composition,
lean mass and fat mass were significantly enhanced after OF. CRP, IL-6 and LPS did not vary significantly
in the OF clinical trial. CRP and IL-6 were higher in obese compared to NW subjects.

Table 1. Clinical characteristics of study subjects. Data are means ± SEM. Groups are compared using
unpaired Student t-test, * p < 0.05, ** p < 0.01; n = 8 OF clinical trial, n = 8 normal weight, n = 8 obese.

Overfeeding Clinical Trial Lipinflox Clinical Trial
Before OF After OF p Value Normal Weight Obese p Value

Age (year) 26 ± 2 29 ± 1 31 ± 2 0.426
Body weight (kg) 78.9 ± 4.9 81.7 ± 4.9 0.005 ** 72.5 ± 2.1 101.1 ± 2.1 0.001 **

BMI (kg/m2) 24.9 ± 1.5 25.7 ± 1.4 0.004 ** 22.4 ± 0.5 31.8 ± 0.3 0.001 **
Waist circumference (cm) 84.9 ± 3.3 86.9 ± 3.3 0.038 * 83.6 ± 1.7 105 ± 0.8 0.001 **

hsCRP (µg/mL) 0.6 ± 0.1 1.1 ± 0.5 0.38 1.96 ± 0.01 2.98 ± 0.47 0.036 *
IL-6 (pg/mL) 1.23 ± 0.15 1.43 ± 0.35 0.53 0.18 ± 0.04 0.45 ± 0.16 0.006 *
LPS (EU/mL) 0.11 ± 0.03 0.16 ± 0.10 0.59 0.19 ± 0.05 0.18 ± 0.04 0.729

Lean mass (kg) 57,3 ± 2.5 58.2 ± 2.60 0.032 * - -
Fat mass (kg) 15.8 ± 2.9 17.1 ±3.1 0.048 * - -

Visceral fat (kg) 66.0 ± 18.1 73.5 ± 16.5 0.469 - -

3.2. Postprandial Kinetics of LBP, sCD14 and IL-6 in Normal Weight and Obese Subjects (Lipinflox Study)

We evaluated the postprandial variations of plasma LBP, sCD14 and IL-6 in NW and obese subjects
during 5 h after mixed meals differing only by fat amount: 10 vs. 40 g of milkfat spread on bread.

Figure 1A,B shows that, regardless of lipid amount in the meal, the concentration of LBP in
plasma was higher in obese subjects than in lean subjects (obese status, p = 0.027), with no impact of
postprandial time. No significant difference was observed between lean and obese subjects along the
postprandial kinetics of sCD14, regardless of fat load in the meal (Figure 1C,D).
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Figure 1. Postprandial kinetics in plasma of lipopolysaccharides (LPS)-binding protein (LBP) (A,B);
sCD14 (C,D); and Il-6 (E,F) in normal-weight and obese subjects after 10 g vs. 40 g fat load. Data are
means ± SEM. * p < 0.05.

Regarding IL-6, we observed an interaction effect between time and obese status (p = 0.012) during
the postprandial kinetics (Figure 1E,F). The post-hoc analysis revealed that the significant two-way
interaction between obesity and time occurred mostly at t = 300 min. Indeed, IL-6 plasma concentration
at 300 min was on average 5.6 times higher in obese vs. lean men (p = 0.02) (Figure 1E).

There was no impact of BMI and postprandial time on the LBP/sCD14 ratio in all subjects for each
fat amount (Appendix A).

3.3. Postprandial Kinetics of LBP, sCD14 and IL-6 Before and After Overfeeding

Previously, we have shown in 18 subjects of the OF clinical trial that the LBP/sCD14 ratio was
enhanced in the fasting state after OF [14]. Here, we completed our exploration by analyzing the
postprandial evolution of LBP, sCD14 and LBP/sCD14 in the subgroup of eight subjects who performed
the postprandial explorations. Altogether, there was no significant effect of OF on the postprandial
kinetics of LBP and sCD14 (Figure 2A,B). Concerning LBP before OF, we observed a significant time
effect with an increase of LBP concentration in plasma 120 min after the mixed meal (Figure 2A,
p < 0.05). The concentration of LBP was decreased at 240 min vs. 120 min (Figure 2A, p < 0.05).
After OF, no significant increase was observed at 120 min after the mixed meal but a significant decrease
was observed at 240 min compared to 120 min (p < 0.05). Notably, even if after OF LBP concentration
was higher at fasting compared to before OF (p = 0.07), at 240 min LBP concentrations were similar
before and after OF (18.3 ± 1.9 µg/mL and 18.2 ± 0.8 µg/mL, respectively). A significant increase of
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sCD14 at 240 min compared to 0 and 60 min (p < 0.01 and 0.01 respectively) was observed both before
and after OF (Figure 2B). The postprandial kinetics of the LBP/sCD14 ratio was not impacted by OF
(Figure 2C). Both before and after OF, the LBP/sCD14 ratio decreased at 240 min (p < 0.001 vs. other
postprandial times). We have measured IL-6 plasma concentration at 0, 120 and 240 min before and
after OF (Figure 2D). There was no significant OF effect but of note, after OF plasma IL-6 concentration
increased at 240 min compared to 0 min (p < 0.05). No interaction (between time and OF) was observed
for LBP, sCD14, LBP/sCD14 and IL-6 (Figure 2A–D).
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Figure 2. Postprandial kinetics of LBP (A), sCD14 (B), LBP/sCD14 ratio (C) and IL-6 (D) before and
after overfeeding. Data are means ± SEM. The effects of time (postprandial kinetics) and overfeeding
(OF) were determined by ANOVA for repeated measurements followed by post hoc test (Bonferroni).
* p < 0.05 (after OF), & p < 0.05 vs. T0 and T120 (before OF); # p < 0.001 vs. other time (after OF);
$ p < 0.05; 0.01; 0.001 vs. other time before and after OF.

3.4. Associations between Fasting and Postprandial LBP and Selected Parameters of Dietary Trials
and Intervention

We examined the association of plasma LBP concentrations with some parameters related to
obesity and metabolic disorders in subjects from both the overfeeding and Lipinflox studies. Subjects of
the Lipinflox study who have consumed a test meal with 40 g of lipids presented no significant
correlation between circulating LBP and the selected parameters, age, weight, BMI, waist circumference
(WC), aspartame amino transferase (AST), alanine amino transferase (ALT), sCD14 (data not shown).

The correlations between LBP and selected parameters of the Lipinflox postprandial clinical trial
after the test meal containing 10 g of fat are reported Table 2. At all times of the postprandial kinetics,
the LBP concentration was significantly and positively associated with waist circumference (WC),
but not with weight and BMI in all subjects from Lipinflox clinical trial (lean and obese, Table 2).
After stratification according to BMI group, this positive correlation was maintained for lean subjects,
but not for obese subjects (Table 2). LBP concentration was also significantly and positively associated
with ALT but not with AST. These correlations were also maintained for lean subjects at 0, 60 and
120 min, a trend was observed at 180 and 300 min (Table 2). Conversely, no association of LBP with
WC or with ALT was observed for obese subjects (Table 2).

Concerning the overfeeding clinical trial, we also used some mass parameters, such as abdominal
visceral fat and subcutaneous WAT depots, measured by magnetic resonance imaging [27]. As shown
in Table 3, LBP concentration in plasma was significantly and positively associated with trunk lean
mass, lean mass and waist circumference before and after OF. No correlation with subject age was
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observed (data not shown). Notably, the LBP/sCD14 ratio was significantly and positively associated
with lean mass, fat trunk and BMI, before and after overfeeding (Table 3).

Table 2. Correlation analyses (Spearman) with postprandial plasma LBP concentrations as dependent
variable after a 10 g fat load (Lipinflox clinical trial in men). * p < 0.05; ** p < 0.01.

All (n = 16)
Postprandial Time 0 min 60 min 120 min 180 min 300 min

r p r p r p r p r p

Age (years) 0.66 ns −0.06 ns 0.065 ns −0.10 0.07 ns 0.23 ns
Weight (kg) 0.26 ns 0.42 ns 0.43 0.058 0.37 ns 0.36 ns
BMI (kg/m2) 0.24 ns 0.35 ns 0.44 0.052 0.37 ns 0.36 ns

Waist circumference (cm) 0.58 0.007 ** 0.58 0.006 ** 0.63 0.003 ** 0.41 0.07 0.51 0.02 *
AST (U/L) 0.20 ns 0.1 ns 0.24 ns 0.27 ns 0.14 ns
ALT (U/L) 0.49 0.02 * 0.57 0.008 ** 0.63 0.003 ** 0.53 0.016 * 0.43 0.05 *

sCD14 T0 (µg/mL) 0.41 0.06 0.45 0.04 * 0.28 ns −0.15 ns 0.058 ns

Lean (n = 8)
T0 min T60 min T120 min T180 min T300 min

r p r p r p r p r p
Age (years) 0.7 0.02 * 0.43 ns 0.43 ns 0.35 ns 0.47 ns
Weight (kg) −0.31 ns −0.16 ns −0.02 ns 0.09 ns 0.07 ns
BMI (kg/m2) −0.23 ns −0.18 ns −0.08 ns 0.02 ns 0.05 ns

Waist circumference (cm) 0.66 0.04 * 0.60 0.06 0.71 0.02 * 0.72 0.02 * 0.58 0.08
AST (U/L) 0.55 ns 0.18 ns 0.22 ns 0.27 ns 0.23 ns
ALT (U/L) 0.69 0.03 * 0.62 0.05 * 0.68 0.03 * 0.51 ns 0.38 ns

sCD14 T0 (µg/mL) 0.05 ns 0.05 ns −0.01 ns 0.17 ns −0.02 ns

Obese (n = 8)
T0 min T60 min T120 min T180 min T300 min

r p r p r p r p r p
Age (years) −0.48 ns −0.56 ns −0.17 ns −0.09 ns −0.04 ns
Weight (kg) −0.13 ns 0.18 ns −0.27 ns 0.25 ns 0.06 ns
BMI (kg/m2) −0.31 ns −0.46 ns −0.13 ns 0.07 ns 0.17 ns

Waist circumference (cm) 0.25 ns 0.05 ns 0.13 ns −0.13 ns 0.35 ns
AST (U/L) −0.33 ns −0.27 ns −0.07 ns 0.23 ns −0.13 ns
ALT (U/L) −0.11 ns 0.04 ns 0.18 ns 0.53 ns 0.16 ns

sCD14 T0 (µg/mL) 0.22 ns 0.4 ns 0.10 ns −0.13 ns −0.29 ns

Table 3. Correlation analyses (Spearman) of fasting LBP and LBP/sCD14 with mass parameters in the
overfeeding clinical trial (n = 18 men). * p < 0.05; ** p < 0.01.

Before OF
Variable 1 Variable 2 r p

LBP (µg/mL)

Trunk lean mas (kg) 0.65 0.002 **
Lean mass (kg) 0.57 0.009 **

Waist circumference (cm) 0.53 0.02 *
BMI (kg/m2) 0.47 0.04 *

Fat trunk (kg) 0.41 ns
Visceral fat (kg) 0.52 0.03 *

LBP/sCD14
Lean mass (kg) 0.62 0.004 **
Fat trunk (kg) 0.48 0.04 *
BMI (kg/m2) 0.62 0.004 **

After OF
Variable 1 Variable 2 r p

LBP (µg/mL)

Trunk lean mas (kg) 0.62 0.003 **
Lean mass (kg) 0.56 0.01 *

Waist circumference (cm) 0.51 0.02 *
BMI (kg/m2) 0.32 ns

Fat trunk (kg) 0.47 0.04 *
Visceral fat (kg) 0.07 ns

LBP/sCD14
Lean mass (kg) 0.49 0.03 *
Fat trunk (kg) 0.49 0.03 *
BMI (kg/m2) 0.49 0.03 *
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4. Discussion

The novel feature of the present study is the postprandial explorations of LBP and sCD14
concentrations in plasma in two different clinical trials in obese vs. overweight and normal-weight
men. In the first clinical trial (Lipinflox), we have shown that obese men presented a higher LBP
concentration in plasma than lean men, regardless of fat load (10 g vs. 40 g), with no time effect
during the postprandial period. However, no significant differences in sCD14 concentrations were
observed between lean and obese men. In the second clinical trial (overfeeding), we demonstrated,
in lean to overweight men, a time effect on LBP, sCD14, IL-6 concentrations and LBP/sCD14 ratio
during the postprandial period. Only a few human studies have focused on the effect of an OF on
endotoxemia [24] and, to our knowledge, no study has been performed to date in order to evaluate the
impact of dietary fat intake on the postprandial kinetics of LBP and sCD14 in NW, overweight and
obese men.

It is now well established that the intestinal barrier function is modified in obesity, leading to
low-grade inflammation and endotoxemia [9]. Endotoxins have been described as contributors to the
inflammation observed in hypercaloric diets [5,28,29]. LBP and sCD14, two important actors in the
endotoxin metabolic pathway, are now considered indirect markers of gut permeability in metabolic
diseases, but also in other diseases, such as HIV [9,22]. Indeed, both reductions of these markers and
gut permeability were shown after 12 weeks of fish oil supplementation, compared to placebo in HIV+

patients [30]. We show in the Lipinflox study that LBP concentration was higher in obese men at all
times of the postprandial kinetics, independently of fat load (10 vs. 40 g of fat).

The relationship between inflammation and “metabolically healthy” and “non-metabolic healthy”
status remains relatively unknown, even though some studies have shown relationships between
inflammatory markers and obesity or metabolic syndrome. Aguilar-Salinas CA et al. demonstrated
that obese individuals depict similar adiponectin levels to normal-weight subjects and this may be
associated with the “metabolically healthy” obese phenotype [31]. In turn, patients with severe obesity
were reported to have higher LBP concentration, which can be reduced after bariatric surgery [32]. In a
recent study, it was suggested that serum LBP is related to abdominal obesity more than to metabolic
health [16]. Serum LBP is also known to be associated with the carotid intima media thickness [19],
suggesting that the pro-inflammatory action of LBP might be a contributor to the progression of
cardiovascular events [11,33]. In hemodialysis patients, for whom gut barrier and microbiota are
impaired, a positive association between LBP and chronic inflammation and metabolic syndrome
was reported [34]. The present study shows a strong relationship between plasma LBP and waist
circumference. It is interesting to note that plasma LBP was correlated significantly with WC only in
lean subjects. Another point is the correlation of LBP with ALT only in lean subjects. Patients with
non-alcoholic fatty liver disease are known to present higher LBP concentrations when they develop
steatohepatitis [15]. An association between LBP and ALT was noted in hepatitis C virus, and these
authors suggested that, as with ALT, LBP might serve as another hepatic inflammatory biomarker [35].
Another study has shown that endotoxemia reflects the hepatic functional reserve capacity of end-stage
liver disease [36]. Interestingly, in obese subjects of the present study, no correlation of circulating LBP
with WC or ALT was observed. Naghizadek et al., 2018 have shown that WC is important for the
association among TLR4, serum LBP and IFNβ and metabolic state only for the highest WC range [16].
This finding is not in agreement with the present study, and could be explained by the fact that obese
subjects were not morbid.

In the Lipinflox study, the fat load (10 vs. 40 g) did not modify the kinetics of the LBP concentration
in the plasma of lean and obese subjects. However, the LBP concentration in lean subjects was lower
than that in obese subjects for both fat loads. Moreover, the dietary intervention in the OF study did not
affect postprandial LBP concentrations. Umoh F. et al. also suggested that obesity might not result in
enhanced exposure to intestinal bacteria, as the effect of BMI was no longer significant in multiple linear
regression models [37]. It is well known that obesity is associated with modifications in the secretion
of cytokines from adipose tissue and liver. However, only few studies have investigated the impact of
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overfeeding on the production of cytokines/adipokines. In the present OF study, the concentrations of
LBP, sCD14 and Il-6 were not significantly affected by a two-month overfeeding (+760 kcal/day by
adding 70 g of lipids to the usual daily diet). More precisely, the fat OF consisted in daily addition of
20 g of butter, 100 g of cheese (Emmental) and 40 g of almonds. Another study of acute overfeeding
(+1250 kcal/day with a nutrient composition of 45% fat, 15% protein and 40% carbohydrate) has shown
that 3 days are sufficient to increase body weight and HOMA-IR, without affecting MCP-1 and CRP
plasma concentrations [38]. Tam C.S. et al. also demonstrated that moderate weight gain after 28 days
of overfeeding (+1250 kcal via high-fat snacks composed of 45% fat, 15% protein, and 40% carbohydrate)
in healthy humans resulted in a significant weight gain and increased circulating levels of CRP and
MCP-1, without changes in subcutaneous WAT mass [39]. Those results demonstrate that different
compositions of overfeeding diets may differentially impact cytokines/adipokine concentrations in
plasma and tissues.

The present study has some limitations. Firstly, the sample size was small, owing the cumbersome
aspects of postprandial explorations, and only one plasma inflammatory marker was measured.
However, the postprandial results were obtained from two different trials, and the timing of plasma
collection was not the same. Another limitation of this study is the measure of IL-6 in plasma taken
serially from a catheter in an arm vein. Indeed some authors have shown that the presence of the
catheter irritate the vein and cause an increase in IL-6 levels in plasma samples taken over several
hours compared to fresh samples taken from the opposite arm [40,41]. Finally, ensuring adherence to
dietary instructions given during the OF clinical trial is difficult in a feeding trial.

To conclude, we have shown in obese men that a fat load of 10 g of lipids can drive an increase
of IL-6 concentration in plasma at 300 min post-meal, maybe due to a lesser clearance of LPS by
lipoproteins. Indeed Vors et al. has shown that obese subject chylomicrons were more enriched with
LPS compared to NW, which could contribute to LPS clearance and to a lesser IL-6 concentration in
plasma [23]. This result should be confirmed in further studies with the measure of other inflammatory
markers. The LBP concentration in plasma was higher in obese subjects than in NW subjects both at
fasting and along the postprandial period (Lipinflox clinical trial), and was significantly and positively
associated with trunk lean mass, lean mass and waist circumference before and after OF. Further studies
are now necessary to better understand the relative role of LBP and sCD14 during the postprandial
phase after diets containing different amounts and types of fats in different food matrixes.
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Appendix A. Postprandial Kinetics of LBP/sCD14 after 10 g vs. 40 g Fat Load. Data Are
Means ± SEM
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