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ABSTRACT: A fully quantum mechanical force field
(QMFF) based on a modified “divide-and-conquer” (mDC)
framework is applied to a series of molecular simulation
applications, using a generalized Particle Mesh Ewald method
extended to multipolar charge densities. Simulation results are
presented for three example applications: liquid water, p-
nitrophenylphosphate reactivity in solution, and crystalline
N,N-dimethylglycine. Simulations of liquid water using a
parametrized mDC model are compared to TIP3P and
TIP4P/Ew water models and experiment. The mDC model
is shown to be superior for cluster binding energies and generally comparable for bulk properties. Examination of the dissociative
pathway for dephosphorylation of p-nitrophenylphosphate shows that the mDC method evaluated with the DFTB3/3OB and
DFTB3/OPhyd semiempirical models bracket the experimental barrier, whereas DFTB2 and AM1/d-PhoT QM/MM
simulations exhibit deficiencies in the barriers, the latter for which is related, in part, to the anomalous underestimation of the p-
nitrophenylate leaving group pKa. Simulations of crystalline N,N-dimethylglycine are performed and the overall structure and
atomic fluctuations are compared with the experiment and the general AMBER force field (GAFF). The QMFF, which was not
parametrized for this application, was shown to be in better agreement with crystallographic data than GAFF. Our simulations
highlight some of the application areas that may benefit from using new QMFFs, and they demonstrate progress toward the
development of accurate QMFFs using the recently developed mDC framework.

1. INTRODUCTION

Molecular simulations provide atomic-level insight into a wide
range of complex chemical processes, many of which benefit
fromif not outright requirea fully quantum mechanical
(QM) description. There has been considerable interest and
effort made toward the development of linear-scaling quantum
mechanical force fields (QMFFs) for molecular simulations.1,2

QMFFs achieve their speed through a partitioning of the
energy, whereby localized fragments are treated using tradi-
tional QM methods, such as density-functional3 or semi-
empirical4 models, and the interactions between the fragments
are approximated by classical electrostatics and empirical
potentials. In some QMFFs, such as the modified “divide-
and-conquer” (mDC) method,5 the electrostatic interactions
between the fragments occur through atomic multipole
expansions. Methods that generalize the linear-scaling evalua-
tion of long-ranged electrostatic interactions to multipolar
charge densities must be available and integrated into QMFF
frameworks to be able to broadly test them within molecular
simulations.6

In the first part of this series,7 we described a multipolar
Particle Mesh Ewald (PME) method that makes condensed
phase mDC simulations tractable. In the second part, which is
presented here, we explore a series of molecular simulation
applications demonstrating the mDC framework using a

preliminary parametrization of the nonbond interaction
model.8 The first demonstration involves simulations of liquid
water and the properties of small water clusters. The mDC
binding energies and geometries of water clusters and the
properties of bulk water are compared to the TIP3P and
TIP4P/Ew water models, high-level QM benchmark data, and
experimental measurements, where available. The second
demonstration involves the study of the dissociative pathway
for dephosphorylation of p-nitrophenylphosphate. The mDC
barrier height and transition-state structure are compared with
combined quantum mechanical/molecular mechanical (QM/
MM) simulations performed with the DFTB2 and AM1/d-
PhoT semiempirical models. The third demonstration involves
simulation of crystalline N,N-dimethylglycine, and comparisons
are made to experiment9 and the general AMBER force field
(GAFF).10 These applications highlight areas that may benefit
from using a QMFF and further serve to demonstrate
considerable progress toward their use in molecular dynamics
(MD) simulations.
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2. METHODS

2.1. The mDC Quantum Force Field. The mDC method
presented in ref 8 is a fully variational algorithm that is
conceptually similar to the embedded X-Pol model pioneered
by Gao,4,11−14 but differs in the quantum methods used, the
treatment of electrostatic interactions, and other technical
details involving the interfragment interaction potential. The
underlying goal of fragment-based linear-scaling methods, such
as mDC and X-Pol, is to formulate a quantum model that is
sufficiently fast to be routinely applied to condensed-phase
environments. To achieve this speed, linear-scaling algorithms
are used to compute the Fock matrix and to construct
orthonormal molecular orbitals (MOs). Fragment-based
quantum methods distinguish themselves from traditional
QM models by avoiding the construction of globally orthogonal
MOs via diagonalization of a matrix whose size is proportional
to the entire system. Instead, mDC and other closely related
QMFFs approximate the wave function using a Hartree product
of antisymmetrized determinants of molecular fragments.15 In
other words, the system is divided into fragments or molecules,
each of which is treated quantum mechanically using a basis of
atomic orbitals (AOs) for the construction of MOs that are
presumed to not overlap with the MOs of any other fragment.
Because the MOs are taken to be a linear combination of AOs,
this presumption also extends to AOs, so that the Fock or
Kohn−Sham and overlap matrices become block diagonal in
their AO representation. The solution of the system’s MOs
from the Roothaan or Kohn−Sham equations consequently
simplifies to the diagonalization of a block-diagonal matrix,
which reduces the computational complexity of this operation
from O(N3) to O(NK3), where K is the number of AOs within
a fragment. The above approximations appear, relative to a
standard QM method, as an artificial lowering of the number of
MO constraints, because the MOs of different fragments are
now only presumed to not overlap, as opposed to having been
enforced with Lagrange multipliers. When the molecules are
separated by small distances, such that their AOs would be
expected to significantly overlap, the lack of interfragment MO
overlap constraints fails to produce an associated increase in the
electronic energy, which must be modeled through some other
means to recapture the effect. For example, other fragment
models have used perturbative corrections,16−18 valence bond
theory,19 or empirical models,5,8,12,13 such as Lennard-Jones
(LJ) or Buckingham potentials. The present work adopts the
strategy of using standard pairwise LJ potentials to empirically
account for the short-ranged repulsions described above, in
addition to providing a treatment for London dispersion forces.
Although the fragments are not directly coupled through MO

overlap, they remain coupled via the interaction of their
densities. From this viewpoint, the fragments are embedded
within an effective chemical potential arising from the other
fragments. The mDC total energy is

∑= +E E ER N p R q( , , ) ( , )
A

A A A AmDC inter
(1)

where EA is the ab initio electronic energy of fragment A with
NA electrons and atom positions RA subjected to the external
potential pa = ∂Einter(R,q)/∂qa. The DFTB3/3OB semi-
empirical model20 is used in the present work to compute
EA, unless noted otherwise. The interfragment interaction
energy Einter depends on the atomic positions and atomic
multipole moments

∫δ δ ρ= − −μ μ μq Z C r rr R( ) ( ) da l a l a l a, 0 0
3

(2)

which are determined from the nuclear charge Za and the atom-
partitioned electron density ρa(r). The partitioning of the
electron density to atomic centers is a choice, and our choice is
to relate the density to the AO basis functions χi(r) and AO
basis single-particle density matrix P in a manner analogous to
Mulliken partitioning
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is a Mulliken bond-order, S is the AO overlap matrix, and
fab(bab) is a smooth switching function that allows us to bias the
partition between atom pairs to improve molecular electrostatic
potentials.8 For the water model described in the next section, a
standard Mulliken partitioning is used between H and O
[fab(bab) = 1/2], whereas the parameters used to partition the
density between other elements (C, N, P) are provided in ref 8.
The working expression for the multipole moments is derived
by inserting eq 3 into eq 2 while limiting the expansion of the
two-center densities to charges
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where
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(6)

are radial integrals that are treated as parameters to control the
magnitude of the multipolar contribution arising from the
single-center AO products. The two-center components of the
density could be expanded to higher-order multipoles without
undue computational effort, but we have not yet found their
inclusion to be essential. When the electrostatics are limited to
charges, the largest errors in DFTB3’s molecular electrostatic
potentials occur for sp3 oxygen and sulfur lone-pairs, nitrogen
lone-pairs, and sp and sp2 carbons.8,21 The one-center AO
products’ description of the atom hybridizations provides
enough information to empirically improve upon these
deficiencies with the parameters shown in eq 6.
The intermolecular interaction energy,

∑
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inter elec tail
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consists of the Coulomb interaction between the point
multipoles using the multipolar PME method described in
Part 17 and standard LJ interactions,
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between atoms not within the same molecule. To ensure
smooth atomic forces, the LJ interactions are switched off:
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where u = (Rcut−Rab)/(Rcut−Rsw), and a long-range tail
correction is smoothly switched on:
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The σ-spin Fock matrix of fragment A,
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is obtained from elementary differentiation of the energy. Upon
reaching a global self-consistency, the nuclear gradients of atom
a in fragment A are
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and nσ, Eσ, and Cσ are the spin-resolved MO occupation
numbers, eigenvalues, and eigenvectors, respectively.
In summary, the self-consistent field (SCF) procedure is as

follows:

(1) Compute the spin-resolved density matrix Pij,A
σ =

∑knk,A
σ Cik,A

σ Cjk,A
σ and total density matrix Pij,A = Pij,A

α +
Pij,A
β of each fragment from their spin-resolved trial MO

coefficients CA
σ .

(2) Evaluate the atomic multipole moments qa from the
density matrices (see eqs 5 and 6).

(3) Compute the interfragment electrostatic interaction
energy and corresponding multipolar potentials pa from
the PME method described in Part 1 of this series.7

(4) Evaluate the DFTB3 energy (EA) and Fock matrices (FA
σ)

of each fragment from the density matrices PA
σ , and apply

the external potential contribution to the Fock matrices
(see eq 11).

(5) If the SCF has not converged, construct a new set of MO
coefficients for each fragment and go back to step (1).

The LJ interactions can be computed before entering the SCF
procedure or after the SCF has been completed.
2.2. Water Model and Simulations. The LJ parameters

Rmin and ε of O and H and the Msp
(1) and Mpp

(2) multipole
moment parameters of oxygen (see Table 1) were adjusted to
simultaneously reproduce the geometries and binding energies

of small water clusters (Table 2 and Figure 1) and the
condensed phase properties of water (Table 3) using a single
set of parameters. The parametrized mDC model is compared
to the standard TIP3P22 and TIP4P/Ew23 water models,
denoted by 3P and 4P in the tables and figures.
Table 2 and Figure 1 compare the binding energies ΔE of

geometry optimized gas-phase water clusters [(H2O)n for n =
2−10] computed with mDC, TIP3P, and TIP4P/Ew to the ab
initio results taken from ref 24 (RI-MP2/CBS with a
CCSD(T)/aug-cc-pVDZ correction). The coordinate root-
mean-square displacement (crms) is an all-atom comparison of
the geometry optimized model and reference structures. The
internal geometry of the mDC water was not constrained
during the optimization of cluster geometries, which is
consistent with the procedure used to generate the reference
data. The MM water models are inherently rigid because they

Table 1. Water Model Parameters

mDC 3P 4P

ROH (Å) 0.9571 0.9572 0.9572
ROM (Å) 0.125
∠HOH (deg) 110.48 104.52 104.52
qH (a.u.) [0.36155] 0.417 0.52422
εOO (a.u.) 3.096 × 10−4 2.422 × 10−4 2.594 × 10−4

Rmin,OO (a.u.) 6.669 6.683 6.712
εHH (a.u.) 9.500 × 10−7

Rmin,HH (a.u.) 2.800
Msp

(1) (a.u.) −0.08
Mpp

(2) (a.u.) 2.4

Table 2. Water Cluster Binding Energy and Geometry
Statisticsa

ΔE (kcal/mol)

mean signed
error, mse

mean unsigned
error, mue

coordinate root-mean-square
displacement, crms (Å)

mDC 0.32 0.54 0.15
3P −1.81 2.17 0.44
4P −5.59 5.59 0.32

aReference values taken from ref 24.

Figure 1. Water cluster binding energies. Reference values taken from
ref 24.
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were designed to be used in condensed-phase environments
only.
The condensed-phase water simulations used to generate

Figures 2 and 3, the data shown in Table 3, and the dielectric
constants appearing in Table 4 were performed on cubic boxes
containing 512 waters simulated in the isothermal−isobaric
ensemble at atmospheric pressure with a modified version of
PMEMD.25 The Andersen thermostat26 (1 ps coupling
constant) and Monte Carlo (MC) barostat25 (0.1 ps per
isotropic volume scaling attempt) were used to control the
temperature and pressure of the system. Statistics were
collected from 8 ns of sampling with a time step of 1 fs for
all simulations except the liquid-phase TIP3P and TIP4P/Ew
simulations, which were run for 25 ns. For all models, the LJ

interactions were explicitly computed within a 9 Å cutoff and
supplemented with a tail correction to mimic the long-range
interactions. Our implementation of the mDC model
transitions between these two limits (see eqs 7−10) from 8
Å to 9 Å to pedantically guarantee that smooth gradients are
rigorously enforced; however, the difference between smooth
and precipitous transitions at 9 Å does not appear to effect our
results beyond the statistical uncertainties engendered by the
simulationsʼ finite sampling. PME27,28 and multipolar PME7

electrostatics were performed with sixth-order Cardinal B-
spline interpolation on a 1 pointt/Å regular grid. The SHAKE
algorithm29,30 is applied to all water models when performing
condensed-phase simulations to avoid the use of excessively
small time steps. SHAKE was chosen to constrain the mDC

Table 3. Properties of Liquid Water

Density, ρ (g cm−3) Heat Capacity, cp (cal mol−1 K−1) κT (× 10−6 bar−1)

T (K) expta mDC 3P 4P exptb mDC 3P 4P expta mDC 3P 4P

263 0.9981 0.9971 1.0134 0.9988 21.9 17.5 20.4 56 63 51 50
273 0.9998 0.9995 1.0061 0.9996 18.2 22.9 17.2 20.4 51 57 52 46
285 0.9995 0.9996 0.9971 0.9985 18.1 21.5 16.8 19.5 47 54 54 47
298 0.9970 0.9969 0.9856 0.9951 18.0 21.8 17.4 19.0 45 49 57 47
310 0.9933 0.9920 0.9752 0.9908 18.0 20.5 16.7 19.1 44 50 58 47
323 0.9880 0.9853 0.9628 0.9842 18.0 21.6 17.0 18.8 44 50 63 49
335 0.9822 0.9775 0.9508 0.9771 18.0 20.9 17.4 18.9 45 51 68 50
348 0.9748 0.9674 0.9370 0.9687 18.1 19.4 17.0 19.0 46 53 72 53
373 0.9584 0.9445 0.9077 0.9491 18.2 19.4 17.6 18.3 49 58 90 59

ΔHvap (kcal mol
−1) ΔHvap′ (kcal mol−1)

T (K) exptb mDC 3P 4P exptb mDC 3P 4P

263 11.19 9.39 11.15 11.04 9.24 11.00
273 10.77 11.02 9.28 11.01 10.77 10.90 9.15 10.88
285 10.65 10.83 9.14 10.83 10.65 10.73 9.05 10.74
298 10.51 10.62 9.00 10.66 10.51 10.56 8.93 10.59
310 10.39 10.44 8.87 10.50 10.39 10.40 8.82 10.45
323 10.26 10.25 8.72 10.33 10.26 10.22 8.70 10.30
335 10.13 10.07 8.59 10.18 10.13 10.06 8.59 10.17
348 9.99 9.89 8.45 10.02 9.99 9.89 8.46 10.02
373 9.72 9.52 8.18 9.71 9.72 9.55 8.21 9.74

aData taken from ref 79. bData taken from ref 80.

Figure 2. Density of ice (Ih (dashed line (- - -)), supercooled water (dotted line (···)), and liquid water (solid line ()). Experimental values taken
from refs 79 and51.
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water to the DFTB3/3OB20 gas-phase water structure, instead
of the experimental gas phase structure. This choice was
physically motivated by providing a definition for a zero of
potential energy that avoids the need for applying monomer
deformation energies when computing the interactions of
water.
Several condensed-phase properties are computed31 and

compared with the experiment, including the heat of vapor-
ization, the isothermal compressibility, the isobaric heat
capacity, and the static dielectric constant:

Heat of Vaporization:

Δ = ⟨ ⟩ −
⟨ ⟩ + ⟨ ⟩

−H k T
U p V

N
Evap

pot
pol (14)

or

Δ ′ = Δ + +H H C T C T( ) ( )vap vap ni vib (15)
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Static Dielectric Constant:

μ μ μ μ
ε π= + ⟨ · ⟩ − ⟨ ⟩ ·⟨ ⟩

⟨ ⟩⟨ ⟩k T V
1 4

3

T T

(18)

where brackets indicate time-averaged quantities from the
generated ensemble, Upot is the total potential energy of the
system, V is the volume of the simulation box, H is the enthalpy
(H = Upot + Ekin + pV), μ is the dipole moment of the system,
and Epol is an ad hoc correction applied to the nonpolarizable
water models (Epol = Δμwat2 /2α) to account for the condensed-
phase water’s increased self-energy associated with having used
an enhanced dipole moment, relative to the experimental gas-
phase dipole moment (Δμwat). Upon inserting the model and
experimental dipole moment and the experimental gas phase
polarizability, the Epol corrections for TIP3P and TIP4P/Ew are
1.18 and 1.05 kcal/mol, respectively. The Epol correction is not
applied to the mDC model, because of its explicit treatment of
polarization within ⟨Upot⟩. Cni(T), Cvib(T), and ∂Evib(T)/∂T are
ad hoc corrections introduced by Horn23 that account for the
nonideality of the water vapor, the difference between the
vacuum and liquid-phase vibrational energies, and the
vibrational energy contribution to the heat capacity,
respectively. These quantities are provided for several
temperatures in Table 4 of ref 23. We computed the
corrections by spline interpolation of Horn’s pretabulated
values at our simulation temperatures. The ΔHvap comparisons
in Table 3 are made with (using eq 15) and without (using eq
14) these corrections for all models.
Table 4 and Figure 4 compare the self-diffusion coefficients

of water at 298 K. The diffusion coefficients were computed
from canonical ensemble simulations, similar to the protocol
performed by others,32,33 using a series of system sizes (512,
768, 1024, and 1280 waters) at equilibrated system densities.
Each simulation was run for 1.2 ns using the Berendsen weak
coupling scheme to control the temperature.34 The diffusion
constant was computed from numerical differentiation of the
Einstein relation:

∑
τ

τ= ⟨| + − | ⟩D
N

t tR R
1
6

d
d

1
( ) ( )

i

N

i i t
wat

2
wat

(19)

In other words, the water-averaged autocorrelation of the
mean-squared displacement of the oxygen position was
computed for a series of time lags, and a linear regression
was used to determine the slope of the resulting line.
The self-diffusion coefficient is known to exhibit a depend-

ence on system size that is almost linear with the reciprocal
length of the simulation box (see Figure 4).35,36 The values

Figure 3. Water radial distribution functions. Experimental values taken from ref 83 (Soper 00), ref 84 (Skinner 13), and ref 85 (Soper 86).

Table 4. Water Diffusion Coefficient and Dielectric Constant
at 298 K

Water Diffusion Coefficient,
D (× 10−5 cm2 s−1)

Avg. Extrap. dielectric constant, ε

expta 2.30 2.30 78
mDC 2.29 2.49 48
3P 5.49 6.32 99
4P 2.42 2.79 63

aExperimental diffusion taken from ref 81. Experimental dielectric
taken from ref 82.
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“Avg.” and “Extrap.” in Table 4 are the average of the four
diffusion coefficients and the diffusion constant extrapolated to
infinite box size from linear regression, respectively.
Figure 2 compares the experimental density of ice (Ih) to

mDC and TIP4P/Ew simulations at 200, 225, and 248 K. For
clarity, the properties of ice were not considered during the
parametrization of either model. The ice simulations were
performed in a manner analogous to those described above for
the liquid phase, which we will not fully repeat here. The ice Ih
crystals are composed of 576 waters replicated from the unit
cell to fill an orthorhombic simulation box. The crystals were
equilibrated for 2 ns in the isothermal−isobaric ensemble with
anisotropic volume changes to relax the lattice vectors. The
reported densities are simulation averages from 8 ns of
production in the isothermal−isobaric ensemble. Figure 2
does not display the density of TIP3P, because it has a very low
melting point.37

2.3. p-Nitrophenyl Phosphate Reaction. Figure 5
compares the free-energy profiles of the p-nitrophenyl
phosphate (pNPP) dissociative reaction in solution using

semiempirical QM/MM and mDC models. The simulations
were performed in the isothermal−isobaric ensemble at 298 K
within a box of 1550 waters, following a protocol that is
analogous to the water simulations described in the previous
section. The reaction profile was generated from a series of 56
umbrella window simulations that force the separation between
the phosphorus and oxygen depicted in Figure 5, using a
harmonic restraining potential with a force constant of 75 kcal
mol−1 Å−2. Each window was equilibrated for 300 ps and
another 300 ps was simulated for production. The value of the
reaction coordinate was printed every 20 steps, which was then
analyzed using the variational free-energy profile (vFEP)
method38 to produce the profiles displayed in Figure 5. The
QM/MM simulations were performed with TIP3P water in
combination with the DFTB2/MIO39−41 or AM1/d-PhoT42

semiempirical models, which were readily available for use in
SANDER.25 The mDC simulations were performed twice: the
“mDC/3OB” profile employed the 3OB parametrization of
DFTB3,20 whereas “mDC/OPhyd” made use of the DFTB3/
3OB model supplemented with a modified O−P repulsive
potential designed to improve phosphate hydrolysis reaction
energies.43 The mDC electrostatic and LJ parameters of the
solute atoms were taken from ref 8. The standard GAFF LJ
parameters were used in the QM/MM simulations.

2.4. N,N-Dimethylglycine Crystal Simulations. Table 5
compares experimental9 isotropic and anisotropic heavy-atom
displacement parameters of crystalline N,N-dimethylglycine
(DMG) as a function of temperature to those obtained from
GAFF and mDC simulations. The crystal lattice was
constructed from the experimentally determined asymmetric
unit of the orthorhombic polymorph,9 which consists of two
DMG molecules. The fundamental unit cell of the crystal
contains 16 DMG molecules that are related to the asymmetric
unit by fundamental symmetry operations. A supercell
composed of 18 unit cells (288 DMG molecules), shown in
Figure 6, was then constructed from elementary translations of
the unit cell along the lattice vectors. The crystal supercell was
simulated at each temperature in the canonical ensemble using
the experimental density for 325 ps, the first 25 ps of which was
discarded as equilibration, and a trajectory of 1200 frames of
production was stored for analysis. The 18 unit cells within

Figure 4. Box size dependence on the self-diffusion coefficient of water
at 298 K. Experimental value taken from ref 81.

Figure 5. p-nitrophenol phosphate. Experimental value taken from ref 65.
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each frame of the trajectory were translated to a common
center to produce 21600 frames of a 16-molecule unit cell.
Similarly, the reverse operations that relate the unit cell to the
asymmetric unit were applied to produce 172 800 frames of the
two-molecule asymmetric unit (see Figure 6). The 3 × 3
covariance matrix of each heavy-atom position, which can be
defined as

= ⟨ − ⟨ ⟩ − ⟨ ⟩ ⟩U X X Y Y( )( )XY a a a a a, (20)

is diagonalized to produce three eigenvalues (u1,a, u2,a, u3,a),
whose average value and standard deviation are taken to be the
isotropic and anisotropic “displacement parameters”, respec-
tively.

Average Value:

=
∑

u
u

3a
i i a

iso,

3
,

(21)

Standard Deviation:

=
∑ −

u
u u( )

3a
i i a a

aniso,

3
, iso,

2

(22)

The values of uiso,a and uaniso,a of each heavy element are
compared to those reported from the analysis of experimental
diffraction data, and the statistics arising from these
comparisons are shown in Table 5.

3. RESULTS AND DISCUSSION
3.1. mDC Water Model. Simple MM models, such as

TIP4P/Ew, are capable of adequately modeling the condensed-
phase properties of water for most applications; however, the

Table 5. Pearson Correlation and Mean Unsigned Errors of
the Heavy-Atom Isotropic and Anisotropic Displacement
Parameters in N,N-Dimethylglycine, Relative to the
Experiment (See Ref 9)

Pearson Correlation, R Mean Unsigned Error, mue (Å2)

T (K) GAFF mDC GAFF mDC

Isotropic Displacement Parameters
225 0.79 0.93 0.0466 0.0126
250 0.88 0.94 0.0724 0.0168
275 0.88 0.95 0.0521 0.0234
295 0.90 0.94 0.0529 0.0328

Anisotropic Displacement Parameters
225 0.76 0.89 0.0550 0.0153
250 0.79 0.91 0.0860 0.0169
275 0.83 0.92 0.0520 0.0199
295 0.85 0.93 0.0492 0.0231

Figure 6. N,N-dimethylglycine crystal lattice used in the MD simulations. The experimentally observed asymmetric unit was taken from ref 9. The
mDC and GAFF ensemble averaged asymmetric unit structures (black lines) at 225 K are overlaid on the experimental coordinates (colored
molecules). The mDC heavy atom fluctuations at 225 K are shown by overlaying the entire ensemble of structures on the experimental coordinates.
The display of so many structures causes them to appear as “fuzzy clouds”. (Inset shows the correlation between experimental and calculated heavy
atom isotropic and anisotropic displacement parameters. Each data point corresponds to one heavy atom in the asymmetric unit.)
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limitations of simple models often mean that this type of
targeted parametrization limit their ability to simultaneously
reproduce ab initio intermolecular interaction energies within
small molecule clusters. The strategy used to develop the
parameters listed in Table 1, therefore, was to choose a large set
of trial parameters that each reproduced the ab initio water
binding energies (see Table 2 and Figure 1) to within a mean
unsigned error (mue) of 1 kcal/mol, and then prune and refine
the parameters based on the results of short condensed-phase
simulations until the mDC condensed-phase properties were
comparable to TIP4P/Ew results. Specifically, we chose the
parameters to reproduce the location and height of the 3.4 and
4.6 Å peaks in the experimental O−O RDF at 298 K. Second,
we rejected parameters if they did not reproduce the
experimental densities at 273, 298, and 310 K well. Finally,
the heat of vaporization (without Horn’s Cni(T) and Cvib(T)
corrections23) were monitored at 298 K and compared with our
TIP4P/Ew results. Considering that TIP4P/Ew is remarkably
good model for condensed-phase properties, we rejected
parameters that caused mDC to deviate from the ΔHvap value
of TIP4P/Ew by more than 0.1 kcal/mol. Automated
procedures to aid parameter development, such as the
ForceBalance method44 used to develop iAMOEBA,45 have
been described in the literature,46−49 but were not used here.
During this process, we observed a very strong correlation
between the mue values of the water cluster and the ΔHvap
value of the condensed phase. Furthermore, the RDFs (Figure
3) were found to be highly sensitive to the value of Rmin,OO, and
the water cluster hydrogen bond angles were sensitive to
oxygen’s Mpp

(2) quadrupole parameter. As a result of this
procedure, the mDC cluster mue’s are 10 times smaller than
TIP4P/Ew and the agreement with the ab initio geometries, as
measured by the crms values, improve by a factor of 2.
The temperature dependence of the mDC water density

(Figure 2) is comparable to TIP4P/Ew, and it exhibits a
maximum near 279 K, which is similar to the experimental
maximum of 277 K. The mDC and TIP4P/Ew simulations
yield similar isothermal compressibilities and heats of vapor-
ization, as shown in Table 3; however, the TIP4P/Ew heat
capacity is closer than mDC to the reference value by 1−2 cal
mol−1 K−1. The TIP4P/Ew self-diffusion coefficient (Figure 4)
is 5%−20% too high, depending on how it is measured,
whereas the mDC water model is 0 to 8% too high. On the
other hand, the experimental dielectric constant (Table 4) is
better reproduced by TIP4P/Ew than mDC. The under-
estimation of the dielectric constant is indicative of either
having a dipole moment that is too small, an orientational
interaction that is overstabilizing (the quadrupole-charge
interactions, for example), or some combination of the two.
The mDC water molecule has a gas-phase dipole moment of
1.95 D, which is close to the experimental value of 1.85 D.
However, the gas-phase polarizability of mDC water, being
based on the minimal valence basis DFTB3 semiempirical
model, is considerably underestimated, relative to ab initio
calculations. It is possible that the quadrupolar interactions are
slightly too strong and thereby mask the attraction that would
be incurred from additional dipole polarization.
A comparison between mDC, TIP4P/Ew, and experimental

ice Ih densities is included in Figure 2. The mDC and TIP4P/
Ew densities are too low and too high, respectively, by
approximately equal amounts; however, neither model was
parametrized to reproduce solid-state properties. At 248 K, the
density of mDC (0.904 g/cm3) is in good agreement with the

literature value of TIP4P/Ice (0.909 g/cm3).50 We have not
determined the melting point of mDC ice; however, we note
that the enthalpy of mDC ice Ih is 0.34 kcal/mol more stable
than TIP4P/Ew for all 3 temperatures, and both models yield
nearly identical supercooled liquid enthalpies at 263 K (Table
3). We are encouraged to see mDC’s increased lattice stability
in this comparison, because TIP4P/Ew’s melting temperature is
too low.50 The comparison of calculated sublimation enthalpies
to experimental measurements51 would likely require a more
rigorous treatment for nuclear quantum effects than what we
have performed here.52 With the exception of the ad hoc
corrections for liquid water (eq 15), our calculated enthalpies
assume that the intramolecular vibrational energy of water is
unchanged by the condensed-phase environment, and our
classical simulations of ice Ih ignore the zero-point vibrational
energy of the lattice. These assumptions are faulty at low
temperatures53 and they can also affect liquid water proper-
ties,54,55 as is evident by comparing ΔHvap to ΔHvap′ in Table 3.
Previous comparisons between Path Integral and classical
simulation methods suggest nuclear quantum phenomena can
also subtly lower the density and increase the self-diffusion
coefficient of liquid water at 298 K.56,57

The TIP3P and TIP4P/Ew water models achieve awesome
performance on Graphics Processing Unit accelerated MD
programs.58,59 For example, AMBER’s PMEMD CUDA
program60 can simulate a box of 512 waters using the protocol
described in this manuscript at a rate of 100 ns/day on a
NVIDIA GeForce GTX 765M. On an 8-core Intel Xeon
workstation, the parallel Central Processing Unit implementa-
tion of PMEMD25 achieves 22 ns/day, whereas mDC simulates
0.8 ns/day on the same computer. Our implementation of the
brute force O(N3) variant of traditional DFTB3 has not been
adapted for periodic boundary conditions; however, vacuum
calculations of 512 waters on 8 cores produces only 10−4 ns/
day. A more detailed analysis of mDC’s performance can be
found in Part 1 of this series.7

Overall, the mDC simulations are able to model the structure
and energetics of small clusters, relative to high-level ab initio
calculations, considerably better than the empirical TIP3P and
TIP4P/Ew models, while, at the same time, reproducing
experimental condensed-phase properties generally better than
TIP3P and similar to TIP4P/Ew. It is a considerably
challenging problem in force field development to design
robust models for water that can accurately reproduce both
cluster and condensed-phase properties. The relative ease by
which the mDC model achieved this result has important
implications for simulations in heterogeneous environments
where the local electrostatic environment can vary considerably.
One could attribute mDC’s transferability to its multipolar
electrostatics and/or electronic polarization provided by the
underlying QM Hamiltonian’s MOs; however, care should be
taken to not misrepresent mDC as being merely a multipolar,
polarizable force field. In other words, our examination of water
properties, by itself, does not well-characterize the breadth of
benefits offered by QMFFs, because QM Hamiltonians are not
really required to achieve high quality results for bulk water and
water clusters. On the contrary, QMFFs offer the possibility to
extend the scope of applications to include problems that
require a detailed description of the electronic distribution and/
or MOs (chemical reactions and spectroscopy, for example) of
large systems in which a localized “QM region” is either: ill-
defined (molecular crystals and ionic liquids, for example), is
sensitive to the QM/MM decomposition or potential, or when
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well-established MM force field parameters are unavailable
(nonstandard drug ligands, for example). Moreover, the
efficiency of QMFFs afford the degree of configurational
sampling required to make meaningful comparisons with
experiment, and their nonbond interactions can be improved
beyond the capabilities of the underlying QM Hamiltonian
through the tuning of empirical parameters. Thus, we assert
that MO-based QMFFs are arguably better described as being
extraordinarily fast and empirically accurate linear-scaling
quantum methods rather than exotic, polarizable force f ields.
Nevertheless, QMFF methodologies live in a “middle ground”
between polarizable force fields and linear-scaling quantum
methods and may appear to take on characteristics of each,
depending on how they are applied.61

3.2. p-Nitrophenyl Phosphate Reaction. Relative to
traditional MM force fields, QMFFs have the advantage in
being capable to model processes where bond formation and
cleavage occur. In this section, we examine the dissociative
mechanism of dephosphorylation of pNPP in aqueous solution,
which is a prototype phosphoryl transfer reaction,62 as an
example application. Unlike the water cluster and bulk liquid
properties discussed in the previous section, no effort was made
to tune the mDC LJ or electrostatic parameters specifically for
this application.
The pNPP model system plays an important role in

phosphoryl transfer reaction studies. The pKa of p-nitrophenol
(∼7.2) is considerably lower than the native 5′-alkoxide leaving
group in RNA cleavage transesterification. Therefore, pNPP is
often used as an “enhanced” phosphoryl transfer leaving group
to study linear free-energy relationships (LFERs)63 and kinetic
isotope effects (KIEs).62,64 LFERs and KIEs are powerful
experimental methods to infer catalytic mechanisms, because
they report directly on the structure, bonding, and local charge
of the transition state.
The barrier for this reaction in solution has been

experimentally estimated to be 29.6 kcal/mol.65 As a reference
for further comparison, we performed optimizations for the
reactant and transition-state geometries using B3LYP/6-31+
+G** coupled with the polarizable continuum implicit solvent
model (PCM)66,67 and UAKS radii.68 The B3LYP calculations
predict a barrier of 19.5 kcal/mol, which is 10 kcal/mol lower
than experiment. The discrepancy is, to some extent, influenced
by the error in the B3LYP proton affinity,69 which is 4.2 kcal/
mol lower than high-level reference calculations. Previous ab
initio calculations have shown that the barrier for this reaction is
very sensitive to microsolvation.70 In particular, it was found
that B3LYP/PCM calculations supplemented with 12 and 14
explicit water molecules increase the barrier to 21.1 and 29.3
kcal/mol, respectively70

The pNPP dephosphorylation dissociative mechanism free-
energy profiles are shown in Figure 5. Generally, none of the
calculated barriers compare well with the experiment. None-
theless, the two mDC models bracket the experimental barrier
and are more similar to it than any of the other models. The
mDC/3OB and mDC/OPhyd models underpredict and
overpredict the experimental barrier by 3.2 and 9.1 kcal/mol,
respectively. The appearance of an artificial dip in the mDC/
3OB profile at RO−P = 2.5 Å is a symptom that we have
encountered with DFTB3/3OB in other unpublished applica-
tions involving phosphorus chemistry. We hypothesize that this
is produced from the increased stabilization of the d−d tight-
binding diagonal matrix elements that were given to
phosphorus in the DFTB3/3OB parameters, relative to

DFTB3/MIO;71 however, a more-detailed analysis would be
required to support this supposition. This feature is largely
eliminated in the mDC/OPhyd profile.
The DFTB2 and AM1/d-PhoT QM/MM simulations

produce barriers significantly lower than the experiment. The
AM1/d-PhoT model was originally developed specifically for
phosphoryl transfer reactions; however, its treatment of nitro
groups is poor. For example, the AM1/d-PhoT proton affinity
of p-nitrophenol is 12.7 kcal/mol lower than experiment. This
effect is, to some extent, an amplified byproduct of a systematic
error in the B3LYP proton affinity discussed above that served
as the benchmark reference used during the AM1/d-PhoT
parametrization.42 We suggest that each methods’ capacity to
reproduce the experimental barrier depends on their ability to
simultaneously model the P−O covalent bond strength and the
electron-withdrawing power of the nitro group. Overall,
although there is very considerable room for improvement in
all of the simulations, the simulations with the mDC model
perform considerably better than the QM/MM models
considered here, as well as the B3LYP model with simple
PCM-only solvation.

3.3. N,N-Dimethylglycine Crystal Simulations. Another
application area that stands to benefit from periodic boundary
simulations using QMFFs is the study of small-molecule
crystals. Of particular pharmaceutical interest is the study of
polymorphism in molecular crystals of drug compounds.72−75 A
great deal of effort is devoted to the understanding of
polymorphism of pharmaceutical compounds, because different
synthetic pathways can lead to different crystal polymorphs,
which, in turn, have dramatically different bioavailability and
biological activity. There has been much research effort and
progress made in recent years in the study of the stability of
organic crystals from molecular simulations, and, for these
applications, many-body polarization effects have been
demonstrated to be very important.76−78 Here, we apply
mDC to crystal simulations of N,N-dimethylglycine and make
comparison to experiment and GAFF simulations.10

Figure 6 and Table 5 compare the structure and correlation
of the experimentally observed isotropic and anisotropic
displacement parameters to those obtained from GAFF and
mDC simulations. A superposition of the average asymmetric
unit structure from the crystal simulation with the crystal
structure gives a root-mean-square (rms) displacement of 0.096
Å for mDC and 0.15 Å for GAFF. The average structures from
both simulations thus are very close to the experimental
structure, and the mDC result is particularly impressive. The
Pearson correlation coefficients of the mDC displacement
parameters are generally greater than 0.9, whereas the GAFF
correlation coefficients range from 0.76 to 0.9. As displayed in
Figure 6, both GAFF and mDC produce large errors in both
the isotropic and anisotropic displacement parameters, even
though their correlation to the experiment is reasonable.
Nonetheless, the mDC errors are two or more times smaller
than GAFF, as shown in Table 5. Overall, the mDC method,
without having specifically tuned the parameters for this
application, performs markedly better than GAFF.

4. CONCLUSION
In this work, we incorporated the recently developed multipolar
PME method into the mDC linear-scaling quantum force field
framework and applied it to condensed-phase simulations of
water, the p-nitrophenylphosphate (pNPP) dissociation reac-
tion free-energy profile, and the reproduction of the
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experimental isotropic and anisotropic displacement parameters
observed in crystalline N,N-dimethylglycine for several temper-
atures. An mDC water model was parametrized to simulta-
neously reproduce the interaction energies and geometries of
small water clusters and the bulk properties of liquid water. The
parametrized mDC water model is found to be comparable to
the TIP4P/Ew at reproducing the bulk properties of water,
including the density, heat of vaporization, isothermal
compressibility, and diffusion coefficient; however, the static
dielectric constant of mDC water was found to be too low,
which may arise from the underpredicted polarizability inherent
within DFTB3. On the other hand, the mDC model performs
substantially better than TIP4P/Ew, for reproducing the high-
level ab initio energetics of small water clusters, and significantly
better, with respect to the geometries. The mDC model was
applied to the pNPP dissociation reaction to demonstrate its
ability to model chemical reactions in complex condensed-
phase environments. At the same time, comparisons were made
to two other widely available QM/MM methods. Although the
barrier height of the mDC free-energy profile was substantially
closer to the experiment than either DFTB2/TIP3P, AM1/d-
PhoT/TIP3P, or B3LYP with PCM solvation, more effort must
be made to further develop and test the DFTB3 model and
mDC parameters to increase the predictive capability in
applications to enzymes and ribozymes. The DMG crystal
simulation was performed to highlight an application area that
extends beyond simple solvation with water. The mDC
displacement parameters were found to correlate better with
the experiment than the general AMBER force field by as much
as 15%, and the mean unsigned errors (mues), relative to the
experiment, were reduced by a factor of 2. In summary, the
results suggest that QMFFs developed within the mDC
framework are both computationally tractable and robust,
exceeding the accuracy of standard force fields and QM/MM
models. Full development of new QMFFs promise to add new
levels of accuracy and predictive capability to application areas
involving chemical reactions and processes where inherent
limitations in the form of standard force fields are a bottleneck
to accuracy and predictive capability.
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