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Abstract
Background: Waardenburg syndrome (WS) is a hereditary, genetically hetero-
geneous disorder characterized by variable presentations of sensorineural hear-
ing impairment and pigmentation anomalies. This study aimed to investigate the 
clinical features of WS in detail and determine the genetic causes of patients with 
clinically suspected WS.
Methods: A total of 24 patients from 21 Han- Taiwanese families were enrolled 
and underwent comprehensive physical and audiological examinations. We ap-
plied targeted next- generation sequencing (NGS) to investigate the potential 
causative variants in these patients and further validated the candidate variants 
through Sanger sequencing.
Results: We identified 19 causative variants of WS in our cohort. Of these vari-
ants, nine were novel and discovered in PAX3, SOX10, EDNRB, and MITF genes, 
including missense, nonsense, deletion, and splice site variants. Several patients 
presented with skeletal deformities, hypotonia, megacolon, and neurological dis-
orders that were rarely seen in WS.
Conclusion: This study revealed highly phenotypic variability in Taiwanese WS 
patients and demonstrated that targeted NGS allowed us to clarify the genetic 
diagnosis and extend the genetic variant spectrum of WS.
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1  |  INTRODUCTION

Waardenburg syndrome (WS) is a hereditary auditory- 
pigmentary disorder characterized by sensorineural hear-
ing impairment (SNHI) and pigmentation abnormalities 
of the eye, hair, and skin (Bondurand et al.,  2007). The 
disease has an estimated prevalence rate of 1/42,000(Read 
& Newton, 1997) and accounts for 2%– 5% of patients with 
congenital hearing impairment (Zaman et al., 2015).

WS is classified into four subtypes according to the pre-
sented clinical phenotype. Type 1 WS (WS1, OMIM#193500) 
is diagnosed according to the criteria proposed by the 
Waardenburg Consortium (Farrer et al.,  1992) that states 
that a patient must have two major criteria or one major 
plus two minor criteria to be considered as affected. Of all 
the symptoms of WS, dystopia canthorum is the most dis-
tinctive feature of WS1 (Read & Newton, 1997). Type 2 WS 
(WS2) is distinguished from WS1 by the absence of dystopia 
canthorum (Iso et al., 2008). Based on its genetic heteroge-
neity, WS2 is further divided into WS2A (OMIM#193510), 
WS2B (OMIM% 600,193), WS2C (OMIM%606,662), WS2D 
(OMIM#608890), and WS2E (OMIM#611584). Type 3 WS 
(WS3, OMIM#148820), also called Klein– Waardenburg 
syndrome, presents as musculoskeletal abnormalities 
with the clinical features of WS1(Tekin et al., 2001). Type 
4 WS (WS4), named Shah– Waardenburg syndrome, has 
similar traits to WS2 but is accompanied by Hirschsprung 
disease (HD, OMIM#142623) (Ahmed jan et al.,  2021). 
WS4 is additionally classified into three subgroups, WS4A 
(OMIM#277580), WS4B (OMIM#613265), and WS4C 
(OMIM#613266), according to genetic characteristics.

WS presents with a high degree of genetic heteroge-
neity. Six genes have been confirmed to cause WS: paired 
box 3 (PAX3, OMIM*606597) (Boudjadi et al.,  2018), 
microphthalmia- associated transcription factor (MITF, 
OMIM*156845) (Lautenschlager et al.,  1996; Yang, Li, 
et al.,  2013), SRY- box transcription factor 10 (SOX10, 
OMIM* 602229) (Iso et al., 2008; Yu et al., 2020), endothelin 
3 (EDN3, OMIM*131242) (Pingault et al., 2001), endothelin 
receptor type B (EDNRB, OMIM*131244) (Issa et al., 2017), 
and snail family transcriptional repressor 2 (SNAI2, 
OMIM*602150) (Otręba et al.,  2013). Variants in PAX3 
are primarily responsible for WS1 and WS3, while SOX10, 
EDN3, and EDNRB variants are involved in WS4. Genetic 
studies have linked WS2 to variants in MITF, SOX10, EDN3, 
EDNRB, and SNAI2 (Huang et al., 2021). Interactions be-
tween the six WS- associated genes are believed to form a 
MITF- centered regulatory framework responsible for con-
trolling the differentiation and development of neural crest 
cells (NCCs), particularly melanocytes derived from NCCs 
(Hou & Pavan, 2008; Huang et al., 2021). An abnormality in 
this framework could lead to the development of WS and 
related diseases (Hou & Pavan, 2008).

WS patients display phenotypic variability and reduced 
penetrance, making it difficult to diagnose the disease solely 
on the basis of clinical symptoms (Pingault et al.,  2010). 
Additionally, although more than 400 pathogenic variants 
have been identified to cause WS (Zhang et al., 2021), there 
are still a number of cases that are unexplained at the molec-
ular level (Pingault et al., 2010). As such, the identification 
of novel variants will contribute to a better understanding 
of WS pathogenesis. Meanwhile, phenotypic analysis of 
WS patients is also crucial for better determining the cor-
relations between genotypes and phenotypes for each WS 
subtype, in turn providing guidance for genetic counsel-
ing, diagnosis, and treatment choices for patients (Huang 
et al., 2021). In this study, we examined in detail the clinical 
phenotypes in a cohort of individuals with suspected WS 
and performed comprehensive genetic analyses using a tar-
geted next- generation sequencing (NGS) approach.

2  |  METHODS

2.1 | Study patients

This study included 24 patients with clinically suspected 
WS from 21 unrelated Han- Taiwanese families. The 
diagnoses were made by experienced otolaryngologists 
or pediatricians based on the presentation of at least 
one major diagnostic criterion of the syndrome (Farrer 
et al., 1992): SNHI, blue iris, white forelock, or dystopia 
canthorum. Fourteen individuals with suspected WS 
were patients at National Taiwan University Hospital, 
whereas ten had been patients at ten other hospitals and 
were referred to National Taiwan University Hospital for 
genetic testing.

2.2 | Characterization of phenotypes

We obtained and analyzed the family history, medical 
records, and results of physical, dermatological, 
musculoskeletal, neurologic, and audiological 
examinations of all participants. Additionally, the patients 
underwent otoscopic and audiometric evaluations 
performed by experienced audiologists using pure tone 
audiometry or diagnostic auditory brainstem response, 
depending on the patient's age and neurologic status (Lin 
et al., 2017; Newton, 2002).

2.3 | Next- Generation sequencing

We collected peripheral blood from the patients to ex-
tract genomic DNA from mononuclear cells. A sonication 
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method (Covaris, Woburn, MA) was used to produce DNA 
fragments of an average size of 800 bp, and the length and 
concentration of the fragments were measured using a 
2100 Bioanalyzer (Agilent Technologies, Santa Clara, 
CA) and Qubit (Thermo Scientific, Waltham, MA), re-
spectively. A DNA library was constructed from the frag-
ments using a TruSeq Library Preparation Kit (Illumina 
Inc., San Diego, CA). Probe capture- based target enrich-
ment was achieved with a SeqCap EZ Hybridization 
and Wash Kit (Roche NimbleGen, Madison, WI) using 
probes designed to target the coding regions of 30 com-
mon deafness- associated genes in the Taiwanese popu-
lation, including the six genes (PAX3 (NM_181459.4), 
MITF (NM_198159.3), EDNRB (NM_001201397.1), 
EDN3 (NM_003068.5), SOX10 (NM_006941.4), SNAI2 
(NM_003068.5)) reported to be causative of WS (Table S1) 
(Huang et al., 2021; Wu et al., 2019). The total target re-
gion size was approximately 317 kb, and the DNA samples 
were sequenced with a MiSeq platform (Illumina Inc., San 
Diego, CA) to produce 300- nucleotide paired- end reads 
with a 150x average read depth.

2.4 | Data analyses

The paired- end reads from the NGS sequencing were 
aligned, sorted, and converted using the BWA- MEM 
and Sort utility in the Sentieon DNAseq pipeline version 
2018 (https://www.senti eon.com/produ cts/) (Kendig 
et al.,  2019). The Sentieon Haplotyper algorithm was 
used to detect variants, including single nucleotide 
substitutions and small insertions and deletions. We used 
ANNOVAR version 2019 (https://annov ar.openb ioinf 
ormat ics.org/en/lates t/#annov ar- docum entation) (Wang 
et al.,  2010) to annotate all of the called variants with a 
series of information, including Human Genome Variation 
Society nomenclatures, maximum allele frequency across 
distinguished populations of the gnomAD database 
(Karczewski et al.,  2020), minor allele frequency in the 
Taiwan Biobank database (Wei et al., 2021), and various in 
silico prediction outcomes, including PolyPhen- 2 version 2 
(Harvard University, Cambridge, MA), SIFT version 2019 
(SANS Institute, North Bethesda, MD), LRT version 2009 
(Washington University, St. Louis, MO), MutationTaster 
version 2 (Charité e Universitätsmedizin Berlin, Berlin, 
Germany), VariantAssessor version 3 (Computational 
Biology Center, Memorial Sloan- Kettering Cancer Center, 
NY), FATHMM version 2.3 (University of Bristol, Bristol, 
England), and MetaLR version 2015 (Human Genetics 
Center, University of Texas Health Science Center at 
Houston, Houston, TX). We excluded variants with an 
allele frequency of more than 1% in both the gnomAD 
and Taiwan Biobank database and chose the filtered 

variants that were within exome or intron splicing sites. 
Human disease databases, including ClinVar (Landrum 
et al.,  2016) and Deafness Variation Database (Azaiez 
et al.,  2018), were used to identify previously reported 
pathogenic variants. The online platform VarSome 
(Kopanos et al., 2019) was adopted to carefully assess all 
of the filtered variants in accordance with the American 
College of Medical Genetics and Genomics (ACMG) 
guidelines (Richards et al.,  2015). The variants that met 
the criteria for pathogenic and likely pathogenic were 
recorded as disease- causing and confirmed with Sanger 
sequencing.

3  |  RESULTS

3.1 | Clinical phenotypes

A total of 24 patients from 21 unrelated families were 
recruited for this study (14 female and 10 male patients). 
Four probands of the participants were clinically suspected 
of having WS1 (4/21, 19.0%) and seven of having WS2 
(7/21, 33.3%); the other 10 probands had at least one 
major symptom of WS but failed to fulfill the criteria 
for a definite clinical diagnosis (Ahmed jan et al.,  2021; 
Farrer et al., 1992). Genetic diagnoses were confirmed in 
19 WS patients from 16 families (see “Variants Findings” 
below). Considering the penetrance of the causative 
variants, SNHI (13/19, 68.4%) and blue iris (13/19, 
68.4%) were the most frequent phenotypes among these 
patients. White forelock was observed in two patients 
(2/19, 10.5%), and dystopia canthorum was observed in 
four patients (4/19, 21.1%). Three patients were members 
of the WSF- 13 family, and two other patients belonged 
to the WSF- 14 family (Figure  2). WSF- 1 presented with 
dystopia canthorum and premature graying of hair, 
which was also observed in WSF- 11. Nasolacrimal duct 
aplasia was discovered in WSF- 2. We noted that WSF- 6 
exhibited hypotonia and inner ear deformity, confirmed 
by magnetic resonance imaging, and WSF- 10 presented 
with megacolon. In addition, WSF- 12 was reported to 
have facial dysmorphism and bilateral hydrocephalus. 
Table 1 lists the clinical features and affected genes of the 
19 patients with confirmed genetic diagnoses.

3.2 | Variant findings

Causative gene variants of EDNRB, MITF, PAX3, or SOX10 
were identified in 19 patients, with 14 of the variants being 
unique. Nine of the variants were novel variants and pre-
sented in 11 patients, and five previously reported variants 
were identified in eight patients (Table  2 and Table  S2) 

https://www.sentieon.com/products/
https://annovar.openbioinformatics.org/en/latest/#annovar-documentation
https://annovar.openbioinformatics.org/en/latest/#annovar-documentation
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(Bocángel et al., 2018; Chi, 2005; George et al., 2016; Lin 
et al., 2008; Richard et al., 2019; Wang et al., 2018; Yang, 
Dai, et al., 2013; Yang, Li, et al., 2013; Zhou et al., 2006). 
The novel variants included missense, nonsense, and 
splice site changes, as well as two frameshift deletions.

Of the nine novel variants, three missense vari-
ants and one nonsense variant of PAX3 were detected: 
NM_181459.4:c.192C>A in the paired domain, c.807C>A 
in the homeodomain, c.1130C>G in the transactivation do-
main, and c.52C>T in exon 1. Three heterozygous variants 
in SOX10 were identified: NM_006941.4:c.314_315del and 
c.424T>G in the high mobility group (HMG) domain and a 
frameshift deletion c.684_693del between the HMG and K2 
domains. Additionally, the EDNRB variant NC_000013.10 
(NM_001201397.1):c.754- 2A>G occurred in the splice site 
located 2 bp upstream of exon 3, and a novel MITF het-
erozygous missense variant NM_198159.3:c.1052C>T was 
identified, which could cause an amino acid replacement 
in the homeodomain of MITF.

All five reported variants were either included in ClinVar 
(Landrum et al.,  2016) or Deafness Variation Database 
(Azaiez et al.,  2018), or both. The PAX3 heterozygous 
variant c.812G>A had been documented in 21 studies ac-
cording to VarSome (Kopanos et al., 2019). Research about 
the EDNRB homozygous variant c.823G>A was reported 
in Taiwan (Lin et al.,  2008), China (Zhou et al.,  2006), 
and Pakistan (Richard et al.,  2019). Moreover, in three 
Chinese studies (Wang et al., 2018; Yang, Dai, et al., 2013; 
Yang, Li, et al., 2013) and one Brazilian study (Bocángel 
et al., 2018), the MITF nonsense variant c.1066C>T was 
described. We confirmed each causative variant through 
Sanger sequencing. Table  2 and Figure  1 present the 
disease- causing variants identified in this study.

4  |  DISCUSSION

In this study, we identified 14 variants responsible for 
WS in 19 clinically suspected WS patients through tar-
geted NGS (Table 2). All of these variants were pathogenic 
or likely pathogenic and located in the PAX3, SOX10, 
EDNRB, or MITF genes. Nine variants were novel. While 
the same missense variant EDNRB:c.823G>A, which was 
harbored by three unrelated patients (WSF- 10, WSF- 11, 
and WSF- 12), had different pathogenicity according to 
ClinVar, Deafness Variation Database, and Varsome, 
we concluded that the variant might be disease- causing 
based on molecular analysis and previous case reports 
(discussed below).

PAX3 encodes a paired box transcription factor (TF) 
involved in the development of melanocytes through the 
regulation of MITF and other TFs (Galibert et al., 1999; 
Watanabe et al.,  1998). Mice with heterozygous PAX3 

variants might present with patchy loss of pigmenta-
tion, while those with homozygous variants die during 
pregnancy or shortly after birth (Pingault et al., 2010). 
In humans, PAX3 variants are the most prevalent cause 
of WS (Huang et al.,  2021; Pingault et al.,  2010) and 
are responsible for most WS1 and WS3 cases (Boudjadi 
et al.,  2018; Huang et al.,  2021). Homozygous or com-
pound heterozygous PAX3 variants might induce more 
severe manifestations: extended depigmentation, upper 
limb defects, and even death in early infancy or in 
utero, for which WS3 is likely to be diagnosed (Mousty 
et al.,  2015; Wollnik et al.,  2003). In addition, the oc-
currence of de novo variants and germline mosaicism 
was found in some WS1 cases (Boudjadi et al., 2018). No 
apparent correlation between the variant type, location, 
or severity of the phenotype was observed in WS associ-
ated with PAX3 variants, suggesting that the pathophys-
iology of the disease may be due to a gene dosage effect 
(Pingault et al., 2010).

In this study, we identified four novel PAX3 vari-
ants. NM_181459.4:c.52C>T was located at exon 1 and 
might cause truncation of the translated protein. Variant 
c.192C>A was located at the paired domain (PD), which 
affects DNA binding capacity as well as the transcrip-
tional regulation of downstream target genes (Pingault 
et al.,  2010). The c.807C>A was located in the home-
odomain (HD) and affects the interaction of PAX3 with 
DNA by destabilizing the domain fold (Birrane et al., 2009) 
(Figure 1a). The c. 1130C>G variant resided in the trans-
activation domain and may influence the transcription ac-
tivity in cells (Boudjadi et al., 2018).

Our study also revealed that the six patients with PAX3 
variants displayed diverse phenotypes. Aside from the 
major diagnostic criteria for WS, WSF- 1 exhibited syno-
phrys, broad high nasal roots, and premature graying of 
the hair. A similar finding to the nasolacrimal duct aplasia 
noted in WSF- 2 was reported by David and Warin (David 
& Warin,  1972), wherein congenital blockage of the na-
solacrimal duct was observed in an 11- year- old WS boy. 
More investigation is required to determine whether the 
abnormal development of the lacrimal duct is related to 
the dysmorphic effect that PAX3 variants may have on the 
craniofacial bone (Gad et al., 2008). In addition, WSF- 3, 
WSF- 4, and WSF- 17 showed isolated SNHI, while WSF- 5 
had both blue iris and dystopia canthorum. These find-
ings in our patients with PAX3 variants were consistent 
with the observation that the penetrance of each clinical 
feature of WS1 is not complete (Pingault et al., 2010), in-
dicating that genetic backgrounds and environmental fac-
tors may influence the disease manifestations (Asher Jr. 
et al., 1996).

SOX10 encodes a TF critical to the early development 
of neural crest stem cells by promoting cell survival and 
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maintaining multipotency (Kapur,  1999; Kelsh,  2006). 
Moreover, SOX10 controls the development of melanocytes 
by regulating MITF expression in synergy with PAX3 (Yu 
et al., 2020). Through modulation of RET (OMIM*164761) 
expression, SOX10 determines the morphogenesis of the 
enteric nervous system (ENS) (Bondurand et al.,  2001). 
Mutant Sox10 heterozygous mice demonstrated variability 
of aganglionosis, the characteristic HD phenotype in WS4 
patients (Southard- Smith et al., 1999). In humans, SOX10 
variants account for ~15% of WS2 cases and 40– 50% of 
WS4 patients (Bondurand et al., 2007). This study revealed 
three novel variants in SOX10. NM_006941.4:c.314_315del 
and c.424T>G were located in the highly conserved HMG 
domain of SOX10 that may cause conformational change 
and result in a decreased DNA- binding capacity (Hao 
et al.,  2018). In addition, c.684_693del was identified in 
exon 3 of the gene, which activates nonsense- mediated 

RNA decay (NMD), leading to haploinsufficiency 
(Pingault et al., 2010) (Figure 1b).

SNHI was exhibited in all three patients with SOX10 
variants. In a review of 417 WS patients (Song et al., 2016), 
SNHI was the most common feature of WS2 (100%) and 
WS4 (92.9%) in patients with SOX10 variants. Absent mi-
gration of NCC- derived melanocytes to the stria vascularis 
due to SOX10 variants might impair the ionic concentra-
tion of endolymph, which leads to the resultant SNHI 
(Syrris et al.,  1999). Moreover, cochlear hypoplasia and 
the absence of the cochlear nerve were reported in pa-
tients with SOX10 variants (Barnett et al., 2009). However, 
we only found WSF- 6 to have inner ear malformation 
of reduced cochlear size and turns. This finding demon-
strates that while SOX10 variants might directly induce 
inner ear deformity (Hao et al., 2018), the phenotypic ex-
pression might be variable with incomplete penetrance, 

F I G U R E  1  Localization of 14 causative variants in 19 diagnosed WS patients. Novel variants were shown in black and reported variants 
were shown in gray. (a) PAX3 (NM_181459.4): P, paired domain; O, octapeptide; HD, homeodomain; TA, transactivation domain. (b) SOX10 
(NM_006941.4): DIM, dimerization domain; HMG, high mobility group; K2, context- dependent transactivation domain; TA, transactivation 
domain. (c) EDNRB (NM_001201397.1): TM, transmembrane domain. (d) MITF (NM_198159.3): AD, transactivation domain; B, basic 
domain; HLH, helix- loop- helix domain; LZ, leucine zipper domain. Variant c.587- 2A>G was found with the PAX3 transcript: NM_013942.4.

(a)

(c)

(d)

(b)
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highlighting the difficulty of predicting inner ear malfor-
mations only with genotypic information.

Interestingly, besides typical manifestations of WS 
(SNHI and blue iris), WSF- 6 also showed hypotonia with-
out HD. Some WS4 patients with SOX10 variants were 
reported to have PCWH syndrome (OMIM#609136), a 
complex neurocristopathy including peripheral demye-
linating neuropathy, central demyelinating leukodystro-
phy, Waardenburg syndrome, and Hirschsprung disease 
(Verheij et al.,  2006). Patients with severe cases exhibit 
hypotonia, arthrogryposis, or respiratory insufficiency 
(Inoue et al., 2002; Touraine et al., 2000), while those with 
mild cases likely display variable hypotonia, spasticity, 
ataxia, and developmental delay (Pingault et al.,  2000; 
Verheij et al.,  2006). To date, several WS2 patients have 
also presented with neuromuscular features reminiscent 
of PCWH (Bondurand et al., 2007), thus delineating a new 
extended PCW phenotype (Pingault et al., 2010) similar to 
that observed in WSF- 6.

EDNRB binds EDN3 and transmits signals through the 
Gαq/α11subunits of G- protein (Bondurand et al.,  2018). 
The signaling pathway is crucial to NCC development 
during the embryonic stage of vertebrates, including 
melanoblast differentiation and the formation of neurons 
and glial cells in the ENS (Huang et al.,  2021; Pingault 
et al., 2010). Mutant Ednr3 mice demonstrate hypopigmen-
tation and the absence of enteric ganglia in the distal part 
of the gut (Bondurand et al., 2018; Touraine et al., 2000). 
The phenotypes observed in mutant Ednr3 mice were 

similar to those in WS4 patients, in whom homozygous 
EDNRB variants were first described (Attié et al.,  1995). 
In contrast, heterozygous EDNRB variants were reported 
in patients with isolated HD (Amiel et al., 1996; Kusafuka 
et al., 1996). However, several studies have also proposed 
that the homozygous variants in EDNRB could induce iso-
lated HD, and heterozygous variants might occur in WS4 
(Pingault et al., 2001; Syrris et al., 1999). These findings 
suggest that EDNRB variants manifest in a more complex 
manner than merely as dominant or recessive conditions. 
Moreover, we might not be able to accurately forecast 
whether an EDNRB variant is more associated with iso-
lated HD or WS because of the contribution of modifier 
genes to the development of both diseases (Bondurand 
et al., 2018).

In humans, EDNRB/EDN3 variants in WS2 pa-
tients make up less than 5% of cases and in WS4 pa-
tients, 20– 30% of cases (Pingault et al.,  2010). We 
identified four patients with EDNRB variants. WSF- 
9- II:1 had a novel heterozygous splice- site variant 
NC_000013.10(NM_001201397.1 ):c.754- 2A>G two bp 
upstream of exon 3 (Figure 1c), which may lead to the ab-
sence of the genetic product (Richards et al., 2015). While 
WSF- 9- II:1 was diagnosed with WS2, his mother, who 
harbored the same heterozygous variant, was not affected 
(Figure 2). WSF- 10 and WSF- 11 harbored the same homo-
zygous c.823G>A variant (Table  2), which was initially 
identified in two Chinese patients and one Taiwanese in-
dividual in the heterozygous form with isolated HD (Lin 

F I G U R E  2  Pedigree of three families with Waardenburg syndrome. The probands were indicated by arrows. All the affected individuals 
in the same family shared the identical variant confirmed by sanger sequencing. WSF- 9- I:2 was not affected while having the same variant 
as WSF- 9- II:1 had.
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et al., 2008; Zhou et al., 2006). However, WSF- 10 and WSF- 
11 showed distinct phenotypes of WS. WS10 had mega-
colon and blue iris; WSF- 11 exhibited blue iris, dystopia 
canthorum, premature graying of hair, and constipation 
(Table  1). Additionally, we found that although WSF- 12 
had heterozygous c.823G>A, she did not present with any 
gastrointestinal symptoms but possessed the phenotypes 
of WS2, facial dysmorphism, and bilateral hydroceph-
alus. Few cases of WS1 and WS4 were observed to have 
hydrocephalus, indicating WS increases the risk of neural 
tube defects in WS (Hart & Miriyala, 2017) and pathologic 
association with other developmental disorders (Yoder & 
Prayson, 2002). Clinically, WSF- 10 did not meet the cur-
rent diagnostic criteria of WS4 due to only presenting 
with blue iris and megacolon; WSF- 11 was diagnosed as 
WS1, which is rarely caused by EDNRB variants (Cheng 
et al., 2019; Morimoto et al., 2018). These findings demon-
strate the highly variable nature of phenotypic expression 
and the reduced penetrance of EDNRB features.

Additionally, we identified the missense variant 
c.823G>A located in transmembrane domain 5 (TM5, 
Figure 1c) (Huang et al., 2021) with different interpreta-
tions of pathogenicity in ClinVar (conflicting interpreta-
tion), DVD (pathogenic), and VarSome (likely pathogenic) 
(Table 2). The missense variants in TM5 of EDNRB were 
reported to cause dysfunctional intracellular signaling and 
impair the translocation of receptors to the plasma mem-
brane (Fuchs et al.,  2001; Tanaka et al.,  1998). Together 
with the previous case reports (Lin et al.,  2008; Richard 
et al., 2019; Zhou et al., 2006), these findings could lead 
to the interpretation of this variant to be disease- causing.

MITF is a basic helix– loop– helix zipper (bHLH- Zip) TF 
that belongs to the Myc supergene family and regulates 
gene expression by functioning as a homo-  or heterodi-
meric TF (Steingrímsson et al., 2004). MITF is extensively 
involved in the regulation and signaling pathways asso-
ciated with the development of melanocytes and retinal 
pigment epithelial cells (RPE) (Hou & Pavan, 2008). Mitf 
mutant mice display depigmented coat colors (reduced, 
spotty, or absent), and some of them might present with 
deafness and small or absent eyes because of impaired 
RPE morphogenesis (Hou & Pavan, 2008; Steingrímsson 
et al., 2004). The absence of intermediate cells and a de-
crease in cochlear potential in the stria vascularis were ob-
served in mutant Mitf mice, thus possibly explaining the 
SNHI phenotype in patients with MITF variants (Huang 
et al.,  2021). In humans, about 15% of WS2 patients 
possess MITF variants (Read & Newton,  1997). Some 
studies have described variable phenotypes and incom-
plete penetrance of each symptom in multiplex families 
(Alehabib et al., 2020; Lautenschlager et al., 1996), as was 
observed in the WSF- 13 and WSF- 14 families (Figure 2). 
The mild or absent manifestations of WS in individuals 

with MITF variants suggest that other modifying fac-
tors may affect the disease's expression (Lautenschlager 
et al., 1996). In our study, the novel missense MITF variant 
NM_198159.3:c.1052C>T caused an amino acid change in 
the third transactivation domain (AD3, Figure  1d) and 
was responsible for WS in the WSF- 13 family.

In this study, we demonstrated the strength of NGS 
in identifying novel variants in WS- associated genes. 
Moreover, we also revealed that WSF- 19 (GJB2), WSF- 
20 (SLC26A4, OMIM* 605646), and WSF- 21 (OTOF, 
OMIM*603681) harbored variants associated with SNHI- 
related genes (Table  S3), validating the use of NGS to 
clarify the underlying mechanism of isolated SNHI (Wu 
et al., 2013). However, this study had several limitations. 
First, we noted that three patients could not be genetically 
diagnosed with WS or other diseases. No candidate variant 
was detected in WSF- 16, indicating that the causative vari-
ant may reside in regions other than the six WS- associated 
genes (Seco et al.,  2015), the presence of structural vari-
ants (Jin et al., 2021; Wildhardt et al., 2013)or copy number 
variations (CNVs) (Bocángel et al., 2018; Wang et al., 2022; 
Wenzhi et al., 2015), or the existence of variants in non- 
coding regions (Bondurand et al., 2012), detection of which 
were beyond the limits of the NGS technique used in this 
study. Variants of uncertain significance were recognized 
in WSF- 18 (MITF), suggesting that further functional 
study may be required to elucidate the exact effect of these 
variants. Second, we recruited a relatively small cohort size 
of 24 patients from a single population (Han Taiwanese), 
limiting the generalizability of the study results. Table S3 
lists the phenotype and genotype information of six pa-
tients unable to be genetically diagnosed.

In conclusion, our results support that NGS is a useful 
procedure for diagnosing WS. With the help of NGS, we 
identified nine novel variants in SOX10, EDNRB, MITF, 
and PAX3 that may cause WS in Taiwanese patients. 
Furthermore, we validated the characteristics of incom-
plete penetrance and variable phenotypes in WS, sug-
gesting that a more complex regulatory framework may 
govern the genetic expression of the disease.
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