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Lung cancer is a complex milieu of genomically altered cancer cells, a diverse

collection of differentiated cells and nonneoplastic stroma. Lung cancer organoids is a

three-dimensional structure grown from patient cancer tissue that could mimic in vivo

complex behavior and cellular architecture of the cancer. Furthermore, the genomic

alterations of the primary lung tumor is captured ex vivo. Lung cancer organoids have

become an important preclinical model for oncology studies in recent years. It could be

used to model the development of lung cancer, investigate the process of tumorigenesis,

and also study the signaling pathways. The organoids could also be a platform to perform

drug screening and biomarker validation of lung cancer, providing a promising prediction

of patient-specific drug response. In this review, we described how lung cancer organoids

have opened new avenues for translating basic cancer research into clinical therapy and

discussed the latest and future developments in organoid technology, which could be

further applied in lung cancer organoids research.
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BACKGROUND

Lung cancer remains the leading cause of malignancy-related mortality world-wide (1), and is one
of the most prevalent cancer in the world (2). It could be histologically divided into three major
types: nonsmall cell lung cancer (NSCLC), small cell lung cancer (SCLC), and others. Among
these three types, NSCLC is the dominant type of lung cancer (3). In general, the treatment
outcomes and prognosis of patients with NSCLC is poor (4). There is lack of a valid model
which could accurately represent the heterogeneity of the original lung tumor and the treatment
response (5). So far, several models for lung cancer treatment research are available, such as two-
dimensional (2D) culture lung cancer cell lines, xenograft models in vivo, patient-derived xenograft
(PDX) models, and also three-dimensional (3D) culture organoids models. Large-scale genomic
analyses of lung cancer have shown substantial phenotypic and genetic heterogeneity between
individuals represented by intertumoral and intratumoural heterogeneity (6), which makes it
difficult to study genetic and molecular alteration in lung cancer via lung cancer cell lines. After
the long-term culture and propagation, cancer cell lines often display genetic artifacts from in
vitro passaging. This genetic drift is also a big limitation for patient-oriented drug screening and
clinically relevant explorations via lung cancer cell lines. Besides, model in animals and PDX
also has its limitations, such as engraftment efficiencies, the limited passages in mice, species
differences, and the expensive cost to establish as a model. Patient-derived cancer organoids models
have become a significant preclinical model for several cancer studies like colon cancer, breast
cancer, prostate cancer, pancreas cancer, and lung cancer. In this work we are going to describe
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the advantages and disadvantages of this advanced cancer study
model as well as its latest technology.

COMPARISON BETWEEN DIFFERENT
TYPES OF LUNG CANCER STUDY
MODELS

There are several kinds of preclinical models for lung cancer
research and study. For example, lung cancer cell lines models,
PDX, and lung cancer organoids models. Each type of models has
strengths and shortcomings, respectively, when used to study and
characterize the genotype and phenotype of lung cancer. How to
choose the models for studies should depend on the experimental
goal (Table 1).

Lung Cancer Cell Lines Models and Its
Clinical Applications
The advantages of lung cancer cell lines model include their ease
of handling, low cost, and rapid culturing, which make them
popular in numerous lung cancer research.

Firstly, lung cancer cell lines were used to explore the
drug sensitivity and drug resistance in multiple studies. For
instance, some lung cancer cell lines, such as H3255(EGFR
L858R) and PC9(EGFR del19), demonstrated sensitivity to
epidermal growth factor receptor tyrosine kinase inhibitors
(EGFR TKIs) Osimertinib, rociletinib, erlotinib, and afatinib,
whereas HCC827(EGFR del19) is sensitive to gefitinib or
erlotinib or the EGFR inhibitory antibody cetuximab. Previous
works showed that the proliferation of cell lines with anaplastic
lymphoma kinase (ALK) fusion, such as cell line H3122
(harboring ALK-EML4), could be suppressed by ALK-inhibitors
like TAE684 (7). However, there are some disadvantages of
lung cancer cell lines models. They do not always keep the
characteristics of original lung cancer. Due to the clonal drift
and expansion and the monolayer growth behavior on a plastic
surface, some immortalization genetic changes can occur, which
might change the phenotype like drug sensitivity of lung
cancer cell lines. For example, some studies showed that NCI-
H1975 bears T790M mutation, which may confer resistance
to afatinib. But for NCI-H1975 which carries L858R mutation,
it shows sensitivity to new-generation TKIs like rociletinib,
osimeritnib, and afatinib. Cellosaurus cell line DFCI032 showed
drug resistance to TAE684 due to the coactivation of EGFR
receptor and Erb-B2 receptor tyrosine kinase 2 (ERBB2). But
its proliferation could be suppressed by the combination of
TEA684 and EGFR/ERBB2 kinase inhibitor CL-387,785 (7).
Besides, because of the low cost and ease of culturing, large-scale
studies like cancer cell line encyclopedia (8), the genomics of drug
sensitivity in cancer (9–11), the cancer therapeutics response
portal (12), the connectivity map (13, 14), and the genentech
cell line screening initiative (15, 16) were performed in lung
cancer cell lines to detect their genomic, copy number variant,
transcriptomic, and drug response. At the same time, these
large-scale studies identified the associations between molecular
maker and drug sensitive as well as the gene expression level
after treatment.

Secondly, lung cancer cell lines are relatively easy to handle
when used to construct certain genetic operations, for example,
lenti-virus and CRISPR Cas9 systems, compared with using
PDX and organoids model. In addition, the rapid growth of
cancer cell lines saves time and labor, and could screen out
stable clones and cell subtypes. Numerous studies have used
CRISPR Cas9 technique to knock out a specific gene in lung cell
line to explore the synthetic lethality and driver mutation. For
example, a study has used CRIPSR Cas9 to knock out the EGFR-
mutation in H1975 cell lines and the wild-type EGFR alleles in
A549 cell line. The study showed that the proliferation ability
and tumor volumes of xenografts was suppressed only in NCI-
H1975 cell line, which provided a treatment strategy to disrupt
oncogenic mutation during cancer therapy (17). Nevertheless,
the disadvantage of lung cancer cell line for exploring therapeutic
strategies is obvious: lung cancer cell lines can be very different
from the original cancer in genetic or epigenetic form due to
the lack of differentiation during long-term culturing, survival
pressure selecting, monolayer culturing, and culturing without
interacting with original microenvironment cells, like stromal
cell, immune cell, and also inflammatory cells (18). Previously,
research has shown that the expression level of surface markers
like TTF1 and TP63 was similar in lung adenocarcinoma cell
lines and lung squamous cell lines, which was significantly
different from clinical histopathology results which show that
lung squamous was negative for TTF1 and approximately 100%
positive for TP63, whereas lung adenocarcinoma was 70–80%
positive for TTF1 (8). Furthermore, the same cell lines from
different laboratories are not totally identical due to the different
experiment conditions and poor consistency between different
large-scale lung cancer cell lines and drug sensitivity, which
have been reported (19). The absence of intercellular interaction
in lung cancer cell line cultures also limits its potential use
in translational medicine study. Therefore, although there are
numerous advantages for lung cancer cell lines model, its
disadvantages still limit the translation between lung cancer cell
lines model and clinical application.

PDX Models
Advantages of Lung Cancer PDX Models
Patient-derived tumor xenograft models are developed by
grafting and propagating patient-derived lung cancer tissues
in immunodeficient or humanized animals, like mice. These
patient-derived tissues growing in a three-dimensional in vivo
microenvironment display vasculature that could provide oxygen
and nutrients. The direct implantation of human cancerous
tissue circumvents in vitro genetic drift and clonal selection. The
in vivo microenvironment also allows cell–cell interaction and
communication with host stromal cells and immune cells. These
features enable PDX model to retain most of the genomic and
phenotype of the derived patient specimen. Therefore, PDX is
a great preclinical model for investigating drug response and a
promising indicator for clinical therapies. It also is a significant
laboratory tool to investigate the mechanisms of drug resistance.

Previous studies have shown that NSCLC PDX models with
EGFR exon19 deletion mutation and L858R mutation was
sensitive to EGFR TKIs gefitinib, erlotinib, dacomitinib, and
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TABLE 1 | Comparison between different types of lung cancer study models.

Lung cancer cell lines PDX model Organoids model

Advantage Easy handling; low cost; rapid culturing; large-scale

usage.

Well retain genomic and phenotype of

original patient specimens.

Well maintain the biology and genetic characteristics

of original cancer; well mimic the microenvironment

of initial tumor; less time consuming than PDX

model; could be genetically modify.

Disadvantage. Heterogeneous between different lab; genetic drift

and clonal selection after long-term layer culture;

lost the key characteristic of original tumor.

Expensive and time-consuming; limited

passage number; lack of human TME

cells.

Lack of standardized methodology; lack of

vasculature component; more difficult of long-term

initial and propagation.

afatinib, which was in accordance with the clinical results (20). In
addition, PDX models with EGFR exon19 deletion and T790M
mutations were sensitive to cetuximab but showed no response
to gefitinib and erlotinib (21). Furthermore, PDX models were
able to demonstrate that KRAS mutation showed drug resistance
to gefitinib, which was consistent with clinical outcome (22).
Multiple studies have also shown that PDX models with ALK
rearrangement had drug sensitive to ALK inhibitor (23), and if
PDX models with ALK rearrangement showed drug resistance
toward ALK inhibitor, the patient would also display similar
drug response to ALK inhibitor (24). More specifically, in lung
squamous cancers, PDX models with PI3CA E542K mutation
showed drug sensitivity to phosphoinositide 3-kinase (PI3K)
inhibitor (25). Conventional chemotherapies also produced
similar therapeutic response toward NSCLC and SCLC in clinical
patients and in correlated PDX models (26, 27). Furthermore,
the effects of synergy between chemotherapies and the enhancer
of zeste homolog 2 (EZH2) inhibition on tumor-inhibition of
SCLC was demonstrated in PDX models, even in those that
were resistant to chemotherapy (28). PDX models with lung
cancer have also been utilized to explore immunotherapy in
lung cancer. For example, anti PD-1 checkpoint inhibitors led to
the suppression of tumor growth in humanized mice engrafted
with A549 cell lines, which provides an advanced platform for
evaluation in immunotherapy (29).

Disadvantages of Lung Cancer PDX Models
Although there are plenty of advantages of PDX models for lung
cancer research, there are some limitations too. For instance,
large-scale study is more difficult to perform in PDX models
when comparing with lung cancer cell lines models. Besides,
construction of PDX models might need more time and are
more expensive when compared with lung cancer cell lines
models and organoids models. Furthermore, the limited passage
number due to a probable adaptive genetic evolution to the
murine background in PDX models remained a problem for
lung cancer research (30). Last but not least, the replacement of
human immune cells or stromal cells by mouse stromal cells in
nonhumanized mice after several passage could lead to the lack
of cell–cell interaction and communication between tumor cells
and the original human stroma (31). These disadvantages of PDX
models remain a challenge. To improve the methodology of PDX
model construction would be a significant way to better simulate
the patient tumor and microenvironment, and at the same time
to lower the cost and time.

Patient-Derived Lung Cancer Organoids
Models
Introduction of Organoids Models in Lung Cancer
“Lung cancer organoids” refers to the 3D structures processed
from lung tumor tissues, containing multiple cell types and
growing in an organized manner (32). Lung cancer cell line
derived from patient tumor tissues contain multiple lung cell
types, not only the cancer cells in different stages but also the
stromal cells. Besides, short-term cultured cells could capture
the latest stage of tumor, which could represent the genetic
characteristic of the original tumor (33). Although a part of
the lung patient-derived cell line could grow in a monolayer,
the original heterogeneity and 3D organ structure could not be
preserved in the monolayer differentiation environments.

Normal function of human organ depends on the synergistic
interaction of multiple cell types, which are distributed and
organized within a 3D structure (33). Like normal organ, lung
tumor is a complex community. The growth of the tumor
is also supported by a complex extracellular matrix and the
tumor microenvironment (TME). To overcome the limitations
of monolayer cultures from patient-derived lung cancer cells,
strategies have been recently developed with a miniature 3D
structure model named “organoids.” By using the organoids,
patient-derived lung cancer cell lines can be supported by an
extracellular matrix, which could better mimic the complexity
and architecture in vivo.

Lung Cancer Organoids Culturing Technology
To construct a 3D structure, a “scaffold” for growth is required,
and organoids were mostly cultured in Matrigel (34). The other
important consideration in organoid culture is the supplement
of growth factors and small molecular inhibitors (like Y-
27632) or activators (like SAG) used, which can vary from
laboratory to laboratory. These small molecular inhibitors and
activators could inhibit or activate different pathways, which
could help organoids growing and maintaining their phenotype.
For example, Tsao et al.’s organoid study utilized common
culture medium formulations like ADMEM/F12, Glutamax,
HEPES, and pen-strep, and also N-acetyl-L-cysteine (NALC), B-
27 supplement to maintain the stem cell properties of patient-
derived lung cancer cells. But in addition, they added small
molecular inhibitors or activators into the culture medium,
which included A83-01, Y-27632, Noggin, CHIR 99021, and
Smoothened agonist (SAG). In their tailored “cocktail,” some
growth factors including fibroblast growth factor 4 (FGF 4),
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FGF 10, and epidermal growth factor (EGF) were also added
(35). However, in contrast, Jang et al.’s organoid study culture
medium components were much simpler that included only B-
27 supplement, Y-27632, bFGF, EGF, N2 supplement, and basic
formulations like DMEM/F12 and pen-strep (36). Both their
lung cancer organoids were seeded in a growth factor reduced
Matrigel. Their successful culture periods were more than 3
months, and in Jang’ s study, lung cancer organoids could be
successfully cultured for more than half a year. The difference
in experience from the two groups remind us that the addition
of culture medium components is only partly responsible for
organoid culture success. In fact, the problem of overgrowth of
normal epithelial cells during lung cancer organoids cultures are
frequently reported (37). Some studies showed that the growth
advantage of normal lung cells during organoids culture may be
because of the genetically unstable nature and the high apoptosis
rate of cancer cells (38). Besides, the culture medium with much
stem cell formulations could be another reason. For example, in
Clever et al.’s study, although they added many small molecular
signaling modulators and grow factors into the culture medium
like R-spondin, Noggin, SB 202190, A83-01, Y-27632, FGF7, and
FGF10, they also added Nutlin-3a into the medium to drive TP53
wild-type into senescence or apoptosis, which could supress the
rapid growth of normal epithelium cells (39). By using Nutlin-
3a selection, they have selectively expanded the lung cancer
organoids with P53 mutation and have successfully established
pure lung cancer organoids from different histological subtypes.
But the culture time of their successful study was not reported.
The organoids culture methods mentioned above are aiming at
established pure lung cancer organoids or restrain the normal
lung cells as much as possible. However, some research has
performed an air–liquid interface (ALI) culture method for
lung cancer organoids to conserve more lung stroma cells.
For instance, in Kuo et al.’s study, the formulation of their
medium is much similar with Clever et al.’s. They both include
ADMEM/F12, NALC, B-27 supplement, R-spondin, Noggin,
Nicotinamide, A 83-01, and SB-202190, but instead of Y-27632,
FGF 7, and FGF 10, Kuo et al. also added EGF, Gastrin, and
Wnt3a into the culture medium. More importantly, they used
rat tail type 1 collagen to set up the ALI system for lung
cancer organoids culture (Figure 1). In their work, the ALI
system could maintain the stroma cells like tumor-infiltrating
immune cells to better recapitulate the TME (40). They firstly
used this culture system for recapitulating the tumorigenesis
in murine organoids models. Then they performed this system
in lung cancer organoids (adenocarcinoma and squamous cell
carcinoma) and other tumors for more than 100 tumor biopsies
(40). They have successfully constructed 87% of lung cancer
organoids for more than 100 days and modeled the immune
checkpoint blockade (ICB). At this point, the growth of stroma
cells may not be a barrier for organoids system establishment.

Lung Cancer Organoids Modeling for Understanding

of Lung Cancer Biology
As a preclinical lung cancer system, organoids model maintains
not only the genetic characteristics of parental lung cancer, but

also retains the histology of original cancer tissues after long-
term in vitro culturing. Tsao’s study showed that after long-term
expansion, lung cancer organoidsmodels still can recapitulate the
histology of the patient and the PDX models (35). The organoids
xenograft models they constructed also maintain the tumorigenic
character and the mutation of the original cancer tissues (35).
Shi et al.’s research showed that even after more than 4 months
3D culturing in vitro, early stage(I/II) NSCLC organoids could
still express the marker of their cancer type such as Ki76 and
thyroid transcription factor-1, which supported the expansion
of NSCLC organoids models use (5). The great recapitulation of
original specimens can help us understand the mechanism and
tumorigenesis of lung cancer.

Lung Cancer Organoids Models for Lung Cancer

Clinical Application

Lung Cancer Organoids Models for Targeted Drug

Evaluation and Personalized Medicine
Increasing studies have shown that organoids could be an
excellent model for screening personalized cancer medicine. One
such application is the use of organoids to evaluate patient-
specific responses to cancer-fighting drugs. Organoid cultures
maintain the epigenetic and genetic alterations of the original
lung cancer, which could provide an excellent alternative to
explore the drug resistance of the tumor that occur in patients.
In one study, organoids with three different kinds of genetic
mutations were developed to analyze the response to lung
anticancer drug: organoids with BRCA2-mutant to Olaparib,
organoids with EGFR-mutant to erlotinib, and organoids with
EGFR-mutant/MET-amplified to crizotinib (36). The results
showed that the IC50 of organoids with p.W2619C mutation in
olaparib was lower than the organoids with p.M965I mutation.
The structure of organoids with p.W2619C mutation was
destroyed after olaparib treatment. The findings were consistent
with the PDX model and also the hypothesis that p.W2619C is
a pathogenic mutation that plays a significant role in synthetic
lethal with poly (ADP-ribose) polymerase (PARP) inhibition
(41). The organoids of EGFR-mutant with or without MET-
amplified also showed patient-specific drug responses to erlotinib
and crizotinib, and the PDX model showed similar results (36).
In addition, the therapy efficacy is poor for patients with NSCLC
with EGFR Exon 20 insertion mutation, and there is no approved
targeted drug for this new mutation (42). Cho et al.’s team
have established several preclinical models like PDXs, organoids,
and patient-derived cells to examine the drug response of
Amivantamab, which is a EGFR-MET bispecific antibody (43).
Their results were consistent with the ongoing phase I study,
indicating that amivantamab could be a promising targeted drug
for EGFR Exon 20 insertion mutation patients (43).

Organoids models could also be used to explore the effective
target therapy for patients NSCLC with HER2 mutations.
Previous studies showed that HER2 mutations occur in ∼2–
3% of NSCLC (44). Most of the NSCLC patients with HER2
mutation showed limited effect to HER2 inhibitors like afatinib,
dacomitinib, neratinib, and trastuzumab (45–48). Hirsch et
al.’s work showed that HER2 inhibitor pyrotinib is effective
for patient-derived organoids established from HER2 exon 20
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FIGURE 1 | Air-liquid interface (ALI) culture system: (A) Precoat collagen gel in a 0.4µm transwell; (B) Resuspend cells with collagen gel and layered on top of

presolidified collagen gel; (C) Place the transwell into cell culture dish with culture medium.

mutations patients, as well as the corresponding PDX models
(49). After that, a phase II clinical trial showed that patients with
HER2mutation displayed promising drug sensitivity to pyrotinib
(50). Another group established the in vitro patient-derived
lung cancer organoids models and explored the drug response
from different classes of molecular-targeted drugs, like small-
molecule inhibitors, monoclonal antibodies, and an antibody–
drug conjugate. In their experiments, HER2 inhibitors were also
evaluated using organoids models, and their results indicated
that patient-derived organoids is a suitable preclinical model for
molecular targeted drug screening and evaluation (51). These
studies indicated that although organoids models were cultured
in vitro, the 3D culturing method could capture the genetic and
tumor biology of original cancer, just like PDX models, but at
lower cost and less time. It also provides a significant way for
identifying promising therapies and drug screening (Figure 2).

Lung Cancer Organoids Models for Immunotherapy
In addition to targeted therapies, lung cancer organoids
models also could be used to model the tumor-immune
microenvironment. Since one of the weakness of traditional
organoids model is the lack of TME, some studies have developed
the new organoids culture technique, the coculture systems
with additional cellular components such as tumor-infiltrating
lymphocytes (TILs) (52). For example, previous studies showed
that the key to simulate the immune checkpoint blockade is to
preserve the original tumor T cell receptor spectrum (53). Voest
et al.’s study showed that when peripheral blood lymphocytes
coculture with autologous lung cancer organoids it could expand
and enrich the tumor-reactive T cells (54). In their work, after
processing specimen from patients with lung cancer, organoids
models were cocultured with the patient’ s peripheral blood
lymphocytes. Some supplements like IFNγ, IL2, and anti-PD1
antibodies were added to promote the expansion and enrichment

of tumor-reactive CD4 and CD8T cells. Subsequently, organoids
were used to evaluate the immune reactivity of these tumor-
reactive T cells in various assays (54). Voest et al.’s study
also showed a T cells coculture system in NSCLC, which
could activate the tumor-reactive CD8T cells (55). Furthermore,
combination of anti-PD-L1 and MEK inhibitor in NSCLC
organoids models could predict the drug response of clinical
patients (56). These organoids studies indicated the significant
role of organoids models in immunotherapy of lung cancer.

Lung Cancer Organoids Models for Drug Screening and

Biomarker Screening
In the past decades, plenty of lung cancer drug studies performed
in standard 2D lung cancer cell lines models were proven to be
ineffective because of the genetic drift and clone selection in lung
cancer cell lines (57). Organoids models could well retain the
physiological architecture of original specimens, specific function
of native tumor, and also the simulation of drug responses. These
features allow organoids to be a better preclinical model for
drug screening, exploration of novel molecular targeting, and
study of potential mechanisms involved in the acquisition of
drug resistance. For instance, a previous work has compared
the drug sensitivity and drug resistance of lung cancer cell lines
between culturing as a lung multicellular tumor spheroids (MTS)
way and a monolayers way (58). Their result showed a very
different drug response between 2D and 3D cultures. Conrad
et al.’s study has performed genomic analysis to compare drug
effect of patient-derived lung cancer cells between the monolayer
models and matrix-dependent organoids models. Their results
showed that the novel link between drug sensitive and DNA
repair deficiency was found in organoids, but undetectable in
monolayers during the drug-induced cell death and growth arrest
(59). Besides, another work showed that patient-derived lung
cancer organoids models were amenable to further -throughput
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FIGURE 2 | Drug testing via patient-derived organoids models: (A) Collecting the lung cancer specimens from patients during surgery, digesting the tissue and

seeding cells in growth factors reduced Matrigel; dome culturing in culture medium; organoids culturing and passage; preforming Cell Titer-Glo Luminescent cell

viability assay for drug testing. (B) Representative image of long-term culture lung cancer organoids (more than five passages) in our lab.

drug screening because of its well-retaining ability of tumor
histopathology and cancer gene mutation (39). So far there
are multiple studies that have successfully constructed different
subtypes of lung cancer organoids. For example, Jang et al.’s
team has established five histological subtypes of lung cancer for
more than 80 lung cancer organoids (36). The long-term culture
organoids established by Tsao’ team also confirmed the genomics
and biological similarity between lung cancer organoids and the
original tumor (35). These results indicated that lung cancer
organoids system could be a potential promising platform for
drug screening and biomarker validation (35, 36).

Limitation of Lung Cancer Organoids
Models
Although lung cancer organoids could be a promising drug
screening tool, a potential biomarker bank, and a great model
for drug evaluation, this advanced model has its limitations.
The most important limitation is the culture methodology,
which can hinder organoids models from different applications.
Although the culturing medium could supply nutrition for
organoids growth and development, there will be a potential
possibility that the growth factor like small molecule inhibitors in
culture medium may change the drug response of the organoids.
Furthermore, it remains unclear to what extent this molecule will
impact the tissue maturation of lung cancer organoids. Despite

Matrigel being the most common extracellular matrix in vitro
for organoids models, there is still abundant of growth factors
that may affect the differentiation and growth of organoids like
molecular in culture medium (60). In addition, the progression
in growth of organoids can vary wildly, which is a major problem
for high throughput drug screening (61). The lack of blood
vessels in the microenvironment of organoids to remove waste
and dead cells is another challenge for culturing of organoids,
which may limit the growth size of organoids. Some studies
have tried to incorporate endothelial cells or perform engineered
culture technology to solve this problem (62). Moreover, research
about parenchyma–stromal cocultures is rare, which may limit
our understanding of their long-term effect in tumor growth
and drug responses (63). Lastly, performing complex technology
using organoids like CRISPR Cas9 technology or construction of
lentivirus vector is not as convenient as lung cancer cell lines,
which limits its applications in lung cancer research (64).

CONCLUSION

Lung cancer cell lines are easy to handle, fast growing, and
have a low cost for lung cancer research and large-scale studies.
However, the lack of tumor heterogeneity, cell–cell interaction,
and monolayer in culture have limited their translational
application in medicine. In vivo lung cancer model PDX
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could retain better the TME. PDX models provide a solution
for the lack of tumor heterogeneity and cell–cell interaction.
Researchers could perform tumor sizemeasurements and toxicity
examination to directly observe the drug response. Nevertheless,
the limited passage and high cost, and also the time consuming
nature of the PDX model hamper large-scale studies and
widespread use in a range of experiments. Lung cancer organoids
could better maintain the biology and genetic characteristics of
the original cancer, which allows researchers to perform drug
evaluation and biomarker identification. Its 3D culturing method
could well mimic the microenvironment of the initial tumor.
In addition, organoid models could save a lot of time when
compared with PDX models, which could more rapidly provide
answers that benefit lung cancer patients in the clinical setting.
It also makes co-culture with other cell types possible, giving
researchers more opportunities to study the microenvironment
and tumor immunology. Furthermore, researchers could also
knock down/out or overexpress the potential gene in organoids
for functional and lethality explorations.

While organoids models have many advantages, a major

obstacle for lung cancer research would be the establishment of

organoids models and their standardization. Unlike other cancer

models, lung cancer organoids are more difficult to initiate and
maintain in the long-term propagation. It is also noted that the
standards of successful establishment of organoids models vary
between different laboratories with no definitive standardized
methodology for lung cancer organoids models, even for the
ECM ingredients, culture medium, or whether dome culture

method should be used or not. Introducing stroma, immune
cells, biomechanical stimuli, and blood vessels into organoids
culture could be a promising way in future to overcome the
problem of the lack of microenvironment, thereby improving the
organoids model.
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