
cells

Article

The Envelope Residues E152/156/158 of Zika Virus
Influence the Early Stages of Virus Infection in
Human Cells

Sandra Bos 1 , Wildriss Viranaicken 1 , Etienne Frumence 1 , Ge Li 2, Philippe Desprès 1 ,
Richard Y. Zhao 2,3,4,5,* and Gilles Gadea 1,*

1 Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus
Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde,
La Réunion, France; sandrabos.lab@gmail.com (S.B.); wildriss.viranaicken@univ-reunion.fr (W.V.);
etienne.frumence@univ-reunion.fr (E.F.); philippe.despres@univ-reunion.fr (P.D.)

2 Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
lige_cn@hotmail.com

3 Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
4 Institute of Global Health, University of Maryland, Baltimore, MD 21201, USA
5 Institute of Human Virology, University of Maryland, Baltimore, MD 21201, USA
* Correspondence: RZhao@som.umaryland.edu (R.Y.Z.); gilles.gadea@inserm.fr (G.G.);

Tel.: +33-262-262-938-806 (G.G.)

Received: 6 September 2019; Accepted: 13 November 2019; Published: 15 November 2019 ����������
�������

Abstract: Emerging infections of mosquito-borne Zika virus (ZIKV) pose an increasing threat to
human health, as documented over the recent years in South Pacific islands and the Americas
in recent years. To better understand molecular mechanisms underlying the increase in human
cases with severe pathologies, we recently demonstrated the functional roles of structural proteins
capsid (C), pre-membrane (prM), and envelop (E) of ZIKV epidemic strains with the initiation
of viral infection in human cells. Specifically, we found that the C-prM region contributes to
permissiveness of human host cells to ZIKV infection and ZIKV-induced cytopathic effects, whereas
the E protein is associated with viral attachment and early infection. In the present study, we further
characterize ZIKV E proteins by investigating the roles of residues isoleucine 152 (Ile152), threonine
156 (Thr156), and histidine 158 (His158) (i.e., the E-152/156/158 residues), which surround a unique
N-glycosylation site (E-154), in permissiveness of human host cells to epidemic ZIKV infection.
For comparison purpose, we generated mutant molecular clones of epidemic BeH819015 (BR15) and
historical MR766-NIID (MR766) strains that carry each other’s E-152/156/158 residues, respectively.
We observed that the BR15 mutant containing the E-152/156/158 residues from MR766 was less
infectious in A549-Dual™ cells than parental virus. In contrast, the MR766 mutant containing
E-152/156/158 residues from BR15 displayed increased infectivity. The observed differences in
infectivity were, however, not correlated with changes in viral binding onto host-cells or cellular
responses to viral infection. Instead, the E-152/156/158 residues from BR15 were associated with
an increased efficiency of viral membrane fusion inside infected cells due to conformational changes
of E protein that enhance exposure of the fusion loop. Our data highlight an important contribution
of E-152/156/158 residues to the early steps of ZIKV infection in human cells.
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1. Introduction

Mosquito-borne Zika (ZIKV), dengue (DENV), Yellow fever (YFV) and Japanese encephalitis
(JEV) viruses belonging to flavivirus genus (Flaviviridae family), are four enveloped RNA viruses
of significant public health concern worldwide [1–4]. Recent ZIKV global outbreaks, with Brazil at
the epicentre, highlighted how a previously neglected flavivirus can turn into a severe threat for
human health. While human ZIKV infections remained only sporadic and with a limited impact
for decades [5–8], recent outbreaks revealed that ZIKV caused clusters of severe congenital and
neurological abnormalities in infants and peripheral nervous system impairments in adults [9–12].
Considering the dramatic increase of severe human cases, strategies to efficiently control this virus,
either in terms of antiviral therapies or vaccines, are urgently needed and a granted requirement for
more extensive studies.

Flaviviruses contain a genomic single-stranded positive RNA encoding a single large polyprotein
that is subsequently cleaved by cellular and viral proteases into three structural proteins (C, prM/M
and E) and seven nonstructural proteins (NS1 to NS5). The latter are responsible for virus replication,
assembly and escape from host immune system, while structural proteins form the viral particle
surrounding genomic viral RNA. Among structural proteins, the E protein is responsible for viral
entry into host cells. Viral E protein first binds to cellular attachment factors and receptors, leading to
virion internalisation primarily through a clathrin-mediated endocytic pathway [13]. In endosomes,
fusion of viral and cellular membranes occurs after E protein conformational changes triggered
by low pH [14]. The E protein peptide chain folds into three distinct domains: a central ß-barrel
(domain EDI), an elongated dimerization region (domain EDII), which includes the fusion loop,
and a C-terminal, immunoglobulin-like module (domain EDIII) [15]. Most flavivirus E proteins
are post-translationally modified by addition of a single N-linked oligosaccharide on residue N-154
located within the EDI-loop [16]. Flavivirus E proteins represent one of the key determinants for viral
pathogenesis. Flavivirus envelope supports virus tropism and single amino-acid changes can redirect
virus tropism [17]. Flavivirus E proteins also represent a major target for neutralizing antibodies but,
at the same time, can be involved in enhancement/cross-reactivity of reactive antibodies [18–21].

Recently, our studies on chimeric ZIKV clones between an epidemic Brazilian strain of ZIKV
BeH819015 (hereafter called BR15) and a historical African strain MR766 highlighted an important role
of two structural proteins prM/M, and E in ZIKV ability to infect human cells [16,22–24]. We further
showed that they contribute to the initiation of viral infection. Analysis of chimeric viruses indicated
that C-prM region plays a role in triggering cell death by ZIKV and E protein is associated with
viral attachment to host cells during early infection [23,24]. Flavivirus E proteins usually contain
two N-glycosylation sites at position E-56 and E-154. The first site is lacking in ZIKV E protein
and contribution of the second site in ZIKV viral cycle, including in the mosquito vector, has been
recently highlighted [25]. N-linked glycosylation of the E protein was shown to be an important
determinant of ZIKV virulence in a mouse model of viral encephalitis [22,26]. In invertebrate vectors,
ZIKV bearing an unglycosylated E protein was attenuated in its capacity to replicate in Aedes aegypti [27].
Although a N-glycosylation site is highly conserved among flaviviruses, which suggests of its biological
importance, E proteins could remain unglycosylated as it has been observed in some ZIKV strains.
To date, the exact mechanism by which the N-glycosylation motif region of the E protein contributes to
ZIKV infectivity still remains elusive. In the present study, we further characterised structural protein
contribution in ZIKV infectivity by focusing on the ZIKV E protein. Our goal was to determine whether
three E residues—Ile152, Thr156, and His158 (hereafter called as E-152/156/158 residues)—which
surround the Asn154 composing the N-glycosylation site NDT, may have any effect on ZIKV’s ability
to infect human cells.
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2. Materials and Methods

2.1. Cells and Reagents

Vero cells (CCL-81, ATCC, Manassas, VA, USA), A549-Dual™ cells (a549d-nfis, InvivoGen,
San Diego, CA, USA) and human embryonic kidney HEK-293 cells (CRL-1573, ATCC, Manassas, VA,
USA) were cultured at 37 ◦C under a 5% CO2 atmosphere in MEM medium, supplemented with 5% to
10% heat-inactivated foetal bovine serum (FBS). A549-Dual™ (A549DUAL) cells were maintained in
growth medium supplemented with nonessential amino acids, 10 µg·mL−1 blasticidin and 100 µg·mL−1

zeocin (InvivoGen, San Diego, CA, USA). Chloroquine phosphate was purchased from Sigma-Aldrich
(Saint-Louis, MO, USA). Rat antibody specifically raised against ZIKV E protein Domain III was
developed in-house and used in immunoblot with reducing conditions [28]. Mouse anti-pan flavivirus
envelope E protein monoclonal antibody (mAb) 4G2 was purchased from RD Biotech (Besancon, France)
and used in immunoblot with nonreducing conditions. Horseradish peroxidase-conjugated anti-rabbit
and anti-mouse antibodies were purchased from Vector Laboratories (Burlingame, CA, USA).

2.2. Design of ZIKV Molecular Clones

ZIKV molecular clones (MR766, GenBank accession number LC002520, and BR15,
GenBank accession number KU365778) were designed and produced according to the
Infectious Subgenomic Amplicon method as previously described [23,29,30]. To introduce
BR15 E-152/156/158 residues into MR766 (MR766E-152I/156T/158H), we used mutagenesis primers
(forward primer: 5′-ggctcccagcacagtgggatgatcgttaatgacacaggacatgaaactg-3′ and reverse primer:
5′-cagtttcatgtcctgtgtcattaacgatcatcccactgtgctgggagcc-3′) to generate two overlapping fragments
Z1MR766-E-MUT1 and Z1MR766-E-MUT2 from the Z1MR766 fragment encoding the MR766 structural proteins
in which encoding region of the E protein received the IVNDTGH motif (amino acids 152 to 158)
from BR15. To generate BR15E-152T/156I/158Y, a new Z1BR15-E-I152T/T156I/H158Y fragment was synthesised
in which the sequence was modified so that encoding region of the E protein received the TVNDIGY
motif (amino acids 152 to 158) from MR766. Synthetic genes were cloned into plasmid pUC57 by
GeneCust (Boynes, France). Fragments were amplified by PCR from their respective plasmids using
a set of primer pairs that was designed so that fragments overlapped with each other of about 30 to
50 nucleotides.

2.3. Recovering of Molecular Clones BR15E-152T/156I/158Y and MR766E-152I/156T/158H

Molecular clones were produced as previously described [23,29]. Briefly, purified PCR fragments
were electroporated into Vero cells. After 5 days, cell supernatants were recovered usually in
absence of cytopathic effect and used to infect fresh Vero cells in a first round of amplification (P1).
Viral clones were recovered at the onset of cytopathic effect and amplified for another round on
Vero cells to produce a second round of amplification (P2), which was used for described studies.
To produce MR766E-152I/156T/158H and BR15E-152T/156I/158Y mutant viral clones, Vero cells were respectively
electroporated with PCR fragments Z1MR766-E-MUT1, Z1MR766-E-MUT2, Z2MR766, Z3MR766, and Z4MR766

and with Z1BR15-E-MUT, Z2BR15, Z3BR15, and Z4BR15. Recovered mutant viruses MR766E-152I/156T/158H

and BR15E-152T/156I/158Y respectively consist of viral sequence of MR766 in which E-152/156/158 residues
of BR15 ZIKV strain were introduced and viral sequence of BR15 in which E-152/156/158 residues were
replaced with its counterpart from MR766 ZIKV strain.

2.4. Plaque-Forming Assay

Viral titres were determined by a standard plaque-forming assay as previously described with
minor modifications [31]. Briefly, Vero cells grown in a 48-well culture plate were infected with serial
tenfold dilutions of virus samples for 2 h at 37 ◦C, and then incubated with 0.8% carboxymethylcellulose
(CMC) for 4 days. Cells were fixed with 3.7% formaldehyde (FA) in PBS and stained with 0.5% crystal
violet in 20% ethanol. Viral titres were expressed as plaque-forming units (PFU) per mL (PFU·mL−1).
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2.5. Quantification of Viral Stocks

Zika virus samples were analysed by titration on Vero cells while genomic viral RNA was
quantified by RT-qPCR, as previously described [23]. Briefly, viral RNA was extracted from virus
particles using QIAmp Kit (Qiagen, Hilden, Germany). PCR standard curve used for quantification of
ZIKV copy numbers was obtained with a pUC57/ZIKV-E amplicon plasmid containing a synthetic
cDNA encompassing nucleotides 961 to 1301 of genomic RNA (MR766). The pair of ZIKV E primers
was used to equally amplify pUC57/ZIKV-E amplicon and cDNA encompassing nucleotides 1046 to
1213 from genomic RNA of ZIKV molecular clones used in this study.

2.6. Immunoblot Assay

Cell lysates were performed in RIPA lysis buffer or buffer A (cell fractionation). All subsequent
steps of immunoblotting were performed as previously described [32,33]. Primary antibodies
were used at 1:500 dilutions. Anti-mouse immunoglobulin-horseradish peroxidase and anti-rat
immunoglobulin-horseradish peroxidase conjugates were used as secondary antibodies (dilution
1:2000). Blots were revealed with ECL detection reagents (Amersham, Little Chalfont, United Kingdom).

2.7. Flow Cytometry Assay

A549-Dual™ cells were grown on six-well plates at 5 × 105 cells per well and infected at
a multiplicity of infection (MOI) of 1. Infected cells were harvested and fixed with 3.7% formaldehyde
in PBS for 20 min, permeabilized with 0.1% Triton X-100 in PBS for 4 min and then blocked with
PBS-BSA for 10 min. Cells were stained with anti-E mAb 4G2 (1:1000) for 1 h. Antigen staining
was visualized with goat anti-mouse Alexa Fluor 488 IgG (1:1000) for 20 min. Cells were subjected
to a flow cytometric analysis using a CytoFLEX flow cytometer (Beckman Coulter, Brea, CA, USA).
The percentage of positive cells was determined using FlowJo software (version 10, Tree Star, Inc.,
Ashland, OR, USA).

2.8. RT-qPCR

Total RNA including genomic viral RNA was extracted from cells (Qiagen, Hilden, Germany)
and reverse transcription was performed using 500 ng of total RNA, random hexamer primers
(intracellular viral RNA) or E reverse primer (virus particles) and moloney mouse leukemia virus
reverse transcriptase (Life Technologies, Carlsbad, CA, USA) at 42 ◦C for 50 min. Quantitative PCR
was performed on a CFX96 qPCR System (Bio-Rad, Hercules, CA, USA). Briefly, 10 ng of cDNA was
amplified using 0.2 µM of each primer and 1X GoTaq Master Mix (Promega, Madison, WI, USA).
When appropriate, data were normalised to the internal standard GAPDH. For each single-well
amplification reaction, a threshold cycle (Ct) was calculated using the CFX96 qPCR program (Bio Rad,
Hercules, CA, USA) in the exponential phase of amplification. Relative changes in gene expression
were determined using the 2∆∆Ct method and reported relative to the control. Primers used in this
study are listed in [31]. ZIKV E primers were designed to match both MR766-NIID and BeH819015
sequences (forward 5-gtcttggaacatggagg-3′ and reverse 5′-ttcaccttgtgttgggc-3′).

2.9. Virus Binding Assay

Cells were cultured at subconfluent density in 24-well plates. Cell monolayers were washed in
cold PBS and cooled at 4 ◦C for at least 20 min in presence of cold MEM supplemented with 2% FBS.
Pre-chilled cells were incubated at 4 ◦C with ZIKV at MOI of 1 in 1.5 mL of cold MEM supplemented
with 2% FBS. After 1 h of incubation, virus inputs were removed and cells were washed with cold
MEM supplemented with 2% FBS. Total cellular RNA was extracted using the RNeasy kit (Qiagen,
Hilden, Germany) and RT-qPCR analysis on viral RNA was performed using primers for ZIKV E gene
as described above.
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2.10. Fusion Assay

Cells were cultured at subconfluent density in 12-well plates. Cell monolayers were cooled at 4 ◦C
for at least 20 min in presence of cold MEM supplemented with 10% FBS. Pre-chilled cells were incubated
at 4 ◦C with ZIKV at MOI of 1 in 1 mL of cold MEM supplemented with 10% FBS. After 1-h incubation,
cells were shifted to 37 ◦C for another hour. Chloroquine was added to culture medium at 100 µM for a 2-h
period. Next, culture medium was then replaced to avoid drug cytotoxic effects. Cells were harvested 30 h
post temperature shifting for RNA extraction. Total RNA was subjected to RT-qPCR analysis as described.

2.11. Cytotoxicity Assay

Cell damages were evaluated by measuring lactate dehydrogenase (LDH) release. Supernatants
of infected cells were recovered and subjected to CytoTox 96® nonradioactive cytotoxicity assay
(Promega, Madison, WI, USA) according to manufacturer instructions. Absorbance of converted dye
was measured at 490 nm using a microplate reader (Tecan, Mannedorf, Switzerland). Results of LDH
activity in cell supernatants are presented with subtraction of values from mock-infected cells.

2.12. Measurement of the IFN-β Pathway Activation

Activation of the Interferon regulatory factors (IRF) pathway was monitored by measuring Lucia
luciferase activity in A549-Dual™ cells. It was evaluated using QUANTI-Luc substrate (InvivoGen,
San Diego, CA, USA) according to manufacturer’s recommendations. IRF-induced luciferase levels
were quantified using a FLUOstar Omega Microplate Reader (BMG LABTECH, Offenburg, Germany).
Results are presented with subtraction of values from mock-infected cells.

2.13. TMD2-M/E Expression

To express recombinant E proteins from ZIKV in mammalian cells, TMD2-prM (TransMembrane
Domain II) and E genes from MR766 and BR15, as well as a mutant BR15 bearing residues E-152 to E-158
from MR766, were synthesised by GeneCust (Boynes, France). Recombinant proteins comprised aa 275
to aa 775 of polyproteins, which correspond to the very end of prM protein (TMD2, used as signal peptide
for E proteins) and the entire E protein. As Flavivirus prM protein plays a role of chaperone to ensure the
proper folding of the E protein, we expected that viral chaperone activity eviction would have exacerbate
differences in E protein folding [34]. Modifications to optimize viral E protein expression in human
cells were done on original protein sequences. Then, mammalian codon-optimised sequences coding
for TMD2-prM and E proteins were cloned into the NheI and NotI restriction sites of the pcDNA3.1(-)
plasmid to generate pMR766, pBR15 and pBR15E-MUT, respectively. Each plasmid was transfected in
human HEK-293T cells using lipofectamine 3000 according to manufacturer’s instructions.

2.14. Cell Fractionation

Cells were washed with PBS and lysed at a concentration of 1 × 104 cells per µl in protein
separation buffer A (0.2% Triton X-100, 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 2.5 mM EDTA) [32].
As misfolded proteins aggregate and become resistant to Triton X-100 solubilisation [32,35], Triton
X-100-insoluble fraction was separated by centrifugation at 3400 g for 10 min. Pellets were enriched in
misfolded proteins. Samples were analysed by immunoblot. Loading was normalised by the number
of lysed cells. Band intensities were determined with ImageJ software (version 1.50i, NIH, Washington,
WA, USA, 2016) and soluble/insoluble ratios calculated.

2.15. Statistical Analysis

All values are expressed as mean ± SD of at least two independent experiments. Comparisons
between different treatments were analysed by a one-way or two-way ANOVA tests as deemed appropriate.
Values of p < 0.05 were considered statistically significant for a post-hoc Tukey′s test. All statistical tests
were done using the software GraphPad Prism (version 8.01, GraphPad Software, La Jolla, CA, USA).
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3. Results

3.1. Characterization of Mutant ZIKV Molecular Clones

To determine the contribution of E-152/156/158 residues in ZIKV E protein functions, we generated
two mutant molecular clones: MR766E-152I/156T/158H, hereafter called MR766E-MUT, in which
E-152/156/158 residues of BR15 epidemic strain were introduced, and BR15E-152T/156I/158Y, hereafter
called BR15E-MUT, in which E-152/156/158 residues were replaced with their counterparts from the
MR766 historical African strain (Figure 1a). Genomes were assembled using the infectious subgenomic
amplicon method [29]. Briefly, Vero cells were electroporated with overlapping fragments, in which
appropriate mutations have been previously introduced. The two recovered clones were viable and
twice amplified on Vero cells. Titres of P2 working viral stocks were determined in Vero cells and
were ranging from 5 × 105 to 1 × 108 PFU·mL−1 (Figure 1b). MR766E-MUT and BR15E-MUT gave plaque
morphologies that resembled those of respective MR766 and BR15 parental clones (Figure 1c), which is
in agreement with previously published data [27]. In addition, we confirmed that the introduced
mutations affected the electrophoretic mobility of ZIKV E proteins, suggesting that E-152/156/158
residues from BR15 E protein might enable its glycosylation (Figure 1d + Figure S1).
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Figure 1. ZIKV mutant molecular clones. In (a), schematic representation of mutant viral clones
BR15E-MUT and MR766E-MUT and their respective parental clones. In (b), histograms showing viral
titres. Values represent means and standard errors of three independent experiments. In (c), examples of
infectious plaques developed for BR15E-MUT and MR766E-MUT, and parental clones, after plaque-forming
assay on Vero cells. In (d), Vero cells were infected with parental and mutant molecular clones (MR766
and BR15) at a MOI of 1. 24 h post-infection (hpi), cells were then lysed and subjected to an immunoblot,
in non-reducing conditions. Anti-ZIKV EDIII immunoblot shows differences of electrophoretic mobility
associated with residue mutations.
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3.2. Residues E-152/156/158 from BR15 Potentiate Viral Infectivity

We first analysed infectivity of P2 virus stocks as described above. Particle-to-PFU ratios
obtained from parental clones were around 900–1000 (Table 1), which is consistent with our previous
observations [23]. We then analysed particle-to-PFU ratios of the two E mutant clones. Addition of
residues E-152/156/158 from BR15 to MR766 resulted in a 2.3-fold decrease in the particle-to-PFU ratio.
In contrast, when residues E-152/156/158 from MR766 were introduced to BR15, the particle-to-PFU ratio
was markedly increased with more than ten-folds. These results suggest that residues E-152/156/158
from BR15 potentiate virion infectivity.

Table 1. Table showing particle-to-PFU ratios. Viral RNA extracted from viral stock P2 were subjected to
quantification by RT-qPCR using E primers. Obtained Ct values were plotted in a standard curve (serial
dilutions of plasmid copies) in order to get the number of viral RNA molecules per mL. These results
were compared to viral stock quantifications by standard plaque-forming assay, which then gave the
particle-to-PFU ratios, also named vRNA-to-PFU ratios. Values represent means and standard errors of
two to four independent experiments.

VIRUS STOCK. PARTICLE-TO-PFU RATIO p VALUES
(E-MUT vs. WT)

MR766 997 ± 36
MR766E-MUT 419 ± 87 <0.05

BR15 918 ± 91
BR15E-MUT 11 237 ± 720 <0.001

3.3. Alteration of Residues E-152 to E-158 of ZIKV E Protein Does Not Affect Virus Binding to Host Cells but
May Affect Virus Progeny Production

We previously showed that historical and epidemic ZIKV strains display differences in their
abilities to bind host cells, leading to differences in cell susceptibility to infection (18, 19). Here,
we further investigated the ability of the described mutant clones to bind onto A549-Dual™ cells.
Virus binding assays were performed and analysed by RT-qPCR to determine virus particle binding
onto cell surface after an incubation period of 1 h. Panels A and B show no difference between mutant
clones and their respective parental clones (Figure 2). These results contrast with other studies in
mosquito cells [27], suggesting that viral receptors may vary between vertebrate and invertebrate cells.
These data suggest that alteration of residues E-152 to E-158 of ZIKV E protein does not affect virus
bindings to A549-Dual™ cells.

Instead, these results suggest that E-152/156/158 residues might influence ZIKV progeny production.
Indeed, the progeny production of MR766E-MUT was modestly but reproducibly increased in comparison
to that of MR766 (3 × 107 PFU·mL−1 vs. 1 × 107 PFU·mL−1) at 72 hpi [23]. Conversely, kinetics of the
BR15E-MUT progeny production were strongly altered compared to BR15 (2 × 106 PFU·mL−1 vs. 4 ×
107 PFU·mL−1) at 72 hpi, respectively [23]. Differences in progeny production were observed at as
early as 24 hpi. Similar differences were also seen on the percentages of the infected cell at 48 hpi.
Taken together, these results indicate that E-152/156/158 residues from BR15 potentiate viral infectivity,
independently of the virus binding to host A549-Dual™ cells.
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Figure 2. Analysis of virus binding and viral growth in A549-Dual™. In (a) and (b), for virus binding
assays, cells were incubated with viral clones at the MOI of 1 for 1 h at 4 ◦C. The number of virus
particles bound to cell surface was measured by RT-qPCR. Values represent means and standard errors
of three independent experiments. In (c) and (d), A549-Dual™ were infected with BR15E-MUT and
MR766E-MUT at MOI of 1. Infectious virus released into the supernatants of infected A549-Dual™ cells
were quantified at 24, 48 and 72 hpi. Error bars represent standard errors of at least two independent
experiments. In (e) and (f), A549-Dual™ were infected with BR15E-MUT and MR766E-MUT and parental
clones at MOI of 1. Percentages of ZIKV-infected cells were determined at 48 h by flow cytometry
using anti-E mAb 4G2 as primary antibody. Error bars represent standard errors of two independent
experiments in duplicates. ns: not significant, ***: p value < 0.001

3.4. Mutations at E-152/156/158 Residues Have No Effect on ZIKV-Induced Cell Death or Interferon Pathways

To determine whether differences described with the mutant viruses were associated with
specific host-cell responses, we first analysed virus-induced cell death at 48 h and 72 h post-infection.
No difference in cytotoxicity measured by LDH release was observed between wild-type and mutant
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viruses (MR766 and BR15) (Figure 3, panels a and b). We then took advantage of the properties
of A549-Dual™ cells to test whether mutant viruses can trigger different host cell innate immunity.
A549-Dual™ cells were derived from A549 cells by stable integration of two reporter genes: SEAP
gene (Secreted Embryonic Alkaline Phosphatase) and Lucia luciferase gene under the respective
transcriptional control of an IFN-β minimal promoter, which is fused to NF-κB binding sites or
an ISG54 minimal promoter in conjunction with interferon-sensitive response elements. We examined
possible activation of the IRF pathway by monitoring production of Lucia luciferase at 48 dpi and
72 hpi. Similar responses were observed in both wild-type and mutant clones (Figure 3, panels c and d).
The NF-κB pathway was not investigated, as we showed previously that this pathway is not activated
upon ZIKV infection [23]. These results indicate that differences in the mutant virus properties could
not be explained by specific host-cell responses, which are consistent with our previous observations
suggesting a link between host-cell responses and ZIKV nonstructural proteins [23].
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Figure 3. Analysis of infection-induced cell death and immune responses. A549-Dual™ were infected
with BR15E-MUT and MR766E-MUT and parental clones at MOI of 1. In (a) and (b), LDH activity was
measured at 48 and 72 hpi respectively. Values represents mean and standard errors of two independent
experiments in triplicates. In (c) and (d), analysis of IRF pathway activation in response to viral
infection. Activity of secreted Lucia luciferase was measured using QUANTI-Luc substrate at 48 and 72
hpi. Results are expressed as raw data of luminescence arbitrary units. Error bars represent standard
errors of two independent experiments in triplicates. ns: not significant.

3.5. E-152/156/158 Residues from BR15 Facilitate Viral Fusion

We showed earlier that E-152/156/158 residues from BR15 have a growth advantage without
apparent association with cellular attachment (Figure 2) or specific host-cell responses (Figure 3).
We then studied viral fusion to test whether it could explain the observed growth advantage. Viral fusion
of flaviviruses is commonly triggered from endosomes upon low-pH by a series of molecular changes
within the E protein, resulting in the release of the nucleocapsid into cell cytoplasm. Chloroquine,
a 4-aminoquinoline, is a weak base that inhibits endosome acidification and consequently restricts
viral replication of many viruses through inhibition of pH-dependent steps. Recently, chloroquine
was shown to inhibit Zika virus infection in different cellular models [36,37]. As BR15 and BR15E-MUT
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showed significant differences in the percentage of infected cells (Figure 2f), we decided to focus on
these two molecular clones for the following virus fusion experiments. We treated A549-Dual™ cells
infected with BR15 or BR15E-MUT with 100 µM of chloroquine 1 hpi for 2 h and then cells were moved
back to regular medium. Intracellular viral RNA was quantified 30 hpi by RT-qPCR. BR15E-MUT fusion
was significantly restricted by chloroquine treatment compared to that of BR15 (Figure 4). These data
suggest that E-152/156/158 residues from BR15 favour viral fusion with host-cell membranes.
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medium. Viral RNA was measured by RT-qPCR 30 h at 37 ◦C. Error bars represent standard errors of
two independent experiments. *: p value < 0.1

3.6. E-152/156/158 Residues from BR15 Favour Conformational Changes within the Fusion Loop

As virus fusion with host cells is highly dependent on conformational changes of the E
protein triggered at low-pH, we hypothesize that the reduced fusion we observed with the mutant
molecular clone BR15E-MUT bearing E-152/156/158 residues from MR766 could be the consequence
of conformational differences between E proteins of the two molecular clones. In order to test this
hypothesis, BR15, BR15E-MUT and MR766 sequences coding for TMD2-prM/E were codon-optimised
for expression in mammalian cells and cloned into a pcDNA3.1 vector. HEK-293T cells were transfected
with different plasmids and positive cells were selected with antibiotics. The resulting stable cell lines
were fractionated to evaluate the capacity of recombinant E proteins to fold properly, insolubility
been a hallmark of misfolded proteins [32,35]. Resulting fractions were subjected to an immunoblot
analysis. We first used a rat antibody developed in-house, specifically raised against E protein domain
EDIII [28]. Figure 5a revealed that BR15E-MUT and MR766 TMD2-prM/E overexpression resulted in
a greater E protein propensity to accumulate in insoluble fractions than that of BR15 overexpression,
as shown by inversion of soluble/insoluble ratios. Interestingly, differences observed between BR15
and mutant BR15 TMD2-prM/E suggested that ZIKV E proteins bear different conformations that only
depend on E-152/156/158 residues. To verify these observations, the same samples were immunoblotted
using a 4G2 monoclonal antibody, which recognises a highly conserved fusion loop sequence of most
flaviviruses. As shown in Figure 5b, 4G2 monoclonal antibody strongly reacts against E protein
from BR15, whereas we could barely detect any signal with the two E proteins bearing E-152/156/158
residues from MR766. Preliminary in silico modelling of ZIKV E proteins suggest that changes
in the glycosylation motif could affect structure of the glycosylation and fusion loops as well as
interactions with surrounding residues (Figure S2) and surface hydrophobicity (not shown). These data
confirm that E-152/156/158 residues in the EDI domain support conformational changes on the ZIKV E
protein, which could be detected in the fusion loop of EDII domain. Finally, these results suggest that
conformational changes occur in BR15 E protein upon mutation of E-152/156/158 residues.
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HEK-293T cells were transfected with TMD2-prM/E constructs and antibiotics that were selected to
raise stable cell lines. Cells were harvested and proteins extracts subjected to a fractionation. Protein
fractions were immunoblotted with anti-ZIKV EDIII (a) or anti-E 4G2 (b) antibodies. S, soluble proteins;
I, insoluble proteins. Band intensities were determined with ImageJ software and S/I ratios were
calculated. Apparent discrepancies with cytometry experiments (Figure 2) regarding antibody reactivity
are explained by experimental and recombinant protein overexpression versus viral infection conditions.

4. Discussion

The role of structural proteins in determining infectivity of human cells to ZIKV infection has
been previously reported [23]. Zika viruses of historical or epidemic strains display differences in
their abilities to bind host cells leading to differences in cell susceptibility to infection. To further
characterise biological properties of contemporary ZIKV strains, which have been associated with
recent epidemics and severe forms of human disease, we investigated the role of E-152/156/158 residues
of the envelope protein, residues located around a unique N-glycosylation site (E-154) in viral entry into
host cells. Our mutagenesis data showed that E-152/156/158 residues are responsible for the differences
we observed in the infectivity of the virus and progeny production kinetics, without affecting viral
attachment and host-cell responses. Further characterisations identified the E protein conformational
changes in the fusion loop, supported by E-152/156/158 residues, as a major event in virus fusion and
release of viral RNA into cell cytoplasm.

The first step in viral entry pathway involves nonspecific viral binding to cellular attachment
factors. Negatively charged glycosaminoglycans, which are abundantly expressed on numerous cell
types, are considered as low-affinity attachment factors by flaviviruses. These interactions serve
to concentrate viruses on the cell surface and are mediated by the EDIII domain of E proteins [38].
Our data demonstrate that E-152/156/158 residues of ZIKV E protein do not influence virus binding,
which suggests that domain EDIII conformation is not strongly affected by E-152/156/158 residues.
We conclude that this initial step of ZIKV entry into cells does not depend on E-152/156/158 residues of
the E protein.

Viral particle internalisation could occur through distinct routes, including clathrin-mediated
endocytosis or non-classical clathrin-independent endocytic pathways. These distinct entry modes
depend not only on host cells but also on viral serotype or strain [39]. Despite these differences in the
internalisation process, genome release into the cytoplasm always occurs through E protein-mediated
membrane fusion [40]. The low-pH environment within endosomes triggers a series of molecular
changes within flavivirus E protein resulting in fusion of viral membrane with endosomal membrane
and subsequent release of the nucleocapsid into cell cytoplasm [13,14]. The initial step in membrane
fusion involves protonation-dependent disruption of E protein rafts at viral surface, resulting in
conformational changes and formation of a fusion pore from which the nucleocapsid is released into
the cytosol. Evidences suggested that the glycan loop modulates the overall Flavivirus E protein
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conformation and, specifically, fusion loop exposure [41,42]. Sevvana and colleagues proposed
that, given the close proximity of ZIKV glycan and fusion loops, any interaction of the glycan loop
with a receptor on a host-cell surface might promote exposure of the fusion loop and facilitate
formation of fusogenic trimers leading to membrane fusion [43]. Another study based on antibody
neutralizing activities demonstrated that residues surrounding ZIKV E protein glycan regulate virus
antigenicity [44]. In a previous study, we also evaluated immunogenicity of a chimeric viral clone
ZIKBeHMR-2, in which the region encoding envelope proteins of MR766 African strain backbone was
replaced with its counterpart from BeH819015 epidemic strain [45,46]. Amino-acid substitutions I152T,
T156I, and H158Y were introduced in the glycan loop of the E protein, making chimeric ZIKBeHMR-2
a nonglycosylated virus. Those results suggest that, rather than just determining the glycosylation,
amino-acid residues at position 152, 156 and 158 play a pivotal role on accessibility of neutralizing
antibody epitopes on mature virus particles. In this study, we demonstrated that changes in the
glycan loop can modulate accessibility to the fusion loop. Although these observations were made
independently of the presence of a glycan, it is conceivable that E protein N-glycosylation could provide
another level of regulation on the access of the fusion loop. The role of N-glycosylation on ZIKV E
protein has also been investigated using pseudoviral particles, showing that reduced infectivity was
observed with mutant viral particles lacking the N-glycan [47]. Altogether, these studies suggest that
conformational changes induced at the glycan loop most probably modulate fusion loop exposure and
subsequent fusion of viral and cellular membranes, which strongly supports our observations.

One interesting finding from this study is that chloroquine treatment results in less BR15E-MUT

entries than it does for BR15. This finding suggests that E-152/156/158 residues of BR15 increase pH
sensitivity of E protein. To generate BR15E-MUT, its sequence was modified so that the coding region of
the E protein IVNDTGH (amino acids 152 to 158) in BR15 was replaced with TVNDIGY motif from
MR766, meaning that not only N-glycosylation motif was abrogated but also that histidine E-158 was
changed into a tyrosine. Histidine residues have been described as pH sensors in flavivirus membrane
fusion [48]. Fusion initiation is crucially dependent on protonation of conserved histidine residues at
the interface between domains EDI and EDIII of E protein, leading to dissolution of domain interactions
and to fusion peptide exposure. Given the fusion differences we observed between wild-type and
mutant BR15 molecular clones, further investigations on histidine E-158 protonation are required to
determine its exact contribution to membrane fusion.

Finally, our analysis of virus inocula generated in Vero cells showed differences in particle-to-PFU
ratios indicating that E-152/156/158 residues of BR15 E protein facilitate release of more infectious
particles. In addition, we demonstrated with recombinant proteins that E-152/156/158 residues of
epidemic ZIKV E protein also facilitate production of more soluble proteins. These results are supported
by works of Mossenta and colleagues [47]. Whether these observations are due to conformational
changes occurring during virion production remains undetermined. However, in a study on flavivirus
cross-reactive epitopes, Crill and Chang suggested that close packing of fusion peptide against
its subunit partner and glycan on the upper surface protects the fusion loop from irreversible
pH-induced conformational changes during maturation and secretion [49]. All these observations
suggest that E-152/156/158 residues of epidemic ZIKV E protein could also be an advantage during
virion maturation process.

Altogether, our data indicate that the envelope residues E152/156/158 of Zika virus influence early
stages of virus infection in human cells. This study highlights the importance of E-152/156/158 residues
in ZIKV biology and specifically in their roles in supporting viral fusion. These new findings could
potentially help to design innovative strategies for future ZIKV infection control.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/8/11/1444/s1,
Figure S1: Tunicamycin treatment of Vero cells infected with ZIKV mutant molecular clones, Figure S2: structures
of ZIKV E wild-type and mutant proteins.
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