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Epidemiologic collections have been a major resource for genotype–phenotype studies
of complex disease given their large sample size, racial/ethnic diversity, and breadth and
depth of phenotypes, traits, and exposures. A major disadvantage of these collections
is they often survey households and communities without collecting extensive pedigree
data. Failure to account for substantial relatedness can lead to inflated estimates and
spurious associations. To examine the extent of cryptic relatedness in an epidemiologic
collection, we as the Epidemiologic Architecture for Genes Linked to Environment
(EAGLE) study accessed the National Health and Nutrition Examination Surveys
(NHANES) linked to DNA samples (“Genetic NHANES”) from NHANES III and NHANES
1999–2002. NHANES are population-based cross-sectional surveys conducted by the
National Center for Health Statistics at the Centers for Disease Control and Prevention.
Genome-wide genetic data is not yet available in NHANES, and current data use
agreements prohibit the generation of GWAS-level data in NHANES samples due issues
in maintaining confidentiality among other ethical concerns. To date, only hundreds of
single nucleotide polymorphisms (SNPs) genotyped in a variety of candidate genes are
available for analysis in NHANES. We performed identity-by-descent (IBD) estimates
in three self-identified subpopulations of Genetic NHANES (non-Hispanic white, non-
Hispanic black, and Mexican American) using PLINK software to identify potential
familial relationships from presumed unrelated subjects. We then compared the PLINK-
identified relationships to those identified by an alternative method implemented in
Kinship-based INference for Genome-wide association studies (KING). Overall, both
methods identified familial relationships in NHANES III and NHANES 1999–2002 for all
three subpopulations, but little concordance was observed between the two methods
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due in major part to the limited SNP data available in Genetic NHANES. Despite the
lack of genome-wide data, our results suggest the presence of cryptic relatedness in
this epidemiologic collection and highlight the limitations of restricted datasets such as
NHANES in the context of modern day genetic epidemiology studies.

Keywords: genetic epidemiology, epidemiology, cross-sectional, NHANES, cryptic relatedness, genetic
association study, EAGLE

INTRODUCTION

Epidemiologic cohorts are a valuable resource for genotype–
phenotype studies given their large sample size, racial/ethnic
diversity, and wealth of phenotypes, traits, and exposures.
Though typically ascertained for specific phenotypes, the
breadth of phenotypic and environmental variables makes
these cohorts particularly well-suited for inclusion in secondary
analyses. With the addition of genetic data such as genotypes,
these epidemiologic cohorts are positioned for inclusion in
genetic association or linkage studies. Some examples of
well-characterized studies that have genetic data include the
Framingham Heart Study (Splansky et al., 2007), Women’s
Health Initiative (Anderson et al., 2003), and the Jackson Heart
Study (Taylor, 2005).

Some epidemiologic cohorts specifically seek related
individuals during the ascertainment process in order to study
the heritability of certain traits in a similar genetic background or
minimize certain environmental differences between individuals;
for example, the Framingham Heart Study recruited participants
from a Massachusetts town and subsequently enrolled their
offspring in later phases of the study to identify factors that
contribute to cardiovascular disease (Splansky et al., 2007),
whereas the Marshfield Clinic Personalized Medicine Research
Project participants are relatively ethnically homogenous and
come from the Marshfield, Wisconsin area (McCarty et al.,
2005). Others, such as the National Health and Nutrition
Examination Surveys (NHANES), use an ascertainment process
where multiple participants from a single household may be
included without documentation of the relationship between
those participants (Ezzati et al., 1992).

Genetic association studies are susceptible to confounding,
through population substructure and cryptic relatedness
(Astle and Balding, 2009). Population substructure and
cryptic relatedness both result from underlying relatedness
between individuals in a population that is greater than
the amount expected in a freely mating population. Distant
relatedness, relatedness that occurs on a macro level such
as racial/ethnic or genetic ancestry is a known confounder
in association studies, and multiple methods exist for its
identification and adjustment in analysis (Liu et al., 2013).
Cryptic relatedness implies unknown (undocumented) more
recent relatedness and includes family relationships such as
grandparent-grandchild and full sibling pairs. While known
family structure is essential for genetic linkage or family based
association studies, population-based association studies assume
independent (unrelated) individuals. Cryptic relatedness in
studies that assume independent individuals results in inflated

effect size estimates and possible false positive associations; thus,
adjustment for familial relationships within population-based
studies is considered necessary.

Several methods have been developed to infer familial
relationships primarily for linkage studies, including Graphical
Representation of Relationship errors (GRR; Abecasis et al., 2001)
and multiple hidden Markov model (HMM) programs (Boehnke
and Cox, 1997; McPeek and Sun, 2000). Contemporary linkage
studies consist of pedigrees of varying size and thousands of
diallelic markers, and methods such as GRR are routinely applied
to these data to identify errors in pedigree assignment. While
existing methods such as GRR could be applied to unrelated
samples to identify cryptic relatedness, the performance of this
simple clustering method is dependent both on the number
of samples genotyped and the number and frequency of the
markers genotyped. The need for consistent identification of
cryptic relatedness coupled with the availability of dense marker
panels led to the development of algorithms for genome-wide
association studies which typically consist of thousands of
individuals (either unrelated or as pedigrees) and hundreds of
thousands to millions of diallelic markers.

One such GWAS-developed algorithm is implemented in
PLINK, a widely used software program for genetic association
studies that calculates identity-by-descent (IBD) using a
combination of identity-by-state (IBS) between individuals and
allele frequency at each single nucleotide polymorphism (SNP),
assuming Hardy–Weinberg Equilibrium (Purcell et al., 2007).
At a given locus, two individuals carrying the same allele are
said to be IBD if the alleles arose from the same ancestral allele;
if the same alleles are not the product of the same ancestral
allele, they are said to be IBS. An alternate method, Kinship-
based INference for Genome-wide association studies (KING)
was recently developed to infer relationships using kinship
coefficients (Manichaikul et al., 2010). A kinship coefficient is the
probability that at a specific locus, the allele picked at random
in two individuals is IBD (Lange and Sinsheimer, 1992). Both
of these methods assume large numbers of SNPs to calculate
relatedness between pairs of individuals and may not accurately
assign distant relationships when a small number of SNPs is
used. In both simulated and actual GWAS-level data, KING
is computationally faster than PLINK, and its framework is
more flexible allowing for small sample sizes and population
heterogeneity.

Most but not all epidemiologic cohorts or cross-sectional
studies available for genetic association studies have GWAS-
level data available on all or a fraction of the participants
available. For these GWAS-less studies, basic quality control
for genetic association studies such as the identification of
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cryptic relatedness or population substructure can be a challenge.
One such study that routinely faces this challenge is the large,
population-based NHANES. DNA samples were obtained from
NHANES participants between 1991 and 1994 (NHANES III) and
NHANES 1999–2002, and Genetic NHANES consists of several
racial/ethnic subgroups: non-Hispanic whites (n = 6,634), non-
Hispanic blacks (n= 3,458), andMexican Americans (n= 3,950).
Genetic NHANES has been genotyped for hundreds of SNPs
(range n = 364–784) mostly selected to replicate and generalize
genome-wide association study findings in diverse populations
as part of the Epidemiologic Architecture for Genes Linked to
Environment (EAGLE) study, a study site of the larger Population
Architecture using Genomics and Epidemiology (PAGE) I study
(Matise et al., 2011).

National Health and Nutrition Examination Survey
participants are recruited by household; however, familial
relationships are not consistently included in the data collection
process. To understand the extent of gross cryptic relatedness,
we inferred familial relationships using PLINK and KING,
both developed for genetic association study settings involving
large samples of presumably unrelated participants. Despite
limited resolution, we identified cryptic relatedness in these large
cross-sectional surveys using both of these methods and call
attention to the potential for hidden familial relationships in
epidemiologic cohorts accessed for genetic association studies.

MATERIALS AND METHODS

Study Population
The National Health and Nutrition Examination Surveys are
population-based surveys conducted across the U. S. by the
National Center for Health Statistics (NCHS) at the Centers
for Disease Control and Prevention (CDC). NHANES began in
the 1960s; the Third NHANES (NHANES III) was performed
from 1988 to 1994 and included 33,994 participants. From 1999,
NHANES surveys have been performed continuously. NHANES
1999–2002 included 25,316 participants. NHANES capture self-
described race/ethnicity on all participants. Oversampling of
Mexican Americans, non-Hispanic blacks, children, and the
elderly were performed to create nationally representative
samples. DNA is available for 7,159 participants over age 12
in NHANES III (non-Hispanic white, n = 2,631; non-Hispanic
black, n = 2,108; Mexican American, n = 2,073; other, n =
348) and for 7,839 participants (non-Hispanic white, n = 4003;
non-Hispanic black, n = 1350; Mexican American, n = 1877;
other Hispanic, n = 418; other race including multi-racial, n
= 191) in NHANES 1999–2002 (Crawford et al., unpublished).
Written informed consent was obtained from all participants.
The CDC Ethics Review Board reviewed the present study, and
the de-identified NHANES data were considered non-human
subjects research by the Vanderbilt University Institutional
Review Board.

Genotyping
Single nucleotide polymorphisms were selected for either
candidate gene studies (Crawford et al., 2006, 2010, 2015;

Limdi et al., 2010; Dumitrescu et al., 2011c; Jeff et al., 2012,
2015) or for replication/generalization studies (Dumitrescu
et al., 2011a,b; Haiman et al., 2012; Murabito et al., 2012;
Spencer et al., 2012; Wassel et al., 2012; Carty et al., 2013;
Fesinmeyer et al., 2013a,b; Goodloe et al., 2013; Zhang et al.,
2013a,b; Crawford et al., 2014; Jeff et al., 2014; Mitchell et al.,
2014; Restrepo et al., 2014, 2015; Villegas et al., 2014), the
majority of the latter as part of the Population Architecture
using Genetics and Epidemiology (PAGE) I Study (Matise
et al., 2011). Genotypes were generated using Taqman, Illumina
BeadXpress, or Sequenom in the Vanderbilt University’s Center
for Human Genetics Research DNA Resources Core and the
Open Wet Laboratory (OWL) Resource (Matise et al., 2011;
Crawford et al., unpublished) or were accessed from existing
data in the NHANES Genetic Database (Chu et al., 2009;
Keebler et al., 2009). All genetic variants available in NHANES
including those accessed here can be found on the CDC website
(www.nhgeneticvariant.com, http://www.cdc.gov/nchs/nhanes/
biospecimens/DNAspecimens.htm).

Statistical Analysis
Participants were stratified by self-reported race/ethnicity in both
NHANES datasets; IBD was estimated in non-Hispanic white,
non-Hispanic black, and Mexican American subgroups. SNPs
were excluded from the analysis if, within a given NHANES
race/ethnicity, they were significantly out of Hardy–Weinberg
Equilibrium (HWE; p < 0.001). To obtain a set of independent
SNPs, we further excluded SNPs that were in high linkage
disequilibrium (LD) with each other (r2 > 0.60) using the –indep
command in PLINK. Two different programs, PLINK (Purcell
et al., 2007) and KING (Manichaikul et al., 2010), were used to
calculate IBD within each NHANES subgroup.

The –genome command was used to calculate the IBD
estimates using PLINK. We pre-specified the classification
scheme for potential familial relationships based on ranges of
z-scores and π-hat scores (proportion IBD) for PLINK (Table 1).
The –kinship command with additional parameters of –homo
and –show-IBD were used to calculate IBD estimates using
KING. Kinship coefficient ranges were used to identify potential
familial relationships in KING (Table 1). Further classification of
first degree relationships from KINGwere obtained by evaluating
the IBD0 values; parent/child relationships will have IBD0 = 0
except for instances of genotyping error. We compared the ability
of the software programs to identify cryptic relatedness within
NHANES racial/ethnic groups using less than 1,000 SNPs. Due to
the data use agreement with the CDC, any participant counts <
5 are suppressed for confidentiality concerns.

RESULTS

We calculated IBD estimates and potential familial relationships
in NHANES III (n = 6,811) and NHANES 1999–2002 (n =
7,230) non-Hispanic whites, non-Hispanic blacks, and Mexican
Americans using PLINK and KING software. In both NHANES
III and NHANES 1999–2002, the majority of the participants
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TABLE 1 | PLINK and KING variable ranges for calculating familial relationships.

PLINK KING

Potential relationship z0 z1 z2 π-hat Kinship coefficient

Duplicate/identical twin 0−0.10 0−0.10 0.90−1.00 >0.95 >0.354

First degree Parent/child 0 0.80−1.00 0−0.20 0.50−0.60 0.177−0.354

Full siblings 0.15−0.35 0.40−0.60 0.15−0.35 0.40−0.60 0.177−0.354

Second degree 0.45−0.55 0.45−0.55 0 0.23−0.27 0.0884−0.177

Third degree 0.70−0.80 0.20−0.30 0 0.10−0.15 0.0442−0.0884

Shown are the PLINK z-score and π-hat ranges and the KING kinship coefficient ranges for calculating familial relationships using each software program. Kinship
coefficient ranges for parent/child and full sibling in KING are equal as there is no further discrimination of familial status for first degree relationships using the kinship
coefficient with that software. Parent/child and full sibling relationships in KING were discriminated using both kinship coefficient and IBD0 values as described in the
manuscript.

TABLE 2 | Demographics of Genetic National Health and Nutrition
Examination Surveys (NHANES).

NHANES III NHANES 1999–2002

Participants SNPs Participants SNPs

N, by subgroup

NHW 2,631 721 4,003 364

NHB 2,108 691 1,350 367

MEX 2,073 784 1,877 380

% female, total 56.67 51.79

% female

NHW 60.00 51.14

NHB 57.45 52.44

MEX 50.60 51.73

Median age in
years (range),
total

38.00 (12–90) 47.00 (20–85)

Median age (range)

NHW (12–90) (20–85)

NHB (12–90) (20–85)

MEX (12–90) (20–85)

Median
household size
(range), total

2.00 (1–10) 2.00 (1–7)

Median household size (range)

NHW 2.00 (1–8) 2.00 (1–7)

NHB 3.00 (1–10) 3.00 (1–7)

MEX 4.00 (1–10) 4.00 (1–7)

Data shown are participants from the National Health and Nutrition Examination
Survey (NHANES) III and NHANES 1999–2002 and SNPs used for cryptic
relatedness analysis. Data are counts unless otherwise specified. The number
of SNPs shown in the table represents the SNPs available after removing SNPs
out of Hardy–Weinberg Equilibrium and LD pruning. SNPs, single nucleotide
polymorphisms; NHW, non-Hispanic white; NHB, non-Hispanic black; MEX,
Mexican American.

were women (NHANES III, female: 56.67%; NHANES 1999–
2002, female: 51.79%; Table 2). In each NHANES dataset, non-
Hispanic whites comprised the largest subgroup (Table 2). The
median age in NHANES III was lower (median age = 38.00)
than in NHANES 1999–2002 (median age = 47.00; Table 2).
Household size ranged from 1 to 10 participants in NHANES III

and 1–7 participants in NHANES 1999–2002. In both surveys,
two-person households were the most common overall, though
there were differences by subgroup (Table 2).Mexican Americans
had the largest median household size (n = 4) and widest
range for household size in both NHANES (NHANES III: 1–10;
NHANES 1999–2002: 1–7; Table 2).

In NHANES III, PLINK calculated more potential familial
relationships than KING in all subgroups. We identified few
instances of potential duplicate samples/monozygotic (MZ)
twins (Table 3) using either program; however, we observed
no concordance between the potential duplicates/MZ twin
pairs (Figure 1). A number of first degree relationships
(parent/offspring and full sibling) were calculated with both
methods. PLINK calculated the greatest number of potential
first degree relationships in non-Hispanic whites (n = 1,864)
and the majority of these relationships were parent/offspring (n
= 1,843), while Mexican Americans full sibling pairs were the
most common first degree relationship calculated with KING
(n = 194; Table 3). Across all subgroups, most first degree
relationships were categorized by PLINK as parent/offspring
and by KING as full sibling (Table 3). The greatest number
of second degree and third degree relationships was observed
in non-Hispanic blacks using PLINK (n = 237,154) and in
non-Hispanic whites using KING (n = 162,609; Table 3). We

TABLE 3 | Probable familial relationships identified in NHANES III.

NHANES III Duplicate/
MZ twin

First degree Second
degree

Third
degree

Parent-
offspring

Full-
siblings

NHW PLINK <5 1843 21 36,602 182,856

KING <5 5 79 12,469 150,140

NHB PLINK <5 391 47 39,955 197,199

KING <5 <5 131 11,004 142,412

MEX PLINK <5 329 97 23,697 170,430

KING <5 12 194 7,338 130,040

The numbers represent counts of individual pairs such that an individual can be
in multiple pairings. Data are counts where possible [CDC data use agreement
requires any count(s) <5 to be suppressed for confidentiality concerns]. NHW,
non-Hispanic white; NHB, non-Hispanic black; MEX, Mexican American; MZ,
monozygotic.
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FIGURE 1 | Percent concordance of familial relationships identified by
KING compared with PLINK by survey. KING relationships were
considered concordant if also identified by PLINK (expressed as percent on
the y-axis). We only consider close relationships here (monozygotic or MZ
twins, duplicate samples, and parent-offspring) in estimating concordance
given the limited SNP data and the lack of resolution expected with these
data. The data are displayed by Genetic NHANES (x-axis) and stratified by
estimated familial relationship and race/ethnicity.

found little concordance (<20% same relationship identified for
a given participant pair) between the methods to identify the
same participants’ relationships, though 60% of non-Hispanic
white parent/offspring pairs calculated with KING were classified
as parent/offspring pairs with PLINK (Figure 1). We observed
similar concordance/discordance among the results for non-
Hispanic black parent/offspring pairs (50% concordant) and
Mexican American parent/offspring pairs (33.33% concordant;
Figure 1). Within the discordant results in each subgroup, a
number of each potential familial relationship identified through
one method was classified as a different familial relationship
using the other method. Where the methods yielded a different
potential familial relationship for a given participant pair, we
found PLINK calculated the pair as more related (e.g., KING
calculated third degree relationships classified as second degree or
first degree in PLINK). This observation held across all subgroups
and familial relationships, except second degree relationships
in non-Hispanic blacks and Mexican Americans, where KING-
calculated second degrees were more frequently classified as
PLINK third degrees than any other relationship. Broadly, PLINK
and KING identified numerous potential first, second, and third
degree relationships in NHANES III; however, there was little
concordance between the results.

In NHANES 1999–2002, we again observed PLINK calculated
a greater number of potential familial relationships than
KING for non-Hispanic whites and Mexican Americans; KING
calculated a greater number of familial relationships in non-
Hispanic blacks (Table 4). There were few instances of MZ
twins/duplicate samples among the three subgroups and the
participant pairs were concordant between the two methods
(Table 4; Figure 1). Fewer overall first degree relationships
were calculated in NHANES 1999–2002 than in NHANES III
(Tables 3 and 4). Similar to the trends observed in NHANES

TABLE 4 | Probable familial relationships identified in NHANES 1999–2002.

NHANES
1999–2002

Duplicate/
MZ twin

First degree Second
degree

Third
degree

Parent-
offspring

Full-
siblings

NHW PLINK <5 274 <5 59,792 222,720

KING <5 7 37 12,029 116,259

NHB PLINK <5 493 5 29,575 77,841

KING <5 41 126 23,695 144,230

MEX PLINK <5 180 23 40,559 160,322

KING <5 31 140 15,397 126,031

The numbers represent counts of individual pairs such that an individual can be
in multiple pairings. Data are counts where possible (CDC data use agreement
requires any count(s) <5 to be suppressed for confidentiality concerns). NHW,
non-Hispanic white; NHB, non-Hispanic black; MEX, Mexican American; MZ,
monozygotic.

III, KING identified fewer instances of first degree relationships
than PLINK (Table 4). PLINK calculated the greatest number
of first degree relationships in non-Hispanic blacks (n = 498)
and the majority of these were parent/offspring (n = 493),
whereas Mexican American full sibling relationships were the
most numerous relationship calculated by KING (n = 140;
Table 4). The greatest number of second and third degree
relationships were observed in non-Hispanic whites (n =
282,512) using PLINK, and in non-Hispanic blacks (n= 167,925)
using KING (Table 4). As with the NHANES III results,
we found little concordance (<25%) between the participant
pairs identified within each potential familial relationship
with the exception of parent/offspring pairs across the three
subgroups, in which >95% of parent/offspring pairs identified
with KING were also identified with PLINK (Figure 1). In
addition, we observed a similar trend within discordant pairs,
where PLINK calculated the pair as more related than with
KING, with the exception of non-Hispanic white second degree
relationships which were more often classified as third degree
relationships in PLINK. Overall, we identified potential cryptic
relatedness in NHANES 1999–2002 using PLINK and KING,
though concordance between the two methods was generally
lacking.

DISCUSSION

Cryptic relatedness is a source of confounding in population-
based genetic association studies. Population stratification due to
distant ancestry is typically accounted for in genetic association
studies; however, more recent shared ancestry may not be
considered. Though beneficial for epidemiologic, linkage, and
family based association studies, close relatedness (first and
second degree) may lead to spurious results and/or inflated
effect estimates in population-based association studies where
an underlying assumption is that the individuals are unrelated.
Additionally, specifically testing the influence of multiple
interactions on heritability estimates requires known relatedness
between individuals (Patel et al., 2013). Epidemiologic cohorts
and cross-sectional surveys that inconsistently collect pedigree
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data on their participants are particularly at risk for confounding
due to cryptic relatedness.

We estimated likely familial relationships in NHANES III and
NHANES 1999–2002 using ∼730 and ∼370 SNPs, respectively,
and two methods, PLINK and KING. Using PLINK, which
estimates IBD by calculating IBS and allele frequencies at each
SNP, we observed many potential first degree relationships
in NHANES III across the three population subgroups. The
majority of these first degree relationships in PLINK were likely
parent/offspring pairs. In NHANES 1999–2002, we observed
fewer likely first degree relationships than in NHANES III.
Thousands of potential second and third degree relationships
were calculated using PLINK in both NHANES III and NHANES
1999–2002. Using KING, which estimates IBD using kinship
coefficients, we observed far fewer first degree relationships in
NHANES III and NHANES 1999–2002 than with PLINK. The
majority of the first degree relationships calculated by KING
were full sibling pairs, in contrast to the parent/offspring majority
identified with PLINK. In NHANES 1999–2002, the majority of
first degree relationships were full sibling pairs. We identified
numerous potential second and third degree relationships using
KING. Using both PLINK and KING, which calculate familial
relationships with different statistical methods, we observed
relatedness in NHANES III and NHANES 1999–2002 across
non-Hispanic white, non-Hispanic black, andMexican American
subgroups.

An earlier study evaluated familial relationships in NHANES
III using short tandem repeats (STRs) at fifteen DNA loci
used in forensic investigations (Identifiler R©) and found evidence
of first and second degree relationships (Katki et al., 2010).
Studies suggest that approximately 50 SNPs yield the same
relationship discrimination as 13–15 STRs (Butler, 2007), and
paternity results obtained by STR and SNP analysis are generally
comparable (Dario et al., 2009). In acknowledgment of the
lack of self-reported pedigree information for NHANES III
participants, Katki et al. (2010) calculated the likely relationships
for participants living in multi-person households with an exact
method and an IBS method. Both methods were generally
consistent in identifying first degree relationship pairs, but there
was greater variation in the classification of likely second degree
and first cousin relationships. It was further observed that the
STRs in the Identifiler test were not informative enough to
accurately discriminate between second degree, third degree, and
unrelated participants (Katki et al., 2010). Using information not
available to our study, Katki et al. (2010) also compared the
likely familial relationships with the ages of the participants; they
found only 5% of the parent-offspring pairs had age differences
less than 16 years and 9% of sibling pairs with age differences
greater than 25 years, suggesting few of their proposed first degree
relationships were misclassified. However, their method may
have underestimated the true level of relatedness in NHANES
III by restricting potential familial relationships to participants
from the same multi-person household; given the NHANES
ascertainment process, it is likely additional family relationships
exist, such as siblings or second and third degree relationships,
within a given geographic region that may be present in the
NHANES datasets.

In general, our results are consistent with those of Katki
et al. (2010). We observed evidence of cryptic relatedness
in NHANES III using both PLINK and KING methods.
Similar to the counts observed in Katki et al. (2010), our
PLINK results uncovered a high number of parent-offspring
relationships. In contrast, our KING results calculated fewer
first degree relationships and classified the majority of them
as full sibling pairs. The similarities between our PLINK-
calculated likely relationships and those obtained by Katki
et al. (2010) may be due to PLINK’s method of calculating
IBD using IBS and allele frequencies, though notably, in
Katki et al. (2010), the exact method classification and IBS
method were nearly identical. Our study is the first, to our
knowledge, to consider cryptic relatedness in NHANES 1999–
2002; therefore, no comparison to other studies could be
drawn.

Despite the general agreement of our study with the previous
Katki et al. (2010) work demonstrating cryptic relatedness
in NHANES III and the results of the present study for
NHANES 1999–2002, we found no evidence to suggest cryptic
relatedness has yet led to inflated effect sizes or spurious positive
associations in published studies accessing these NHANES
datasets. Most of the published studies that have used the
genetic NHANES datasets have been replication studies or
generalization of prior findings to diverse populations (Crawford
et al., unpublished). Formal meta-analysis of genetic NHANES
association data with other epidemiologic cohorts generally does
not reveal significant genetic heterogeneity or differences in
genetic effect sizes (Dumitrescu et al., 2011b; Haiman et al.,
2012; Carty et al., 2013; Fesinmeyer et al., 2013b; Jeff et al.,
2014; Restrepo et al., 2014). Future studies that access these
datasets to identify novel genetic variants should consider the
potential for false positives and/or inflated effect sizes in their
results and verify allele frequencies are comparable to published
data.

A limitation to our study is the small number of SNPs used to
identify likely familial relationships. Also, the SNPs in NHANES
III do not necessarily overlap with SNPs in NHANES 1999–
2002, resulting in different SNP sets with different polymorphism
information content. These differences may account in part for
the observation that PLINK results were less concordant with
KING results in NHANES III compared with NHANES 1999–
2002 despite the greater number of SNPs available for analysis.
In general, PLINK, KING, and other software programs that
calculate cryptic relatedness, require large numbers of SNPs
(typically GWAS-level data) to calculate IBD; the more markers
are used in the calculation, the greater the stability and accuracy
of the IBD estimates (Marchani et al., 2009), and the greater the
confidence in the estimated familial relationships. Using fewer
than the thousands of SNPs expected by these programs may
have resulted in inflation of IBD estimates in our study and
led to the discordant results between the two methods that we
observed. A proportion of the discordant results may also be
due to the fact that PLINK requires independent SNPs whereas
KING does not. We used the same SNP set for both programs
to make direct comparisons, but this restriction to independent
SNPs coupled with the already limited number of SNPs available
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in Genetic NHANES may have compounded the discordance
observed between the two methods.

Most epidemiologic studies with DNA have GWAS data,
allowing investigators to more accurately assess the level of
relatedness in the dataset, contrasting with the problem of
assessing cryptic relatedness in genotype-limited datasets such
as NHANES. Per CDC data use agreements, GWAS-level
genotyping is not permitted at this time by investigators outside
of CDC or without a CDC contract. While there are multiple
programs for accurately estimating IBD given thousands of SNPs,
there are relatively few options for epidemiologic collections with
hundreds or fewer genotyped SNPs. Recently, a new R package,
CrypticIBDCheck, was published demonstrating the ability to
calculate IBD with as few as 60 candidate genes (∼300 SNPs)
which have not been LD pruned for independence (Nembot-
Simo et al., 2013). Future studies of Genetic NHANES should
evaluate this and emerging tools to identify cryptic relatedness
and properly adjust for its potential impact on downstream
genetic association studies.

Another limitation of the current study is the lack of pedigree
data available in NHANES, which unlike simulated data with
known pedigree structures used to originally compare PLINK
and KING (Manichaikul et al., 2010), prohibits the full evaluation
of any method used to identify cryptic relatedness. Both PLINK
and KING identified familial relationships in Genetic NHANES,
but there was little concordance with respect to the number
and type of familial relationships between the two methods.
Under this scenario, alternative approaches to adjusting for
cryptic relatedness in downstream analyses (such as generalized
estimating equations to account for correlated data (Tregouet
et al., 1997) may be more appropriate. Adjustment for correlated
data has the additional advantage of preserving sample size and
power compared with the usual practice of removing individuals
from datasets after relationships have been identified. However,
like PLINK and KING, methods such as mixed linear models
(Yang et al., 2014) work best with genome-wide as opposed to
sparse candidate gene data.

In summary, we have estimated familial relationships in
Genetic NHANES, an epidemiologic cross-sectional study with
sparse candidate gene SNPs available for genetic association
studies. We implemented the commonly used PLINK and
compared these familial relationships to those estimated by a
second method implemented in KING. Familial relationships
were identified in Genetic NHANES using both methods, but
little concordance was observed between the methods. In absence
of pedigree data, it is not possible to determine which of the two
methods is more accurate in estimating familial relationships in
this collection of cross-sectional surveys. In absence of GWAS-
level data, basic quality control will continue to be a challenge for
NHANES and similar epidemiologic collections. Further research
is needed to identify alternate approaches to identify cryptic

relatedness using sparse SNP data such as those available in
Genetic NHANES.
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