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Abstract 

Background: The risk of Congenital Heart Defects (CHD) is greatly influenced by variants within the genes involved 
in folate-homocysteine metabolism. Polymorphism in MTHFR (C677T and G1793A) and MS/MTR (A2756G) genes 
increases the risk of developing CHD risk, but results are controversial. Therefore, we conducted a case–control asso-
ciation pilot study followed by an up-dated meta-analysis with trial sequential analysis (TSA) to obtain more precise 
estimate of the associations of these two gene variants with the CHD risk.

Methods: For case–control study, we enrolled 50 CHD patients and 100 unrelated healthy controls. Genotyping 
was done by PCR–RFLP method and meta-analysis was performed by MetaGenyo online Statistical Analysis System 
software. For meta-analysis total number of individuals was as follows: for MTHFR C677T 3450 CHD patients and 4447 
controls whereas for MS A2756G 697 CHD patients and 777 controls.

Results: Results of the original pilot study suggested lack of association for MTHFR C677T and MS A2756G poly-
morphism with risk of CHD whereas MTHFR G1793A was significantly associated with the disease. On performing 
meta-analysis, a significant association was observed with MTHFR C677T polymorphism but not with MS A2756G. Trial 
sequential Analysis also confirmed the sufficient sample size requirement for findings of meta-analysis.

Conclusions: The results of the meta-analysis suggested a significant role of MTHFR in increased risk of CHD.
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Introduction
Congenital heart diseases or defects (CHD) which share 
a significant proportion in CVD burden arises due to 
incomplete development of heart during the first 6-weeks 
of gestation [1]. The origin of CHD is diverse which can 
be associated with a syndrome or be isolated (non-syn-
dromic). It is hypothesized that susceptibility of cardiac 
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defects increases with dual interaction of key gene(s)/
SNP-environmental factors which perturb normal car-
diac developmental process during embryonic life. The 
risk of CHD is greatly influenced by variants within the 
genes involved in folate-homocysteine metabolism [2–4]. 
Many studies have revealed that the risk of CHD in new-
borns of females carrying mutations in genes involved in 
folate metabolism can be reduced by maternal pericon-
ceptional use of multivitamins or folic acid [5], however, 
the mechanism underlying this effect is still under inves-
tigation. Folate and vitamin B12 are known to influence 
homocysteine concentration. Folates taken in diet are 
usually polyglutamates which are converted to simpler 
forms, particularly monoglutamates, dihydrofolate, tet-
rahydrofolate and finally to methylated form of folate 
i.e. 5, 10-methylenetetrahydrofolate (5,10-MTHF) and 
5-methyltetrahydrofolate (5-MTHF) by a specialised 
enzyme of the pathway. Homocysteine and folate metab-
olism is dependent on a couple of genes performing their 
specific role but two genes namely MTHFR and MS are 
considered critical genes for development of diseased 
cardiovascular phenotypes. A common mutation, C677T 
(rs1801133), in exon 4 of the MTHFR gene results in 
decreased enzyme activity and contributes to increased 
plasma homocysteine, particularly in individuals with 
low folate status. Rady and co-workers reported a novel 
polymorphic site of the MTHFR gene at nucleotide posi-
tion 1793 G to A transition in exon 11 (rs2274976) which 
results an arginine-to-glutamine change at codon 594 
and modifies enzyme activity [6]. The A2756G mutation 
(rs1805087) in MS gene alters re-methylation process 
and is also associated with increased homocysteine lev-
els and risk of CHD. Most of the research in relation to 
folate-homocysteine metabolising pathway with the risk 
of CHD is based on parent-of-origin effect. There are 
very few studies focussing on embryonic variation in can-
didate genes of folate-homocysteine metabolising path-
way in association with the development of structural 
congenital heart malformations during early pregnancy. 
Consistent with this view, we attempted to perform a 
case–control pilot study involving evaluation of two 
important genes: MTHFR (C677T and G1793A) and MS 
(A2756G) gene variations with risk of CHD in Jammu 
region of UT of J&K, India. Further, we also performed 
an updated meta-analysis with trial sequential analysis to 
investigate the association between MTHFR (C677T and 
G1793A) and MS (A2756G) polymorphisms and risk of 
CHD with increased statistical power.

Methodology
Study population and area
The present study was ethically approved by Institutional 
Ethical Committee, University of Jammu. The present 

study was carried out on 150 children, out of whom 50 
children (0–12 years) were confirmed cases of CHD and 
100 children (below 18  years) were unrelated healthy 
controls belonging to Jammu region of Union Territory 
of Jammu and Kashmir. The CHD cases were enrolled 
from In-patient Department of Paediatrics whereas con-
trols were recruited from Out-patient Department of 
Paediatrics, Shri Maharaja Gulab Singh (SMGS) hospital, 
Jammu. Data and blood collection was done after having 
an informed written consent from attendant or guard-
ian of the children. The diagnosis and classification of 
CHD was based on the clinical and the echocardiography 
findings. The inclusion/exclusion criteria were followed 
wherein patients with any form of CHD were included 
whereas patients with syndromes and neural tube defects 
were excluded. Controls admitted to hospital for minor 
ailments with no history of CHD or other major abnor-
mality and also children visiting for blood typing were 
recruited for the study under reference. Power of the 
study for sample size calculation was done by using 
online tool based on mean and standard deviation of 
two groups of study subjects, two tail test and with alpha 
value of 5% (https:// www. sphan alyti cs. com/ stati stical- 
power- calcu lator- using- avera ge- values/). The power of 
the study obtained was more than 80%.

Blood collection and DNA isolation
500 μl-1 ml of blood was collected in EDTA coated vacu-
tainers from each child by trained paramedical staff of 
the Hospital. Isolation of DNA from whole blood was 
carried out using commercially available kits (DNeasy 
Blood and Tissue Kit, QIAGEN). The quantitative and 
qualitative analysis of isolated DNA was performed by 
spectrophotometry and 1.5% agarose gel electrophoresis 
respectively.

Genotyping
Genotyping was performed by polymerase chain reac-
tion-restriction fragment length polymorphism (PCR–
RFLP) technique. Briefly, PCR was carried out in a 
reaction volume of 25 μl each in thin walled tubes, con-
sisting of 5.0  μl of PCR buffer (10X), 2.5  μl of MgCl2 
(25 mM), 0.5 μl of dNTPs (10 mM), 0.5 μl (100 pmol/µl) 
of each of the forward and reverse primers, 0.3 μl (5unit/
μl) of Taq DNA polymerase enzyme and 2 μl (40 ng) of 
genomic DNA. PCR amplification was carried out using 
the Veriti, Applied Biosystems by life technology, Singa-
pore and amplification and RFLP conditions for all the 
three polymorphisms are given in Table 1. The gel images 
of PCR–RFLP for MTHFR (C677T and G1793A) and 
MS (A2756G) polymorphisms with band sizes have been 
depicted in Fig. 1, 2 and 3 respectively.

https://www.sphanalytics.com/statistical-power-calculator-using-average-values/
https://www.sphanalytics.com/statistical-power-calculator-using-average-values/
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Statistical analyses
Genotypic frequency as well as allelic frequency was cal-
culated by gene counting method. Hardy–Weinberg equi-
librium (HWE) analysis and the differences in genotypic 
frequencies between two study groups were examined by 

using Pearson’s goodness of fit Chi-square test. To assess 
the association, odds ratios (OR) with 95% CI were calcu-
lated under different genetic models by using Statistical 
Package for Social Sciences (SPSS-version 20) software 
and also by another method provided by the Institute of 

Table 1 Details of Primer sequence, amplification conditions and restriction enzymes

Gene polymorphism Primer sequence Amplicon (bp) PCR conditions Restriction 
enzymes

Genotypes Reference

MTHFR C677T 
(rs1801133)

5’-TGA AGG AGA AGG 
TGT CTG CGG GA-3’ (F)
5’-AGG ACG GTG CGG 
TGA GAG TG-3’ (R)

198 Pre-Denaturation: 
94 °C/ 2 min
Denaturation: 94 °C/ 
30 s
Annealing: 62 °C/ 60 s
Extension: 72 °C/ 30 s
Final Extension: 72 °C/ 
7 min. (40 cycles)

HinfI CC = 198 bp
CT = 198, 175 & 23 bp
TT = 175 & 23 bp
Figure 1

McBride et al., 2004 
[36]

MTHFR G1793A 
(rs2274976)

5’-CTC TGT GTG TGT 
GTG CAT GTG TGC 
G-3’ (F)
5’-GGG ACA GGA GTG 
GCT CCA ACG CAG 
G-3’ (R)

310 Pre-Denaturation: 
94 °C/ 1 min
Denaturation: 94 °C/ 
1 min
Annealing: 67 °C/ 
1 min
Extension: 72 °C/ 
1 min
Final Extension: 72 °C/ 
7 min. (40 cycles)

BsrbI GG = 233 & 77 bp
GA = 310, 233 & 77 bp
AA = 310 bp
Figure 2

Rady et al., 2002 [6]

MS A2756G (rs185087) 5’- TGT TCC AGA CAG 
TTA GAT GAA AAT 
C-3’ (F)
5’- GAT CCA AAG CCT 
TTT ACA CTC CTC-3’ 
(R)

211 Pre-Denaturation: 
95 °C/ 4 min
Denaturation: 95 °C/ 
1 min
Annealing: 61 °C/ 
1.5 min
Extension: 72 °C/ 
1 min
Final Extension: 72 °C/ 
7 min. (35 cycles)

HaeIII AA = 211 bp
AG = 211, 131 & 80 bp
GG = 131 & 80 bp
Figure 3

Sahiner et al., 2014 
[25]

Fig. 1 RFLP Gel Image of MTHFR C677T Polymorphism. L: 100 bp Ladder; Lane 1,2,3,5,6,8: 198 bp (CC: Wild); Lane 4,7: 198 + 175 + 23 bp (CT: 
Hetero). *23 bp band will not be visible on agarose gel
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Human Genetics accessed via the link: http:// ihg. gsf. de/ 
cgi- bin/ hw/ hwa1. pl. A p-value of < 0.05 was considered as 
statistically significant.

Meta‑analysis
Literature search
Research papers (published up to February, 2021) exam-
ining the association between MTHFR C677T, MTHFR 
G1793A and MS A2756G polymorphisms and congenital 

heart defects were extracted from databases such as Pub-
Med, Science direct, Proquest, Ovid and Google Scholar. 
Key words used for the database search were as follows: 
methylenetetrahydrofolate reductase; MTHFR gene poly-
morphisms; Methionine synthase; MS/MTR gene polymor-
phisms; Congenital heart defects; Congenital heart diseases; 
MTHFR C677T; MTHFR G1793A and MS/MTR A2756G. 
Reference records of studies included in our meta-analysis 
were manually searched for possible eligible articles.

Fig. 2 RFLP Gel Image of MTHFR G1793A Polymorphism. L: 100 bp Ladder; Lane 3,4,6,7,8: 233 + 77 bp (GG: Wild); Lane 1,2,5: 310 + 233 + 77 bp (GA: 
Hetero)

Fig. 3 RFLP Gel Image of MS A2756G Polymorphism. L: 100 bp Ladder; Lane 1,2,6,7: 211 bp (AA: Wild); Lane 2,4,5: 131 + 80 + 211 bp (AG: Hetero)

http://ihg.gsf.de/cgi-bin/hw/hwa1.pl
http://ihg.gsf.de/cgi-bin/hw/hwa1.pl
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Inclusion and exclusion criteria
The inclusion/exclusion criteria used for screening of eli-
gible study are given in Table 2.

Data extraction and quality assessment
From each eligible study, the following data were 
extracted by the two investigators independently using a 
standardized form: first author, publication year, country 
of origin, ethnicity, number of cases and controls, geno-
type frequency, source of controls, genotyping method, 
and Hardy–Weinberg equilibrium (HWE). We investi-
gated the quality of each study based on the nine-point 
Newcastle–Ottawa Scale (NOS). The characteristics and 
results of NOS for all the included studies are shown in 
Table  3. The NOS scores for all eligible studies in this 
Meta analysis exceeded 6 points, indicating that our anal-
ysis is updated and is of good quality.

Statistical analysis for meta‑analysis
The association between the selected polymorphisms and 
congenital heart defects was evaluated for each study by 
the crude odds ratios (ORs) with 95% confidence intervals 
(CIs). For each study, HWE was assessed by the chi-square 
goodness of fit test. For all studies, we estimated the asso-
ciation under three different genetic models [Allele con-
trast, dominant model and recessive model]. Statistical 
heterogeneity between studies was assessed by Cochran’s 
Q test and I-square  (I2) > 50% indicated the significance 
[31]. When  I2 > 50%, a random-effect model should be 
taken otherwise fixed model is used. To calculate the OR 
and draw inference for each study, we used both random 
effects model and fixed effect model. Sensitivity analyses 
were conducted by omitting any single study, which pre-
disposed the observed heterogeneity excessively and there 
should be no change in OR’s. Egger’s test and Begg’s fun-
nel plot is used to solve the problem of Publication bias. 
All statistical analyses were performed in the MetaGenyo 
online Statistical Analysis System software [32].

Trial sequential analysis (TSA)
Meta-analysis may result in Type I error owing to an 
increased risk of random errors (play of chance) which 

can be due to dispersed data and repeated significance 
testing. Bias from low trial with low methodological 
qualities, publication bias and small trial bias may result 
in false p-value. Trial Sequential analysis is a methodol-
ogy that can be used in meta-analysis to control random 
errors, and to assess whether the studies included in the 
meta-analysis have surpassed the requisite sample size. 
TSA was performed to calculate the required informa-
tion size on the basis of overall 5% risk of Type-I error 
and a power of 80% for checking the reliability of meta 
analysis [33].

Results
Case–control study
Based on echocardiography reports, the different CHD 
phenotypes were categorised (Table  4). The observed 
prevalence of different CHD phenotypes in present study 
was highest for ventricular septal defect (VSD: 34%) and 
atrial septal defect (ASD: 26%) followed by tetralogy of 
fallot (TOF: 14%) and patent ductus arteriosus (PDA: 
8%) and least for endocardial cushion defect (6%). The 
frequency of complex CHD forms (more than one CHD 
condition) were as follows: 4% for ASD with PDA, 2% for 
VSD with AV-canal defect, 4% for VSD with pulmonary 
arterial hypertension (VSD-PAH) and 2% for endocardial 
cushion defect along with dextrocardia.

The genotypic and allelic frequencies along with Chi 
square values for Hardy–Weinberg calculations for the 
all the three polymorphisms in study participants are 
depicted in Table 5. There observed frequencies of geno-
types were in concordance with HWE in both the groups 
for all the polymorphisms except for MTHFR C677T in 
patient group. The genotypic frequency of CC, CT and 
TT (MTHFR C677T) in CHD patients was 88%, 8% and 
4% whereas in controls it was 90%, 9% and 1% respec-
tively. The frequency of variant allele T (0.08) was higher 
in CHD patients than controls (0.05) whereas wild allele C 
was reported to be in slightly higher frequency in controls 
(0.95) as compared to patients (0.92). The genotypic fre-
quencies for MTHFR G1793A in CHD patients were 58%, 
38% and 4% for GG, GA and AA respectively. The fre-
quencies in control group were 90% for GG and 10% for 

Table 2 Inclusion/Exclusion criteria for eligible studies

Studies included Studies excluded

● Studies with Case–control designs
● Report of the association between the MTHFR C677T, MTHFR G1793A and 
MS A2756G polymorphism and the risk of CHD
● Studies that included Pediatric participants
● Studies that follow Hardy Weinberg equilibrium (HWE)
● Studies with sufficient data
● Studies in English language

● Case reports
● Meta analysis and review articles
● Studies without control group
● Studies with abstract only
● Studies that include maternal/ paternal cases only
● Studies without detailed genotype data
● Studies that are associated with other diseases like CVD’s, thrombosis, 
coronary artery defects etc
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GA genotypes; however we did not observe any AA geno-
type in controls. In general there was higher frequency of 
risk allele ‘A’ in CHD patients (0.23) in comparison to con-
trols (0.05). The distribution of observed MS genotypes in 
CHD patients were 60%, 36% & 4% for AA, AG and GG 
genotypes respectively. In control group the distribution 
was as follows: 73% for AA, 26% for AG and 1% for GG 
genotype. The CHD patients were showing higher fre-
quency of risk allele ‘G’ (0.22) than controls (0.14).

In order to investigate the possible association of these 
three polymorphisms with susceptibility of CHD, ORs 
with 95% confidentiality intervals was calculated for dif-
ferent genetic models which are presented in Table 6.

For both MTHFR C677T and MS A2756G polymor-
phisms, we observed that even though the values cal-
culated for ORs under different models were above 1, 
but none of the values reached statistical significance 
level (p > 0.05). The present study proclaimed lack of 
association of MTHFR C677T and MS A2756G gene 

polymorphism with the risk of CHD in our population. 
Furthermore, the GA vs GG genotype depicted a strong 
significant association of MTHFR G1793A gene poly-
morphism. The G vs A frequency showed that the allele 
‘A’ is adding a significant risk of approximately 5.7 folds in 
the development of CHD in the studied population. Dis-
tribution of MTHFR haplotypes in cases & controls and 
their association towards CHD susceptibility is depicted 
in Table 7.

The frequency of C-G haplotype was higher in both 
cases and controls (0.690 & 0.895 respectively). There 
was complete absence of T-A haplotype in both study 
groups. The haplotype combination C-A was signifi-
cantly associated with CHD risk (OR = 5.67 [2.58–12.48], 
p = 2.71e‐006) and C-G was significantly involved in 
protection against CHD development (OR = 0.26 [0.14–
0.48], p = 1.00e‐005) in the population under refer-
ence. By analysing LD scores in two study groups it was 
observed that the MTHFR variants were in complete 

Table 4 Prevalence of CHD phenotypes in present study

Type of CHD No. of Cases (N = 50) Percentage (%)

Ventricular septal defect (VSD) 17 34%

Atrial septal defect (ASD) 13 26%

Tetralogy of fallot (TOF) 7 26%

Patent ductus arteriosus (PDA) 4 8%

Endocardial cushion defect 3 6%

ASD with PDA 2 4%

VSD with peripheral arterial hypertension 2 4%

VSD with AV-canal defect 1 2%

Endocardial cushion defect along with dextrocardia 1 2%

Table 5 Showing genotypic and allelic distribution of selected gene polymorphisms among cases and controls

Category Genotypes/Alleles (%) χ2 p‑value

MTHFR (C677T) polymorphism

CC (Wild) CT (Hetero) TT
(Risk)

C
(Wild)

T
(Risk)

CHD Cases (n = 50) 44 (88%) 4
(8%)

2
(4%)

0.92 0.08 10.42 0.001*

Controls (n = 100) 90 (90%) 9
(9%)

1
(1%)

0.95 0.05 1.8 0.18

MTHFR (G1793A) polymorphism
GG (Wild) GA (Hetero) AA (Risk) G (Wild) A (Risk)

CHD Cases (n = 50) 29 (58%) 19 (38%) 2 (4%) 0.77 0.23 0.27 0.61

Controls (n = 100) 90 (90%) 10 (10%) 0 0.95 0.05 0.28 0.60

MS (A2756G) gene polymorphism
AA (Wild) AG (Hetero) GG (Risk) A (Wild) G (Risk)

CHD Cases (n = 50) 30 (60%) 18 (36%) 2 (4%) 0.78 0.22 0.12 0.73

Controls (n = 100) 73 (73%) 26 (26%) 1 (1%) 0.86 0.14 0.64 0.43
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LD in both patients (D’ = 0.999, r2 = 0.026) and controls 
(D’ = 1, r2 = 0.003).

Meta‑analysis
We found 26 eligible studies having 3450 cases and 4447 
controls with reference to MTHFR C677T polymorphism 
and 6 studies with 697 cases and 777 controls concern-
ing MS A2756G polymorphism. The main study charac-
teristics are summarized in Table 3. The study selection 
process has been depicted in PRISMA diagram (Fig. 4). 
By pooling all the studies, it was found that there is sta-
tistically significant association between MTHFR C677T 
polymorphism and congenital heart defects under all 
applied genetic models (Dominant model: OR = 1.38, 
95% CI: 1.14- 1.69; recessive model: OR = 1.49, 95% CI: 
1.83–1.87; allele model: OR = 1.33, 95% CI: 1.14–1.55) as 
shown in Table 8 and Fig. 5, 6, and 7. When we stratified 
the studies according to ethnicity, a significant associa-
tion was observed between this locus and CHD only in 
Asian populations (Dominant model: OR = 1.50, 95% CI: 
1.12- 2.01; recessive model: OR = 1.67, 95% CI: 1.21–2.31; 
allele model: OR = 1.42, 95% CI: 1.15- 1.76), but not in 
Caucasian populations (dominant model: OR = 1.24, 95% 
CI: 0.95- 1.62; Recessive model: OR = 1.27, 95% CI: 0.99–
1.63; allele model: OR = 1.21, 95% CI: 0.97–1.50) as given 
in Table 8.

However, it was observed that Caucasian popula-
tion was also showing association but it did not reach 
statistical significance. For MS polymorphism, none 
of the applied genetic models found association with 
CHD in overall population or even after subgroup-
ing (Table  9 and Fig.  8). Sensitivity analysis for both 
MTHFR and MS revealed that there is no change in the 
pooled ORs by omitting individual studies (Fig. 9 and 
10). The publication bias was also estimated by using 
funnel plot for log-odds ratio for dominant model 
against the reciprocal of its standard error (Fig. 11 and 
12). Further Egger regression asymmetry test was also 
used to evaluate publication bias (Table  9). No publi-
cation bias was observed in the present meta-analysis. 
Meta- analysis could not be performed for MTHFR 
G1793A gene polymorphism as we were able to find 
only one study other than the study under reference. 
Meta-analysis could not be performed for MTHFR 
G1793A gene polymorphism as we were able to find 
only one study other than the study under reference.

Trial Sequential Analysis (TSA)
Trial sequential analysis was performed to calcu-
late the requisite sample size for the meta-analysis of 
MTHFR C677T gene polymorphism. It revealed that 

Table 6 Association between selected gene polymorphisms 
and CHD

a Some genotype combinations were not observed, so it was not possible to 
calculate odds ratio
b Significant values

MODEL OR (95% CI) p‑value

MTHFR C677T polymorphism
 Co-dominant

  CT vs CC 0.91 [0.27–3.12] 0.879

  TT vs CC 4.09 [0.36–46.35] 0.22

 Dominant

  CT + TT vs CC 1.23 [0.42–3.59] 0.71

 Recessive

  TT vs CT + CC 4.12[0.36–46.63] 0.234

 Allelic

  T vs C 1.49 [0.58–3.84] 0.40

MTHFR G1793A polymorphism
 Co-dominant

  GA vs GG 5.90 [2.46–14.11] 0.00002b

  AA vs GG Not  possiblea ‑
 Dominant

  GA + AA vs GG 6.52 [2.75–15.43]  < 0.0001b

 Recessive

  AA vs GA + GG Not  possiblea ‑
 Allelic

  A vs G 5.68 [2.58–12.48]  < 0.0001b

MS A2756G polymorphism
 Co-dominant

  AG vs AA 1.68 [0.81–3.52] 0.163

  GG vs AA 4.87 [0.43–55.71] 0.20

 Dominant

  AG + GG vs AA 1.80 [0.88–3.69] 0.11

 Recessive

  GG vs AG + AA 4.12[0.36–46.63] 0.2

 Allelic

  G vs A 1.73 [0.93–3.22] 0.08

Table 7 Association of MTHFR haplotypes with risk of CHD

a Significant values, †Fisher’s p-value

Variant 
MTHFR C677T/ 
G1793A

CHD 
Cases 
(n = 50)

Controls 
(n = 100)

OR (95% CI) p‑value†

C-A 0.230 0.050 5.67 [2.58–12.48] 2.71e‐006a

C-G 0.690 0.895 0.26 [0.14–0.48] 1.00e‐005a

T-G 0.080 0.055 1.49 [0.58–3.84] 0.40

T-A 0.000 0.000 - -
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sufficient number of studies have been included in the 
meta-analysis of this polymorphism. The results of 
TSA were in accordance with the findings of the con-
ventional meta-analysis and revealed that C677T poly-
morphism was significantly associated with the risk of 
CHD (Fig.  13). For MS A2756G polymorphism, TSA 
could not be performed owing to very little informa-
tion of sample size which revealed that there is need 
of more replicas of case control studies to reach the 
conclusive remarks on role of said polymorphism in 
conferring risk of CHD. Similarly for MTHFR G1793A 
gene polymorphism, TSA could not be performed as 
only two studies were available for meta-analysis.

Discussion
The folate-homocysteine metabolic pathway performs 
a paramount role in neural tube formation and cardiac 
development during embryogenesis. Low folate and high 

homocysteine levels are a closely related with the mani-
festation of congenital heart defects, which indicates that 
single nucleotide polymorphisms (SNPs) in the genes 
controlling this pathway may be the genetic risk factors 
for these disorders [34]. Therefore, we performed a case–
control association study and an updated meta-analysis 
along with TSA to investigate the association of MTHFR 
and MS gene polymorphisms with risk of CHD. We did 
not find a significant association of MTHFR C677T and 
MS A2756G polymorphism with risk of CHD in our 
studied population. The results were consistent with 
studies done by various workers [5, 7, 35–38]. Regard-
ing MTHFR G1793A polymorphism in link with CHD 
risk we found significant association under co-dominant, 
dominant and allelic model in present study. The geno-
typic frequencies reported in the present study were 
almost compatible with frequencies as reported by Toga-
nel and co-workers and the investigators also observed a 

Fig. 4 PRISMA flow diagram showing the selection of various studies for the meta –analysis
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Table 8 Overall meta-analysis and subgroup analysis by ethnicity for MTHFR C677T polymorphism

a In one of the study, TT genotype is completely absent in one of the study group

Genetic Model Number of 
studies

Test of association Heterogeneity Egger’s test 
p‑ value

OR 95% CI p‑value Model p‑value I^2

Overall

 Allele contrast (T vs. C) 26 1.33 1.14–1.55 0.0002 Random 0.0001 0.7554 0.0259

 Recessive model (TT vs. TC + CC) 25a 1.49 1.83–1.87 0.0007 Random 0.0001 0.5828 0.1945

 Dominant model (TT + TC vs. CC) 26 1.38 1.14- 1.69 0.001 Random 0.0001 0.696 0.0068

 Homozygous model (TT vs CC) 25a 1.75 1.26–2.44 0.001 Random 0.0001 0.7286 0.0699

 Heterozygous model (TT vs CT) 25a 1.34 1.11–1.60 0.002 Random 0.02 0.5157 0.6033

Caucasians

 Allele contrast (T vs. C) 11 1.21 0.97–1.50 0.1 Random 0.0006 0.6755 0.1529

 Recessive model (TT vs. TC + CC) 11 1.27 0.99–1.63 0.06 Fixed 0.1662 0.2933 0.8658

 Dominant model (TT + TC vs. CC 11 1.24 0.95- 1.62 0.1 Random 0.003 0.6234 0.0657

 Homozygous model (TT vs CC) 11 1.37 0.91- 2.07 0.1 Random 0.0237 0.5157 0.6033

 Heterozygous model (TT vs CT) 11 1.78 0.91- 1.53 0.2 Fixed 0.5288 0 0.8349

Asians

 Allele contrast (T vs. C) 15 1.42 1.15- 1.76 0.001 Random 0.0001 0.7988 0.0765

 Recessive model (TT vs. TC + CC) 14a 1.67 1.21–2.31 0.002 Random 0.0001 0.6958 0.1205

 Dominant model (TT + TC vs. CC 15 1.50 1.12- 2.01 0.02 Random 0.0001 0.7438 0.0599

 Homozygous model (TT vs CC) 14a 2.12 1.30–3.47 0.003 Random 0.0001 0.8067 0.08

 Heterozygous model (TT vs CT) 14a 1.46 1.13–1.89 0.003 Random 0.03 0.4697 0.0834

Fig. 5 Pooled OR (Dominant model) and 95% CI for individual studies and pooled data for the association between the polymorphism C677T and 
congenital heart disease (CHD) in the overall population
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strong significant association this SNP with susceptibil-
ity of CHD [AA + GA vs GG: OR = 4.18; 95% CI (1.25- 
13.98), p = 0.02] in a Romanian population whereas 
antithetical findings were reported in Chinese popula-
tion [39, 40]. Xu and co-workers found that the variant 
genotypes of MTHFR G1793A polymorphism were sig-
nificantly associated with a decreased risk of CHD, espe-
cially in patients with isolated peri-membranous VSD 
[40]. The correlation between the MTHFR G1793A gene 
polymorphism and the CHD risk has not been exten-
sively studied so far. To the best of our knowledge there is 
no previous report from India and we are the first to ana-
lyse G1793A variation of MTHFR gene from North India. 
The present study is first of its kind concentrating on the 
effect of MTHFR (C677T and G1793A) haplotypes with 
vulnerability of CHD. The haplotype C-A was conferring 
nearly 5.7-fold disease risk and C-G haplotype was giving 
a shielding outcome of approximately 3.8-fold (1/0.26). 
Based on measure of LD, the two MTHFR SNPs were in 
complete LD in both CHD cases and controls. The possi-
ble limitations of the present study may be the enrolment 

of study samples from single region of UT J&K and lack 
of homocysteine measurements in the study subjects. 
Besides these limitations and to the best of our knowl-
edge, the study under reference here is the first attempt 
that evaluates the association of MTHFR and MS gene 
polymorphisms in CHD.

Genetic association studies have been a powerful 
approach for identifying susceptibility genes for com-
mon diseases but it has been experienced that most of 
the initial positive associations were not reproduced in 
the subsequent replication studies because of small sam-
ple size or false-positive reports [41, 42]. Meta-analysis 
solves this problem as it increases the statistical power 
to detect gene–disease associations by combining results 
from the original and subsequent replication studies 
[42].  Similarly, when we conducted case–control asso-
ciation, we did not observe significant association of 
MTHFR C677T with risk of CHD, as it was a pilot study 
and carried on limited number of samples. But after 
performing meta-analysis, the results suggested a posi-
tive association of MTHFR C677T with the risk of CHD. 

Fig. 6 Pooled OR (Recessive model) and 95% CI for individual studies and pooled data for the association between the polymorphism C677T and 
congenital heart disease (CHD) in the overall population
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Fig. 7 Pooled OR (Allele model) and 95% CI for individual studies and pooled data for the association between the polymorphism C677T and 
congenital heart disease (CHD) in the overall population

Table 9 Overall meta-analysis and subgroup analysis by ethnicity for MS A2756G polymorphism

Genetic Model Number of 
studies

Test of association Heterogeneity Egger’s test 
p‑ value

OR 95% CI p‑value Model p‑value I^2

Overall

 Allele contrast (G vs. A) 6 1.05 0.88–1.26 0.6 Fixed 0.3 0.1993 0.4631

 Recessive model (GG vs. AG + AA) 6 1.11 0.47–2.64 0.8 Random 0.07 0.5136 0.5171

 Dominant model (GG + AG vs. AA) 6 1.08 0.86–1.35 0.5 Fixed 0.6 0 0.7422

 Homozygous model (GG vs AA) 6 0.95 0.57–1.56 0.8 Fixed 0.1 0.4122 0.4344

 Heterozygous model (GG vs AG) 6 1.10 0.45–2.72 0.8 Random 0.06 0.5204 0.5685

Caucasians

 Allele contrast (G vs. A) 3 0.95 0.75–1.19 0.6 Fixed 0.5 0 0.9501

 Recessive model (GG vs. AG + AA) 3 0.86 0.30–2.47 0.8 Random 0.03 0.7067 0.9516

 Dominant model (GG + AG vs. AA) 3 0.96 0.71–1.31` 0.8 Fixed 0.92 0 0.0379

 Homozygous model (GG vs AA) 3 0.84 0.34–2.06 0.7 Random 0.1 0.5605 0.9324

 Heterozygous model (GG vs AG) 3 0.87 0.26–2.91 0.82 Random 0.02 0.7476 0.9915

Asians

 Allele contrast (G vs. A) 3 1.25 0.93–1.69 0.1 Fixed 0.3 0.2455 0.6974

 Recessive model (GG vs. AG + AA) 3 2.26 0.51–9.94 0.3 Fixed 0.4 0.0104 0.5599

 Dominant model (GG + AG vs. AA) 3 1.24 0.89–1.73 0.21 Fixed 0.3 0.0785 0.5501

 Homozygous model (GG vs AA) 3 2.42 0.55–10.69 0.2 Fixed 0.3 0.1005 0.577

 Heterozygous model (GG vs AG) 3 1.95 0.43–8.78 0.4 Fixed 0.5 0 0.4763
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The results of the overall analysis depicted an increased 
risk of CHD with the presence of MTHFR 677 T- allele 
in fetus. The putative risk allele-677  T had a 1.33 folds 
increased risk of CHD against the C-allele. From the 
subgroup analysis, the increased risk of the T-allele was 
widely detected in Asians but not in Caucasians. Our 

results are compatible with the previous Meta analyses 
that investigated the association of the MTHFR C677T 
polymorphism in CHD [34, 43]. Further, this association 
revealed through conventional meta-analysis has also 
been confirmed by performing Trial Sequential Analysis. 
Lack of association was reported for MS A2756G both 

Fig. 8 Pooled OR (Dominant model) and 95% CI for individual studies and pooled data for the association between the polymorphism MS/MTR 
A2756G and congenital heart disease (CHD) in the overall population

Fig. 9 Sensitivity analysis of association between MTHFR C677T polymorphism and CHD
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in pooled and in sub-grouped meta-analysis and the 
findings are consistent with study done by Cai and co-
workers [44]. The findings of MS polymorphism needs 
to be further investigated as there are not enough studies 
on association of this polymorphism with risk of CHD 
and during our search we also found only six eligible 

studies and TSA has not been performed in lieu of lack 
of sufficient number of studies. Further, we were not able 
to perform meta- analysis for MTHFR G1793A poly-
morphism as to best of our efforts; we found only a few 
case–control studies which were not sufficient for per-
forming meta-analysis.

Fig. 10 Sensitivity analysis of association between MS/MTR A2756G polymorphism and CHD

Fig. 11 Funnel plot of the MTHFR C677T polymorphism and susceptibility to CHD (Dominant model) in the overall population
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Fig. 12 Funnel plot of the MS/MTR A2756G polymorphism and susceptibility to CHD (Dominant model) in the overall population

Fig. 13 Trial Sequential Analysis (TSA) of the studies included in the meta analysis of MTHFR C677T gene polymorphism with CHD
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Conclusion
In conclusion, the results of meta-analysis and TSA sup-
port the role of MTHFR C677T gene polymorphism as 
susceptibility factor for Congenital Heart Defects. For 
MTHFR G1793A and MS A2756G gene polymorphisms, 
there is need to perform large number of homogenous 
studies to evaluate these crude results further.
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