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Abstract: Mobility patterns and lifestyles have changed in recent years in cities worldwide, thanks
to the strong rise in modes of travel commonly referred to as micromobility. In this context, e-
scooters have experienced a great rise globally which has led to an increase of crashes involving
this type of micromobility vehicle in urban areas. Thus, there is a need to study e-scooter users’
behaviour and their interaction with cyclists. This research aimed at characterizing the meeting
manoeuvre between micromobility users along diverse typologies of two-way bicycle track by using
an instrumented e-scooter. As a result, bicycle tracks having concrete or vegetated curb presented
lower clearance distance (≈0.8 m) than those without edge elements (>1 m), with no statistically
significant differences found between the interaction with bicycles and e-scooters. Additionally, an
online questionnaire was proposed to assess users’ perceived risk during the meeting manoeuvre,
concluding that micromobility users feel safer and more comfortable riding on pavements away from
parked or moving motorized traffic, and on protected bicycle tracks.

Keywords: micromobility; bicycle track; instrumented e-scooter; meeting manoeuvre; clearance
distance; perceived risk

1. Introduction

Mobility patterns and lifestyles have changed in recent years in cities worldwide,
thanks to the strong rise in modes of travel commonly referred to as micromobility. It
includes all transportation modes that allow their users to make a hybrid usage and behave
either as a pedestrian or as a vehicle at their convenience or when necessary. Defined
as such, microvehicles include all easy-to-carry or easy-to-push vehicles allowing for the
augmentation of the pedestrian. They can range from lightest rollers and skis to the
heaviest two-wheeled, self-balancing personal transporters. They can be motorized or
non-motorized, shared or privately owned [1]. Bicycle riding is the most widespread
micromobility transport modes, followed by electric scooters (e-scooters), that can address
the first-last mile problem or even be used for door-to-door trips [2].

This mobility change was also influenced by the COVID-19 pandemic. To reduce the
risk of becoming infected on public transport, people started to replace public transport
with micromobility transport modes, and even the proportion of medium- and long-
distance travels by micromobility services increases during the lockdown period [3]. In fact,
some studies concluded that there are also indications that micromobility patterns have
changed after the pandemic, from complementary modes to full trip solutions [4]. In some
cities, since the lockdown, the use of e-scooters has gained significant importance, and
has become a strategic means of travel [5]. This has been made possible by the expansion
of free-floating (i.e., dockless) e-scooters operators, which have increased its popularity,
although COVID put a hold on free-floating e-scooters activities. However, the purchase of
scooters by private individuals has risen sharply due to governmental incentives [5]
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This great rise of e-scooter users has been accompanied by an increase in crashes
involving this micromobility vehicle. However, data availability for e-scooter crashes is
very limited. In fact, crashes involving e-scooters do not have dedicated labelling in crash
reports for the majority of city agencies [4]. Therefore, most research is based on hospital
records and visits to emergency departments [6–10]. Other authors have focused on
massive media reports for constructing crash datasets [11], whereas only a few studies rely
on police-reported crashes [12]. Although the collision types and severity varied among
studies, most of them concluded that the highest percentage of crashes occurs in “sharrows”
(a combination of the words “share” and “arrow” referring to roads shared by bikes and
cars), followed by sidewalks, with bicycle tracks—striped, buffered or protected—being
the safest place for riding.

The model developed by Zhang et al. [13] suggests that e-scooter riders are willing to
travel longer distances on segments with bikeways. However, Curl and Fitt [14] highlighted
that 90% of users used sidewalks. E-scooter riders’ choices depend on the country, the
cities, and their policies. In Spain, e-scooter users are prohibited from riding on sidewalks
or pedestrian areas [15], thus most e-scooters ride on bicycle tracks, sharing the facilities
with the bicycles.

Existing bicycle tracks shared by e-scooters were originally designated for cyclists.
Introducing e-scooters to these facilities undoubtedly causes additional interferences be-
tween users, which makes it not only unsafe to e-scooter riders, but also to cyclists and
pedestrians. For example, due to physical restrictions (e.g., limited width, roughness, etc),
many facilities may not be able to fully support the safe use of e-scooters, which are often
equipped with small wheels [16].

E-scooters differ from bikes in terms of dimensions and speed, and these differences
can influence not only safety, but also the level-of-service (LOS) of bicycle track. The Bicycle
LOS (BLOS) is an important indicator used for bicycle track planning, design, monitoring,
prioritisation, and strategy. Without considering the difference in the mobility of e-scooters,
e-bikes, and bicycles, the estimates of BLOS could be biased [17].

Consequently, to study and improve safety and LOS of bicycle tracks considering
mixed traffic flow, it is necessary to know the users’ behaviour when interacting. These
interactions in two-way cycle tracks can be: following, when a faster vehicle reaches a
slower one; passing, when, after following, a faster vehicle passes the slower one; and,
meeting, when two vehicles traveling in opposing directions cross [18].

Most of the previous studies on either following, passing, or meeting manoeuvres
were focused only on bicycles, and based on video recording at fixed locations. Khan
and Raksuntorn [19] studied bicycle passing and meeting manoeuvres on a 3 m wide
separated bicycle path, comparing speeds of overtaking bicycles at different overtaking
states, and analysing clearance distance. The results showed that the average clearance
distances during passing and meeting manoeuvres were 1.78 m and 1.94 m, respectively.
Mohammed et al. [20] extracted data from video by using computer vision techniques, in-
cluding longitudinal distance, clearance distance, and speed difference between interacting
cyclists, in order to characterize bicycle following and overtaking manoeuvres on cycling
paths. They clustered the overtaking cyclists into initiation, merging, and post-overtaking
states. The average clearance distance for initiation state was 1.51 m.

Video recording is unobtrusive and allows data collection without influencing cyclists’
behaviour. However, video camera can only be placed in specific locations, thus limiting the
generalizability of the findings. Therefore, several studies have used instrumented bicycles
to analyse interactions with other vehicles. García et al. [21] observed cyclists’ meeting
manoeuvres using an instrumented bicycle, equipped with video cameras, a GPS tracker,
laser rangefinders, and speed sensors. They collected data of 336 meeting manoeuvres on
six two-way cycle tracks ranging 1.3–2.15 m in width, delimited by different boundary
conditions in Valencia (Spain). They found that clearance distance increased with lane
width, and decreased as the cycle tracks had lateral obstacles (e.g., parked vehicles or urban
furniture). The presence of an obstacle to the wheel height reduced the average clearance
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distance up to 0.10 m, being 0.20 m in the case of obstacles to the handlebar height. Without
obstacles and on wide cycle tracks, the average clearance distance was 0.89 m.

The adaptation of this instrumentation to the e-scooter is complicated due to its size.
Garman et al. [22] instrumented an e-scooter to collect performance data related to vehicle
dynamics. All data were acquired by a Plex VMU 900 HD Pro equipped with an integrated
50 Hz GPS and 100 Hz Inertial Measurement Unit (IMU) module. Ma et al. [16] developed
a system for e-scooter instrumentation integrating a set of sensing devices including GPS,
IMU, and Lidar to collect real-time information on geospatial coordinates, vibrations, and
surrounding obstacles. All sensors were connected with a Raspberry Pi platform for data
acquisition, processing, and storing. However, they studied the interactions between e-
scooters and the surrounding environment in urban areas, but not the interactions among
bicycle track users.

E-scooter users’ behaviour and their interactions with cyclists during passing and
meeting manoeuvres should be a critical issue for bicycle track width selection, for the
estimation of BLOS, and for the development of microsimulation models, which can be
used to enhance bicycle track planning, traffic modelling, safety assessment, and energy
and health modelling. However, previous studies did not analyse the interactions between
e-scooters, and between e-scooters and bicycles. To fill this gap, the current study has
developed a new sensing system for e-scooter instrumentation. It allows for the study of
the behaviour of cyclists and e-scooter users when passing and meeting an e-scooter on
urban two-way cycle tracks.

Therefore, this study aims at characterizing the meeting manoeuvre between micro-
mobility users along diverse typologies of two-way bicycle track. For that purpose, an
instrumented electric scooter is used to carry out a quasi-naturalistic data collection in
the city of Valencia (Spain). Additionally, an online survey is proposed to assess users’
perceived risk associated with meeting manoeuvre.

The underlying hypothesis is that the typology of bicycle track has a great impact on
micromobility users’ behaviour. The presence of a physic or vegetated curb is expected to
lead to a lower clearance distance between users and, therefore, to a higher perceived risk.

2. Materials and Methods

The development of this research is mainly based on four stages: (i) infrastructure anal-
ysis; (ii) quasi-naturalistic data collection; (iii) analysis of micromobility users’ behaviour;
and (iv) analysis of users’ subjective perception risk.

First, the bike infrastructure network of Valencia city was assessed to identify potential
locations to study the interaction between micromobility users. To this regard, cycling
demand maps of Valencia, that are publicly available on the website of the Valencia
City Council (https://www.valencia.es/cas/movilidad accessed on 6 June 2021), and the
typology of bicycle tracks, that was checked on Google Maps, were considered.

Once bicycle track segments to be studied were selected, a quasi-naturalistic data
collection was designed and performed by using an instrumented e-scooter. This ve-
hicle allowed estimating clearance distance, determining the type of manoeuvre (meet-
ing or overtaking), and identifying the type of micromobility vehicle involved in each
manoeuvre—bicycle or e-scooter.

Although both meeting and overtaking manoeuvres were observed, this study is
only focused on meeting manoeuvres, since a low number of overtaking manoeuvres
occurred. Meeting manoeuvres were analysed depending on the type of opposite vehicle
involved—bike or e-scooter—and the typology of the bicycle track. A descriptive analysis
was developed to determine the average and standard deviation of the clearance distance,
and, additionally, a statistical analysis was performed to identify whether statistically
significant differences exist between the clearance distances regarding the type of vehicle
and the type of bicycle track.

Finally, users’ subjective perception risk was assessed through an online questionnaire.
The main objective of the questionnaire was to know the users’ perception regarding cycling

https://www.valencia.es/cas/movilidad
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infrastructure conditions, lane edge conditions, comfort while driving, and interactions
with other users (including pedestrians and motorised vehicles).

2.1. Bicycle Track Segments

The selection of bicycle tracks was based on the following criteria:

• Cycling demand. Traffic volume was high enough to encourage meeting manoeuvres,
but not so high to allow overtaking manoeuvres, ensuring free-flow conditions. In this
study, bicycle tracks presenting a cycling demand greater than 1000 bikes per day
were selected. A maximum value was not established, and those bicycle tracks having
very high traffic volume were observed during off-peak hours;

• Bicycle track typology. More common typologies of bicycle tracks in the city of Valencia
were selected (Figure 1). To this regard, sidepath is referred to off-street bikeways that
are built as extensions of the sidewalk, with a complete physical separation from cars
except at intersections with cross streets. Selected bicycle track typologies are:

(a) Sidepath without physical or vegetated curb;
(b) Sidepath with vegetated curb;
(c) Protected bicycle track;
(d) Sidepath on median next to motorised traffic;
(e) Sidepath on median not next to motorised traffic;

• Bicycle track width. This geometric characteristic was kept constant among the
different bicycle track typologies to avoid biased results. After analysing lane width
along several two-way bicycle tracks in Valencia, 2 m wide bicycle tracks were selected,
since this is the most common bicycle track width;

• Bicycle track length. A minimum length of 300 m was stablished to ensure free-flow
conditions and to encourage both meeting and overtaking manoeuvres. To this regard,
data close to intersections—20 m according to AASHTO [23]—were not considered in
the analysis.

Figure 1. Typologies of bicycle tracks: (a) sidepath without physical or vegetated curb, (b) sidepath
with vegetated curb, (c) protected bicycle track, (d) sidepath on median next to motorised traffic, and
(e) sidepath on median.
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Table 1 shows a description of selected bicycle tracks, indicating bicycle track typology,
location, edge conditions, type of pavement, bicycle track width and length, and cycling
demand in June 2021. It should be noted that the configurations of these bicycle tracks are
very common not only in Valencia, but also around Spain—e.g., in Madrid and Barcelona—
and even cities around Europe and the USA.

Table 1. Selected bicycle tracks.

Id Typology * Location Edge Conditions Pavement Width
(m) Length (m) Cycling Demand

(bikes/day)

1 Sidepath a Naranjos Ave. - Cobblestones 2 1500 1230
2 Sidepath b Naranjos Ave. Vegetated curb Concrete 2 1505 1740

3 Sidepath b Blasco Ibáñez
Ave. Vegetated curb Concrete 2 480 2064

4 Protected
bicycle track c Colón St. Discontinuous

concrete kerbstone Asphalt 2 647 4425

5 Protected
bicycle track c

Guillem de
Castro St.

Discontinuous
concrete kerbstone Asphalt 2 1487 4361

6 Sidepath d Dr. Manuel
Candela St.

On median next to
motorised traffic Asphalt 2 885 1991

7 Sidepath e Blasco Ibáñez
Ave. On median Tiles 2 350 2360

* (a–e) Indicates the type of bicycle track according to Figure 1.

2.2. Data Collection

Data collection was performed by using an e-scooter equipped with two distance
meters (HC-SR04 ultrasonic sensor) controlled through a Raspberry Pi 4—a tiny, dual-
display, desktop computer—and a Garmin Virb Elite video camera (Figure 2). Diverse data
collection sessions were scheduled from 25 June to 15 July 2021, in the morning between
8:00 h and 9:00 h and in the evening between 17:00 h and 21:00 h. The instrumented vehicle
was driven by the same person during all data collection sessions, who travelled in the
centre of the directional lane at 15 km/h. In this way, the lateral distance between the
instrumented vehicle and the edge of the opposite lane was 1.5 m, since the width of all
studied bicycle tracks was 2 m. As a result, a total of 80 km of bicycle tracks were travelled,
leading to 25 h of video recording.

Figure 2. Instrumented e-scooter.
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2.3. Data Reduction

The clearance distance data collected by the ultrasonic sensors were saved in a CSV
file through a Python 3.10 script. Specifically, these sensors enabled to measure clearance
distance at 10 Hz frequency. These files were opened in Excel to filter and represent the
collected information.

Additionally, a video recording for each data collection session was available. These
videos were visualized in Garmin Virb Edit, which shows the video recording along with
the georeferenced path and the actual speed of the instrumented vehicle.

Both data sources—CSV file and video recording—were synchronized to identify
meeting and overtaking manoeuvres (Figure 3). Figure 3a shows clearance distance over
time. In this regard, a meeting or overtaking manoeuvre was related to sudden reductions
of clearance distance. A clearance distance greater than 150 mm meant that the opposite or
overtaking vehicle drove out of the bicycle track during the meeting or overtaking manoeu-
vre, respectively. Each sudden reduction of clearance distance was checked on the video
recordings to identify the following information (Figure 3b): (i) typology of bicycle track;
(ii) type of vehicle (bike, e-scooter or other); (iii) type of manoeuvre (meeting or overtaking);
(iv) clearance distance; and (v) speed (only available for overtaking manoeuvres).

Figure 3. Synchronization of data sources: (a) data from ultrasonic sensors and (b) video recording.

Table 2 summarizes the number of the meeting and overtaking manoeuvres observed
during data collection, considering the diverse typologies of bicycle track and the most
common type of vehicles (bikes and e-scooter). As a result, a total of 779 manoeuvres were
recorded, of which 93% were meeting manoeuvres. Furthermore, over 70% of micromobility
users were traveling by bike.
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Table 2. Number of involved vehicles during data collection.

Typology of Bicycle Track Meeting Manoeuvre Overtaking Manoeuvre
TotalBikes E-Scooter Bikes E-Scooter

Sidepath without physical or vegetated curb 136 35 4 4 179
Sidepath with vegetated curb 100 32 8 4 144

Protected bicycle track 71 29 3 5 108
Sidepath on median next to motorised traffic 112 60 7 7 186

Sidepath on median 117 36 6 3 162

Total 536 192 28 23 779

2.4. Survey

An online questionnaire was designed to identify users’ preferences while traveling
along the cycling infrastructure from a safety and comfort standpoint. Micromobility users
were asked about the risk linked to meeting and overtaking manoeuvres while traveling
along different typologies of bicycle track. To this regard, the level of risk was measured
through a 5-level Likert scale: (1) no risk; (2) low risk; (3) medium risk; (4) high risk; and
(5) very high risk.

A total of 120 micromobility users, aged 18 to 67 years, responded the questionnaire
from 17 June 2021 to 20 July 2021 (Figure 4). The questionnaire was launched via e-mail to
the academic community and via social networks—Twitter, Facebook, and LinkedIn—to
the general audience. As expected, the number of responses decreased with age.

Figure 4. Number of respondents to the survey by age.

Regarding the main mode of transport of the participants, 35% of them use a private
bicycle as their main transport vehicle, 20% use public transport, 17% use the public bicycle
system, 14% use their own car, 8% use e-scooters, and only 5% use shared or owned
motorcycles (Figure 5). Thus, it can be concluded that six out of ten respondents use
a micromobility vehicle—bike or e-scooter—as their main mode of urban transport. In
addition, over half of respondents prefer traveling by bike rather than other micromobility
vehicles, which is consistent with the trend observed during data collection.
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Figure 5. Main mode of transport of the respondents.

Finally, it should be noted that most of the respondents (62%) travel distances lower
than 5 km when using micromobility vehicles, whereas a quarter of them indicated travel-
ling distances between 5 and 10 km. Only about 10% of participants reported travelling
distances longer than 10 km.

3. Results

Data analysis was focused on exploring the clearance distance between micromo-
bility users and on determining the users’ perceived risk during meeting manoeuvres.
Both variables were studied considering bicycle track typology and type of vehicle—bike
and e-scooter.

3.1. Clearance Distance

First, a descriptive analysis was performed by estimating diverse measures of location
and variability (Table 3). Although there are no differences of clearance distance between
bikes and e-scooter for a specific typology of bicycle track—no intragroup differences—,
it seems that clearance distance is greatly influenced by the typology of bicycle track—
intergroup differences. Related to this, bicycle tracks which have a physical or vegetated
curb presented a lower clearance distance (≈0.8 m) than those without edge elements
(>1 m), for both types of vehicles.

Table 3. Statistical summary of clearance distance during meeting manoeuvres.

Type of Vehicle Mean
(m)

Median
(m)

Standard
Deviation (m)

Minimum
(m)

Maximum
(m)

Sidepath without physical or
vegetated curb

Bike 1.013 0.933 0.281 0.558 2.133
e-scooter 1.054 0.982 0.306 0.684 1.972

Sidepath with vegetated curb Bike 0.837 0.818 0.222 0.287 1.592
e-scooter 0.832 0.848 0.178 0.405 1.184

Protected bicycle track Bike 0.761 0.742 0.182 0.380 1.357
e-scooter 0.770 0.762 0.197 0.382 1.160

Sidepath on median next to
motorised traffic

Bike 1.028 0.986 0.265 0.514 1.767
e-scooter 1.099 1.006 0.341 0.234 1.819

Sidepath on median Bike 1.073 1.000 0.272 0.615 1.757
e-scooter 1.079 0.964 0.319 0.534 1.730
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The variability of clearance distance increases as the mean does. In other words,
micromobility users seem to feel more freedom on bicycle tracks without edge elements.
Indeed, the maximum values of the clearance distance for these typologies of bicycle tracks
are higher than 1.5 m, indicating that some oncoming vehicles were outside of the bike
infrastructure. Additionally, the variability among cyclists was lower than that linked to
users of e-scooters, except for sidepaths with vegetated curb.

Afterwards, a statistical hypothesis test was developed to identify whether statistically
significant differences exist between the samples obtained (clearance distances for each
type of vehicle per bicycle track typology). For that purpose, the assumption of normality
was previously checked considering the Kolmogorov–Smirnov test that establishes as a
null hypothesis (H0) that the data are normally distributed (Table 4). As a result, most
samples were not normally distributed at a 95% confidence level.

Table 4. Results of Kolmogorov–Smirnov test.

Typology of Bicycle Track p-Value *
Bike E-Scooter

Sidepath without physical or vegetated curb 0.0355482 0.0001914
Sidepath with vegetated curb 0.0470537 0.9553620

Protected bicycle track 0.6525390 0.5493860
Sidepath on median next to motorised traffic 0.0150813 0.1207760

Sidepath on median 0.0113474 0.0035132
* If p-Value is less than 0.05, H0 is rejected at a 95% confidence level.

Therefore, the non-parametric Kruskal–Wallis test was considered to perform the
statistical analysis. It tries to compare the medians of each sample, making all possible
combinations to contrast them with each other (Table 5). The intergroup analysis for each
type of vehicle indicated that statistically significant differences exist between bicycle
tracks with a physical or vegetated curb and those without curbs, verifying one of the main
hypotheses of this research.

Table 5. Results of the Kruskal–Wallis test in intergroup analysis.

Typologies of Bicycle Track Difference
Bike E-Scooter

Sidepath without physical or
vegetated curb

Sidepath with vegetated curb 125.276 * 40.929 *
Protected bicycle track 143.997 * 52.929 *

Sidepath on median next to
motorized traffic −21.014 −8.038

Sidepath on median −39.179 −2.002

Sidepath with vegetated curb
Protected bicycle track 18.721 12.000

Sidepath on median next to
motorized traffic −146.289 * −48.967 *

Sidepath on median −164.455 * −42.931 *

Protected bicycle track
Sidepath on median next to

motorized traffic −165.011 * −60.967 *

Sidepath on median −183.176 * −54.931 *
Sidepath on median next to

motorized traffic Sidepath on median −18.165 6.0361

* p-Value less than 0.05 and H0 rejected at a 95% confidence level.

Although there were no statistically significant differences between the typologies
of bicycle track with curb (sidepath with vegetated curb and protected bicycle track), the
mean and median values of the clearance distance for protected bicycle tracks were the
lowest. This could be due to the proximity of motorised traffic to this type of bicycle track,
causing micromobility users to stay away from the lane edge.
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Furthermore, no statistically significant differences were identified between the cycle
lanes in the median, thus the proximity of motorised traffic to the median did not influence
user behaviour.

On the other hand, the intragroup analysis pointed out that cyclists and users of
e-scooter behaved similar for a specific typology of bicycle track as the p-Values of the
non-parametric Kruskal–Wallis test were greater than 0.05 (Table 6).

Table 6. Results of the Kruskal–Wallis test in intragroup analysis.

Typology of Bicycle Track p-Value *

Sidepath without physical or vegetated curb 0.3764940
Sidepath with vegetated curb 0.5880840

Protected bicycle track 0.8523590
Sidepath on median next to motorised traffic 0.2173070

Sidepath on median 0.9931360
* If p-Value is less than 0.05, H0 is rejected at a 95% confidence level.

3.2. Perceived Risk

The risk perceived by micromobility users while riding in each typology of bicycle
track was analysed by means of an online questionnaire, considering a 5-level Likert scale:
(1) no risk; (2) low risk; (3) medium risk; (4) high risk; and (5) very high risk. In this regard,
two additional typologies of bicycle track were included to assess the presence of parked
motorised vehicles, parked with both parallel and perpendicular parking (Figure 6).

Figure 6. Sidepath without physical or vegetated curb next to parked motorized vehicles: (a) parallel
parking, and (b) perpendicular parking.

Figure 7 represents, for each typology of bicycle track, the percentage of responses for
each value of the Likert scale, placing the average value of the scale (3) at 0%. Thus, the
percentages of responses associated with high (4) or very high risk (5), together with half of
the percentage of responses associated with medium risk (3), are located on the right-hand
side. Similarly, half of the percentage of responses linked to medium risk (3), together
with the percentages of responses associated with low (2) or no risk (1), are located on the
left-hand side.

The typologies “Sidepath without physical or vegetated curb” and “Sidepath on
median” resulted in a large percentage of responses associated with no or low risk (>50%).
However, the respondents indicated that the presence of parallel or perpendicular parking
in the edge of these typologies of bicycle tracks had a negative impact on safety, significantly
raising the perceived risk. In addition, the presence of motorised traffic next to a sidepath on
the median led to an increase of the perceived risk. More than one out of four respondents
reported a high or very high risk when riding along this type of bicycle track.
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Figure 7. Results of perceived risk during meeting manoeuvres.

Regarding the type of curb, micromobility users felt safer riding on protected bicycle
tracks than on a sidepath with vegetated curb. This finding could be due to the lack of
maintenance of vegetation that serves to separate cycling infrastructure from pedestrians.
However, the clearance distances collected along protected bicycle tracks were lower than
those on sidepaths with vegetated curb (Table 3).

Therefore, micromobility users felt safer and more comfortable riding on sidepaths
away from parked or moving motorised traffic and on protected bicycle tracks. In particular,
the typology of bicycle track associated with the lowest perceived risk was “Sidepath on
median”, with a mean value of 2.11. On the contrary, the least safe typology of bicycle track
was “Sidepath without physical or vegetated curb, next to perpendicular parking” that
resulted in a mean value of perceived risk of 3.71.

4. Discussion

The findings of this study are based on the analysis of 728 meeting manoeuvres
recorded on seven bicycle track segments. This amount of data is considerably higher
than those used in other studies. To this regard, García et al. [21] considered a total of
336 meeting manoeuvres along six bicycle track segments, while Khan and Raksuntorn [19]
analysed 100 meeting events on only one bicycle track.

As concluded by Allen et al. [18] and García et al. [21], meeting manoeuvres are the
most common events on two-way off-street bicycle tracks. This is consistent with the results
of this research since 93% of the recorded manoeuvres were meeting manoeuvres—only
51 passing manoeuvres were reported.

Khan and Raksuntorn [19] concluded that, in a 3 m wide bicycle track lined with
trees, the average clearance distance for bicycle meeting events was 1.95 m. According to
boundary conditions, this section is similar to the sidepath with vegetated curb section
of the current study. For this type of bicycle track, the average clearance distance was
0.837 m and 0.832 m for bikes and e-scooters, respectively, i.e., over one meter lower than
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the average clearance distance identified by Khan and Raksuntorn [19], similar to the
difference between the bicycle track widths of both studies.

Along sidepaths without physical or vegetated curb, the average clearance distance
increases to 1.013 m (maximum 2.133 m) for bikes, and 1.054 m (maximum 1.972 m) for
e-scooters, reporting that some oncoming vehicles were outside of the bike infrastructure
(clearance distances greater than 1.5 m). García et al. [21] also analysed clearance distance
by using an instrumented bicycle on this typology of bicycle track, obtaining an average
clearance distance of 0.89 m. The difference between the above results could be explained by
the difference in bicycle track widths, with the bicycle tracks considered by García et al. [21]
being 20 cm narrower (1.8 m wide), and the type of instrumented vehicle.

Moreover, García et al. [21] identified a 0.10 m clearance distance reduction on bicycle
tracks with small bushes or curbs and 0.20 m on bicycle tracks next to a line of streetlights.
However, the clearance distance reductions observed in this study for those boundary
conditions were higher, and varied depending on the obstacle type and on the location of
the bicycle track, not only on the height of the obstacle.

Unlike most previous studies focused on bicycle-bicycle interactions, this research
analysed the interactions between e-scooter–e-scooter and e-scooter–bicycle. In this regard,
the results of this research indicated that no statistically significant differences exist in
clearance distance for both type of interactions.

The results of the online survey showed that micromobility users prefer riding on
bicycle tracks with no interaction with motorised vehicles—sidepaths on median or without
vegetated curbs and protected bicycle track. In this regard, the typology “protected bicycle
track” was considered as a low-risky bicycle track despite reporting the lowest clearance
distances during the data collection through the instrumented e-scooter.

According to the results of the quasi-naturalistic study and the online survey, some
good practices listed in some guidelines for off-road two-lane bicycle tracks have
been validated:

• When designing a bicycle track as an extension of the sidewalk, a separator should be
installed to prevent cyclists and e-scooter users from riding in the pedestrian area and
vice versa;

• When designing a bicycle track next to a parking lane, additional space should be left
between the parking lane and the bicycle track;

• On bicycle tracks with bushes or vegetated curb as boundaries, regular maintenance
of the vegetation is needed to ensure a proper effective lane width;

• On bicycle tracks next to motorised traffic, bicycle lane width should be increased to
avoid cyclists or e-scooter users falling into the carriageway of motorised vehicle and
minimise the aerodynamic impact caused by these vehicles on micromobility users.

5. Conclusions

The strong rise of micromobility, especially bicycles and e-scooters, has changed the
mobility patterns and lifestyles. These vehicles ride usually along bicycle tracks, sharing
the same facilities, with sidewalks being intended for a pedestrian use only. Therefore,
research is needed to understand micromobility users’ behaviour, focusing mainly on their
interactions (passing and meeting events). Previous studies addressed these interactions,
but only focused on bicycles without considering the presence of e-scooters.

This study aimed at characterizing meeting manoeuvres between micromobility users
along different types of two-way bicycle tracks physically separated from motorised
vehicles. For this purpose, a quasi-naturalistic data collection was developed by using
an instrumented e-scooter with two distance meters controlled through a Raspberry Pi
4 and a video camera that allowed estimating lateral clearance distance. As a result,
728 manoeuvres on seven 2 m wide bicycle tracks—grouped in five typologies of bicycle
tracks—were identified.

The typologies of bicycle tracks without edge elements—sidepath without physi-
cal or vegetated curb, sidepath on median next to motorised traffic, and sidepath on
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median—encourage cyclists and e-scooter users to ride outside of the bicycle infrastructure,
encroaching on the sidewalk. Moreover, they present larger values of both mean clearance
distance and standard deviation than the bicycle tracks with physical separation elements.
In this regard, the lowest clearance distances were observed on protected bicycle tracks.
For all typologies, no statistically significant differences were found when the oncoming
vehicle was either a cyclist or an e-scooter user.

Additionally, an online survey was conducted to assess users’ perceived risk associated
with the meeting manoeuvre. Two additional typologies of bicycle track were then included
to determine the impact of the presence of parked motorised vehicles. The safest bicycle
track typologies from the point of view of users were sidepath on median, protected bicycle
track, and sidepath without physical or vegetated curb; dramatically raising the users’
perceived risk when parking is allowed in the vicinity of the bicycle track, especially with
perpendicular parking. The typologies with highest perceived risk were sidepath with
vegetated curb and sidepath on median next to motorised traffic.

Previous research had focused on the interaction only between bicycles. However,
although bicycle riding is the most widespread micromobility transport mode, the number
of e-scooters’ users has increased worldwide, sharing the infrastructure with bicycles.
Therefore, it is important to study the interaction manoeuvres between these micromobility
users to improve operation and safety. The present study provides an approach to the
behaviour of cyclists and e-scooter users when meeting an e-scooter. Moreover, a new
methodology based on an instrumented e-scooter has been developed. This methodology
has been applied to two-way bicycle tracks, although it could be applied to the study of
micromobility users when riding through other type of configurations.

The present study has been focused on the analysis of meeting manoeuvres between
e-scooters, as well as bicycles and e-scooters on five typologies of off-road two-lane bicycle
track. Further work is required to include other bicycle track widths and boundary condi-
tions, and to analyse the characterisation of overtaking manoeuvre, not only to e-scooters,
but also to bicycles. To do that, an additional data collection is proposed by using the
instrumented e-scooter and an instrumented bicycle.

The results of this study could be the basis for the development of guidelines focused
on the design of micromobility infrastructures, considering not only bicycles, but also
e-scooters. Moreover, this approach to the interactions between micromobility users could
be applied to the estimation of BLOS and the development of micromobility microsim-
ulation models. City planners could take these into consideration to enhance bicycle
infrastructure planning, traffic modelling, and safety assessment, with the aim of achieving
sustainable mobility.
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