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Simple Summary: Cold atmospheric plasma (CAP) is generated in a rapid yet low-energy input
streamer-discharge process at atmospheric pressure conditions. CAP is an ionized gas with a low
ionization level and plenty of reactive species and radicals. These reactive components, and their
near-room temperature nature, make CAP a powerful tool in medical applications, particularly cancer
therapy. Here, we summarized the latest development and status of preclinical applications of CAP
in cancer therapy, which may guide further clinical studies of CAP-based cancer therapy.

Abstract: CAP is an ionized gas generated under atmospheric pressure conditions. Due to its
reactive chemical components and near-room temperature nature, CAP has promising applications
in diverse branches of medicine, including microorganism sterilization, biofilm inactivation, wound
healing, and cancer therapy. Currently, hundreds of in vitro demonstrations of CAP-based cancer
treatments have been reported. However, preclinical studies, particularly in vivo studies, are pivotal
to achieving a final clinical application. Here, we comprehensively introduced the research status
of the preclinical usage of CAP in cancer treatment, by primarily focusing on the in vivo studies
over the past decade. We summarized the primary research strategies in preclinical and clinical
studies, including transdermal CAP treatment, post-surgical CAP treatment, CAP-activated solutions
treatment, and sensitization treatment to drugs. Finally, the underlying mechanism was discussed
based on the latest understanding.

Keywords: cold atmospheric plasma; cancer treatment; anti-tumor therapy; reactive species; non-
invasive therapy; redox medicine; drug sensitization

1. CAP and Plasma Sources

CAP has been widely used in several branches of medicine, including wound healing,
microorganism sterilization, biofilm inactivation, and cancer therapy [1–3]. CAP is an
ionized gas composed of reactive compounds such as reactive oxygen species (ROS) and
reactive nitrogen species (RNS) [4,5], and is designed to work under atmospheric pressure
at a near room temperature [6].

The physical foundation to generate CAP is briefly illustrated here. We take the
atmospheric pressure plasma jet (APPJ) as an example, which has been more widely used
in plasma medicine than any other sources [7]. Typical CAP generations usually rely
on a specific ionization process, namely “positive streamer propagation,” as a kind of
ionization wave [8,9]. The positive streamer propagation starts near the anode, where the
seed electrons are attracted. During their movements, electrons collide with other particles.
As the electric field near the anodes reaches an adequately high level, several electrons
are accelerated sufficiently to ionize the particles, resulting in more electrons, namely an
“avalanche,” while other electrons with lower velocities may only excite the particles. The
ionization wavefront is where the “avalanche” occurs. The wavefront is the luminous
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region due to the photon emissions from the excited atoms or other particles, which is
also known as the “plasma bullet” [8,9]. During the streamer propagation in the open
air with a noble gas environment such as helium, hundreds of chemical reactions occur
simultaneously, each with a unique but dynamic reaction rate [10]. These chemical reactions
thus generate ROS/RNS. In many cases, CAP sources are powered with alternating current
(AC) to ensure a continuous generation in the open air [11].

CAP sources, such as dielectric barrier discharge (DBD), APPJ, and plasma torch, are
the foundation for plasma applications [12,13]. Six of the most commonly used CAP sources
are shown in Figure 1. AC is a typical power supply for these CAP sources [14]. Type a
and type b are DBD-style devices. DBD generates plasma between two electrodes powered
by radiofrequency (RF) discharge voltage, usually around the kV scale. Multiple streamer
propagations developed between the electrodes in each discharge cycle, and each streamer
path is called a “filament” [15]. Although the horizontal spatial distribution of filaments
is random and dynamic, the distribution is uniform when the two electrode surfaces are
parallel, and the dielectric barrier material properties are uniform. Therefore, the plasma
generated from DBD can cover a large area. On the other hand, APPJ (type c and type e)
and plasma torch (type d and type f) are more focused on tools that can deliver ROS/RNS
on a small size target more accurately as a single track of streamer propagation. An APPJ
generator requires a hollow cathode to allow the streamer to pass through and reach the
target below the cathode. However, the plasma torch is the standard model for streamer
propagation between two electrodes. In addition to these typical CAP sources, some new
sources have recently been developed and used in preclinical studies. One example is a
non-invasive and non-thermally operated electrosurgical plasma source [16–18].
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2. General Picture of In Vitro Studies

To date, the promising anti-cancer performance of CAP treatment in vitro has been
extensively demonstrated in dozens of cancer types, including skin, breast, colorectal,
brain, lung, cervical, head and neck cancer [3,7]. Plenty of reviews and articles have been
published, most of them focused on in vitro studies and corresponding conclusions [19–21].
Several basic cellular responses have been repeatedly observed in the publications listed
in Table 1. These basic cellular responses build the foundation for understanding the
anti-cancer effect of CAP treatment in vitro and address some in vivo observations.
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Table 1. Basic cancer cellular responses of CAP treatment in vitro.

Ref Cancer Cellular Response Years

[22] Apoptosis 2004
[23] Growth Inhibition 2007
[24] Cytoskeletal Damage 2009
[25] Selective Cell Death 2010
[26] Cell Cycle Arrest 2010
[27] Nuclear and DNA Damage 2010
[27] Mitochondrial Damage 2010
[28] Rise of Intracellular ROS 2011
[29] Chemically-based Sensitization to Drugs 2013
[30] Selective Rise of Intracellular ROS 2013
[31] Senescence 2013
[32] Immunogenic Cell Death 2015
[33] Cell-based H2O2 Generation 2017
[34] Autophagy-associated Cell Death 2017
[35] Activation Phenomena 2018
[36] Physically-triggered Necrosis 2020
[37] Pyroptosis 2020
[38] Physically-based Sensitization to Drugs 2021

Together, some general conclusions can be summarized here. (1) Reactive species
play a critical role in the liquid phase-based experimental setting [39]. Apoptosis, necrosis,
and autophagy are the main cellular death approaches following CAP treatment with an
adequately large dose [40]. (2) Physical factors, particularly electromagnetic effects from
plasma, may exert a clear impact on cells, such as bacteria and mammalian cells [41,42].
(3) A noticeable rise in intracellular ROS is a pivotal cellular response to CAP treatment,
which further triggers downstream cellular damage, including DNA damage, mitochon-
drial damage, cellular membrane damage, and cell death [1]. (4) Aqueous environment,
such as a medium layer, plays a pivotal role in facilitating the transition of short-lived reac-
tive species in the gas phase into long-lived reactive species in the liquid phase [43–45]. For
in vitro studies, a medium layer is necessary for experimental design and is responsible for
most observed cellular responses after CAP treatment, particularly for the cases involving
CAP-treated solutions or media [40,46]. (5) CAP shows selective killing effect on cancer
cell lines compared to their counterpart normal cell lines in many cases [47].

3. Direct CAP Treatment In Vivo

Like most medical studies, the conclusions obtained from in vitro studies cannot
be easily used to directly predict the performance of in vivo studies. For example, the
relatively dry skin barrier between plasma and targeted cancerous tissues or cells under
the skin is quite different from the commonly accepted experimental conditions in vitro.
The in vitro environment mainly involves a relatively thick medium layer to facilitate the
transition of some short-lived reactive species in gas phase to long-lived reactive species
in liquid phase. Moreover, both long-lived and short-lived reactive species will have
complex reactions at this gas/liquid interface. For plasma medicine, in vivo studies play
a cornerstone role before CAP can be used in clinical therapy [48–50]. More importantly,
in vivo studies directly assess the CAP treatment’s safety on tissues and animals, such as
carcinogenicity [51]. In this review, our preclinical studies’ discussion will be just limited to
in vivo studies.

Compared to the abundant in vitro investigations, in vivo studies have gradually
become the main approach to discovering novel tissue responses to CAP treatment. Animal
models’ design directly determines the use of CAP in the in vivo studies. So far, three types
of animal models have been widely used to demonstrate the anti-tumor efficacy of CAP
treatment: subcutaneous model, intraperitoneal model, and orthotopic model [52]. To date,
most of CAP’s anti-tumor capability was demonstrated by using subcutaneous models.
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Subcutaneous models provided the earliest and the most apparent demonstration for
the feasibility of using CAP as an anti-tumor modality. The earliest in vivo works were
demonstrated by Marc Vandamme, et al. and Michael Keidar, et al. between 2010–2011
(Figure 2a,b). They used a glioblastoma U87MG xenograft mouse model and bladder
xenograft tumor model to test a CAP treatment’s in vivo efficacy for just a few minutes,
respectively. The two pioneering research articles demonstrated a drastic tumor volume re-
duction of more than 50% after floating electrode DBD treatment and APPJ treatment [49,53].
Correspondingly, the survival length of mice strongly increased by more than 60% in the
two models [49,53]. These two works also first tested the safety of using CAP in ani-
mal studies. Results did not show any toxic side effects and potential physical damage
from plasma.
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Figure 2. Some representative anti-tumor demonstrations use subcutaneous models. (a) U87
xenografted nude mice mouse was irradiated (6 min) by a DBD device for 5 consecutive days.
Bioluminescence imaging (BLI) was used to quantify tumor growth and size. Reprinted with per-
mission from Ref. [53]. 2010, Wiley. (b) Typical image of mice with three subcutaneous Bladder
xenografted tumors before and 24 h after APPJ treatment. [49]. (c) nsp DBD treatment strongly
eradiated melanoma tumors in mice. Trichrome staining of DBD treated tumor (top) and control
tumor (bottom). (d) Survival for DBD treated tumors (red) and untreated tumors in control (black) as
a function of time post-injection. [48].

Due to the subcutaneous nature of melanomas, it has become one of the more promis-
ing candidates for CAP-based cancer therapy. Many studies have been performed on
melanoma models [7]. As shown in Figure 2c, a nanosecond pulsed DBD (nsP DBD) com-
pletely eradicated the xenografted melanoma tumor in mice after direct treatment on the
skin above the melanoma. Histology of an nsP DBD treated tumor showed a typical red
skin staining without tumor tissue below the epithelium. Correspondingly, the survival



Cancers 2022, 14, 3461 5 of 18

rate of mice increased from 0% to 66.7% 20–40 days succeeding the nsp DBD treatment
(Figure 2d) [48].

Similar trends have been repeatedly observed in a series of following studies. Table 2
lists representative in vivo anti-tumor demonstrations (2010–2018) on subcutaneous xenograft
tumors in mice. In the subcutaneous model, CAP treatment was mainly carried out by
treating the skin above tumorous tissues. In such a setting, the effective factor, either
chemical or physical factors in CAP, must penetrate the skin barrier and further trigger
biological pathways to inhibit tumorous growth, therefore providing CAP treatment as a
potential non-invasive anti-tumor modality. Among these studies, some general trends
have been observed. First, a treatment just above the skin could strongly inhibit the growth
of tumors and significantly extend the life length of mice [53]. Second, a fractionated, multi-
time consecutive treatment may generate a much better therapeutic effect than a single but
long treatment, which may be due to the long-term anti-tumor effect of CAP treatment [54].
A multi-time consecutive treatment may consecutively trigger these long-term anti-tumor
effects, such as an immune response.

Table 2. Representative in vivo demonstrations on subcutaneous xenografted tumor models
(2010–2018).

Ref Years Tumor Types Tumor Size Survival Rate Tumor Diagnostics

[53] 2010 Glioblastoma Decreased N/A Bioluminescence imaging
[49] 2010 Bladder cancer Decreased Increased Tissue size measurement
[54] 2011 Glioblastoma Decreased Increased Bioluminescence imaging
[55] 2012 Pancreatic carcinoma Decreased N/A Bioluminescence imaging
[56] 2012 Glioblastoma Decreased N/A Bioluminescence imaging
[57] 2013 Neuroblastoma Decreased Increased Tissue size measurement
[58] 2014 Melanoma Decreased N/A Tissue size measurement
[59] 2014 Head and neck cancer Decreased N/A Tissue size measurement
[48] 2015 Melanoma Decreased Increased Tissue size measurement
[60] 2015 Endometrioid adenocarcinoma Decreased N/A Tissue size measurement
[61] 2016 Glioblastoma Decreased N/A Tissue size measurement
[62] 2016 Breast cancer Decreased N/A Tissue size measurement
[50] 2017 Melanoma Decreased N/A Bioluminescence imaging
[63] 2018 Colorectal tumor Decreased N/A Tissue size measurement

4. CAP-Activated Solutions (PAS) and In Vivo Application

Direct CAP treatment is based on the touch of bulk plasma with or near a target. In
contrast, indirect treatment is based on the CAP-activated (treated, stimulated) solutions to
affect the growth of cancer cells or tissues. Over the past decade, CAP-activated solutions
(PAS) have shown promising applications in cancer treatment in vitro and in vivo [46].
Once PAS is made, it can be stored for days or weeks and used in cases without a CAP
source [64,65]. PAS can be employed to inhibit the growth of tumorous tissue by subcuta-
neous or intraperitoneal injection in mice [66]. Moreover, PAS can be used in the lavage
of patients suffering from peritoneal carcinomatosis adjuvant to standard chemother-
apy [67,68]. Typically, PAS is made by treating biologically adaptable solutions such as a
medium or phosphate-buffered saline (PBS) using APPJ or DBD above a solution’s sur-
face [69–71]. PAS can also be made by underwater discharge in solutions [72]. PAS can
be synergistically used to enhance the therapeutic effects of chemotherapy drugs and
other chemicals [73–75]. PAS selectively kills colon, lung, cervical, bladder, melanoma,
and breast cancer cells in vitro [76–80]. Preliminary studies on immuno-deficient nude
mice by oral lavage treatment of CAP-activated water did not find lethal effects and acute
toxicity [81,82]. Furthermore, the mice had no significant changes, including body weight,
survival status, organ coefficient, function, and tissue structure of heart, liver, spleen, lung,
and kidney [81,82].

Several in vivo studies present the potential use of PAS in cancer therapy. Several
representative studies were introduced here. Fumi Utsumi et al. first achieved an evident
anti-tumor efficacy in mice by injecting CAP-activated Ringer’s lactate into subcutaneous
tumors grown from the xenografted chemical-resistant ovarian cancer cells [83]. Compared
with PBS, Ringer’s lactate solution is closer to the translation solution, which could be used
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as a clinical modality [84–86]. Ringer’s lactate solution contains sodium chloride, potassium
chloride, calcium chloride, sodium lactate, and sodium bicarbonate. PAS can also be used
for intraperitoneally xenografted tumor models. Shigeomi Takeda et al. demonstrated
that PAS effectively decreased the peritoneal metastatic nodules by 60% in mice without
causing adverse events [67]. Similar anti-tumor performance by injection of PAS in vivo
have been observed in other subsequent studies [80,87].

Recently, a novel strategy to use PAS has been demonstrated. Post-surgical residual
tumor tissues or cells are the primary cause of relapse and progression of cancer post-
surgery. A fillable plasma-activated biogel was made on a thermosensitive biogel, (poly-dl-
lactide)-(poly-ethylene-glycol)-(poly-dl-lactide), PLEL, with the aid of PAS for local post-
surgical removal of tumors in mice models [88]. Preliminary in vivo data demonstrated that
the plasma-activated PLEL biogel (PAPB) entirely eliminated residual in situ tumor tissue
recurrence after a removal surgery without showing evident systemic toxicity (Figure 3).
More attractively, PAPB allowed a slow release of ROS. Altogether, this study provided a
solid foundation to use PAS in local post-operative cancer treatments [88].
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Figure 3. Anti-tumor performance of a plasma-activated PLEL biogel (PAPB) on residual tumor
after surgical removal. (a) Schematic illustration of post-operative PAPB treatment. (b) Whole-body
bioluminescence imaging and tumor growth in mice: control, surgical removal-only, surgical removal
+ PLEL (thermosensitive biogel), and surgical removal + PAPB treatment. (c) Weight of excised
tumors. (d) Survival of tumor-bearing mice (n = 5, ** p < 0.01). Reprinted with permission from
Ref. [88]. 2021, Elsevier Ltd.

5. Abscopal Effect

An anti-tumor abscopal effect was rarely observed in plasma medicine and radio-
therapy. To date, only two examples were reported in 2017 and 2022, providing a novel
approach to using CAP in cancer therapy. Compared to previous studies, these two studies
demonstrated that the tumor growth at a non-treated site on a mouse could be suppressed
by a CAP treatment on another nearby tumor site or even by a CAP treatment on the health
tissue site on the same mouse (Figure 4). Moreover, these surprising phenomena appeared
just one day post the treatment [89]. Particularly, when CAP treatment was performed on
the skin above the healthy tissue of the left limb, the abscopal effect was only significant
for the mice with small tumors of the right limb [90]. Fundamentally, the abscopal effect
triggered by a CAP treatment on the skin above normal tissue was comparable to the
anti-tumor efficacy of a direct CAP treatment on the skin above tumorous tissue.
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Due to the very limited data from these two studies, the underlying mechanism
is entirely unknown. The authors explained that the innate immune response in vivo
might trigger such a rapid abscopal effect after observing the production of inflammatory
cytokines (IFN -γ) from splenocytes post CAP treatment [89]. Here, based on recent discov-
eries of the physically based CAP treatment, we proposed that physical factors in CAP may
explain these abscopal effects. Physical factors in CAP, likely mainly electromagnetic (EM)
effect, can affect the target with an area much larger than the plasma size or the contacting
area between plasma and target. As shown in Figure 5, physically based treatment can
affect an area much larger than chemically based treatment because the EM effect can
penetrate the dielectric physical barrier between every well on a 96-well plate [41]. In our
recent study, an APPJ’s tip was less than 1 mm; however, the EM effect generated from
APPJ could affect an area with a diameter of at least 2 cm [91]. As shown in Figure 4a,
the abscopal effect affects the tumor at a distance of 2–3 cm. The physical effect of CAP
treatment is much more complex than its chemical effect in terms of spatial distributions
and anisotropic effect, which may cause a series of novel biological effects.
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6. Sensitization of Tumor to Drugs

The primary rationale for using CAP in cancer treatment is to achieve a direct killing
effect on tumor or cancer cells in vitro and in vivo. Recently, a novel rationale for using
CAP has caught attention, which is focusing on using CAP to sensitize cancer cells or
tissues to the existing chemotherapy, particularly the cytotoxicity of drugs. Unlike previous
studies focusing on the chemically based sensitization of cancer cells to some drugs, this
new approach focused on using the physical factors, mainly EM effect or EM emission from
CAP, to affect tumors in depth rather than just to affect the subcutaneous models. So far, it
is still unclear the effective EM frequency range to cause these EM effects. Thus, the current
studies focused on demonstrating the sensitization capability of CAP treatment on brain
cancer models such as glioblastoma in mice brains. The underlying mechanism is entirely
unknown at the current stage [92].

Glioblastoma (GBM) is one of the most aggressive brain cancers. GBM is also highly
resistant to treatment [93,94]. Temozolomide (TMZ) is a widely used FDA-approved
alkylating chemotherapy agent, particularly for high-grade malignant GBM treatment [94].
Recently, two studies demonstrated that just a CAP treatment during a mouse’s brain
neurosurgery could achieve a noticeable enhanced therapeutic efficacy of TMZ. First, a
single APPJ treatment on the mouse’s head could sensitize brain tumors in the skull to
the cytotoxicity of GBM [95]. Another example was using a helium radial cold plasma
discharge tube (PDT) as a tunable EM emission source, which only allowed the EM effect
of CAP to affect targets because all chemical factors have been blocked in PDT (Figure 6a).
PDT selectively increased the cytotoxicity of TMZ on two glioblastoma cell lines A172
and U87MG, compared to the standard astrocyte cell line hTERT/E6/E7 to some extent
in vitro [96]. More attractively, preliminary in vivo studies demonstrated a drastically
improved mean survival day of patient-derived xenografted glioblastoma mice models by
100% compared to the control group (Figure 6b). PDT was independent of continuous gas
supply; thus, it has the potential to be a portable and small CAP source. Together, these
two studies demonstrated that the EM effect in CAP could penetrate the skin and the skull,
providing an unprecedented vision for further CAP-based cancer therapy.
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7. Clinical Anti-Tumor Trials

The clinical use of CAP as an anti-tumor modality is an ultimate goal in plasma
medicine. Unfortunately, CAP’s clinical tests in cancer therapy are still quite rare. A
few examples were illustrated here, which provide critical clues to guide the use of CAP
in therapeutic advances. In 2015, a private company, US Medical Innovation (USMI),
carried out a clinical trial on stage IV metastatic colon cancer at Baton Rouge General
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Medical Center in Baton Rouge, Louisiana, USA. CAP treatment was performed on the
post-surgical tissue to kill potential residual cancer cells after a removal surgery, and no
relapse and progression of cancer occurred in patients. The trial also tested the safety of CAP
treatment [97]. In Germany, CAP treatment was performed on 12 patients with advanced
squamous cell carcinoma of the head and neck [98]. CAP was used to decontaminate
infected cancer ulcerations in this trial. It is found that CAP treatment generated positive
effects in patients, including a decreased request for pain medication and a reduction of
typical fetid odor and microbial load [98]. In some cases, superficial partial remission of
tumor and even wound healing of the infected ulcerations have been observed [98].

In 2017, USMI used Canady Helios Cold Plasma and Hybrid Plasma Scalpels in
the clinical liver resection to remove and selectively kill liver tumor cells [97]. In the
same year, there was another impactful treatment performed by Metelmann et al. [99].
Their trial enrolled six patients with local advanced (pT4) squamous cell carcinoma of
the oropharynx with open infected ulcerations. Six patients were treated by an APPJ
in a cycle of three single applications within a week, each followed by an intermittence
of another week [99]. As shown in Figure 7, CAP treatment noticeably improved the
therapeutic effect of this locally advanced head and neck cancer. CAP treatment not only
improved patients’ social functions, but also caused a reduction in odor and pain medication
requirements [99]. In addition, partial remission in two patients has been observed, and
the incisional biopsies found a moderate level of apoptotic tumor cells and a desmoplastic
reaction in the connective tissue [99]. These clinical trials also strongly suggested that CAP
treatment’s widely observed wound healing capability will play a critical supporting role
in cancer therapy [100]. In May 2022, USMI presented the results of a two-year follow up
phase I clinical trial of Canady Helios Cold Atmospheric Plasma (CHCP) treatment for
patients with advanced stage IV metastatic and recurrent solid tumors at the Biannual
Conference of the Israeli Society of Surgical Oncology. Twenty patients were recruited from
U.S. and Israel. Patients received intra-operative CHCP treatment at the operative site
after removing the tumor. The primary endpoint was safety [101]. Together, the existing
clinical trial suggests that CAP treatment can be a powerful supplemental tool to improve
the current surgery and chemotherapy efficacy.

Cancers 2022, 14, 3461 9 of 18 
 

 

studies demonstrated that the EM effect in CAP could penetrate the skin and the skull, 
providing an unprecedented vision for further CAP-based cancer therapy. 

 
Figure 6. Sensitization of brain cancer cells to temozolomide (TMZ) by a cold plasma discharge tube 
(PDT). (a) Basic structure of PDT source. (b) Mouse survival rate curve. Reprinted with permission 
from Ref. [96]. 2022, American Chemical Society. 

7. Clinical Anti-Tumor Trials 
The clinical use of CAP as an anti-tumor modality is an ultimate goal in plasma med-

icine. Unfortunately, CAP’s clinical tests in cancer therapy are still quite rare. A few ex-
amples were illustrated here, which provide critical clues to guide the use of CAP in ther-
apeutic advances. In 2015, a private company, US Medical Innovation (USMI), carried out 
a clinical trial on stage IV metastatic colon cancer at Baton Rouge General Medical Center 
in Baton Rouge, Louisiana, USA. CAP treatment was performed on the post-surgical tis-
sue to kill potential residual cancer cells after a removal surgery, and no relapse and pro-
gression of cancer occurred in patients. The trial also tested the safety of CAP treatment 
[97]. In Germany, CAP treatment was performed on 12 patients with advanced squamous 
cell carcinoma of the head and neck [98]. CAP was used to decontaminate infected cancer 
ulcerations in this trial. It is found that CAP treatment generated positive effects in pa-
tients, including a decreased request for pain medication and a reduction of typical fetid 
odor and microbial load [98]. In some cases, superficial partial remission of tumor and 
even wound healing of the infected ulcerations have been observed [98]. 

 
Figure 7. The clinical effect of CAP treatment on a patient (H5) with locally advanced head and neck 
cancer. Reprinted with permission from Ref. [99]. 2017, Elsevier GmbH. The patient’s therapeutic 
effect was recorded in April/2016 (a), June/2016 (b), and August/2016 (c), respectively. 

Figure 7. The clinical effect of CAP treatment on a patient (H5) with locally advanced head and neck
cancer. Reprinted with permission from Ref. [99]. 2017, Elsevier GmbH. The patient’s therapeutic
effect was recorded in April/2016 (a), June/2016 (b), and August/2016 (c), respectively.

8. Mechanism Discussion

Due to the complex nature of CAP and tissues, the anti-tumor mechanism of CAP
in vivo is an open question. Reactive species, particularly ROS, have been widely regarded
as the main factors in CAP to cause cellular damage and ultimate cell death in vitro [5,102].
The strong rise of ROS in the tumor tissue after CAP treatment has also been observed [103].
This cellular response may be due to the transdermal diffusion of reactive species [104].
Because of the complexity of mammalian skin, the transdermal diffusion process was
mainly studied using skin substitutes such as agarose gels [105]. For example, it is found
that H2O2 and NO2

− could be slowly (30 min) transported through an agarose gel with a
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thickness of 1.5 mm [106]. Furthermore, the transportation of reactive species through an
agarose gel is highly dependent on gel thickness [107]. A 10-mm thick gap of gas between
the agarose gel and CAP could inhibit reactive species’ transmembrane diffusion [107].
Recently, via using contact- and marker-independent Raman microscopy, it was found that
the APPJ can penetrate the basal cell layer of a cervical epithelium sample with a depth of
roughly 270 µm [108].

The physical pathways in the skin necessary for the transdermal diffusion of reactive
species are still unknown. Possible pathway candidates may include hair follicles, micronee-
dles, electroporation, or other transcellular and intracellular routes [109]. Recently, the
transdermal transportation of reactive species across animal skin, such as mouse and pig
skin, have been studied. An air CAP source was used to treat mouse skin with a thickness
of 0.75 mm, and the authors did not observe the formation of H2O2 and NO2

−/NO3
− in

the deionized water underneath the skin [110]. Nevertheless, the authors did observe the
transdermal diffusion of NO2

−/NO3
− in the CAP-activated deionized water across the

mouse skin [110]. The transdermal diffusion of RONS across pig skin has been observed
under specific operational conditions, such as discharge frequency [111,112]. A recent
study found that a 300-ns 50-kV/cm pulsed electric field increased the transdermal diffu-
sion of RONS across a pig skin model [113]. Altogether, these preliminary investigations
suggest that the transdermal diffusion of reactive species underneath a millimeter-level
thick tissue-mimic film is possible after CAP treatment.

How do the CAP-originated or secondary reactive species affect subcutaneous tumor
tissues? The widely observed subcutaneous anti-tumor effect may affect the tissues by
using the direct killing effect from these RONS or due to the activation of an immune
response triggered by CAP treatment. The development of CAP in combination with
cancer immunotherapeutics has received growing attention recently. One rationale is
that CAP may activate the immune system to attack tumorous tissue by reactive species
or other factors [114,115]. These immune responses have been named as immunogenic
cell death (ICD) [32,63,89,114,116–118]. One early representative observation found that
macrophages could be activated in vitro by nsp DBD [116]. Some studies found that CAP
could trigger cancer cells to emit signals known as damage-associated molecular patterns
(DAMP), which may attract and stimulate local immune cells [119]. As shown in Figure 8,
DAMP include at least two types of signals: a “find me” signal such as ATP and an “eat
me” signal such as ecto-CRT [117]. Some studies observed increasing exposure of CRT on a
cancer cells’ surface [117,120]. Moreover, specific expression of molecular pattern signals
ATP has been observed and were believed to further trigger immunogenic attack on cancer
cells [117].

CAP causes ICD far beyond these approaches. For example, the injection of the
CAP-treated CT26 colorectal cancer cells in mice caused a noticeable growth inhibition
in the tumor compared to injecting the CT26 cells without CAP treatment [120]. In other
words, the CAP-treated cancer cells can be used as a whole-cell vaccine to elicit protective
immunity in at least CT26 colorectal tumor mouse models [63]. Similar research strategies
have been reported recently in other studies [121]. Furthermore, the synergistic use of
CAP with vaccination enhanced the cancer-specific T-cell responses as well [63,120]. In
short, immunogenic cell death may be a core process to understand in vivo anti-tumor
performance of a CAP treatment.

Other factors in CAP may also trigger an immune response. For example, a strong
(micromolar level) cell-based H2O2 generation has been observed during and following a
CAP treatment using APPJ in vitro [33,122,123]. H2O2 is a second messenger to activate
lymphocyte [124,125]. Micromole levels of H2O2 could rapidly activate the transcription
factor NF-κB and early gene expression of interleukin-2 (IL-2) [124]. Short-lived ROS
such as superoxide or single oxygen may activate cancerous cells to generate H2O2 [33].
Tumorous tissues may generate plenty of H2O2 after CAP treatment in vivo, and the CAP-
originated H2O2 does not directly touch these tissues, which explains the strong rise of
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subcutaneous ROS in the CAP-treated mice [103]. If similar phenomena also occur in vivo,
the CAP-affected tissue may become a target for the immune system’s attack.
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factors in CAP may affect cellular functions. ROS, RNS, or other chemical factors may mainly
contribute to eliciting ICD. CAP triggers the DAMP signals, such as ecto-CRT and ATP secretion.
ATP acts as a “find me” DAMP signal to recruit immune cells, and surface-exposed CRT serves as
an “eat me” signal. Diphenyleneiodonium (DPI) could inhibit cellular ROS production. NAC could
scavenge ROS from different sources [117].

Nevertheless, the conclusion may not simply be used to explain many observations
in vivo. Physical factors in CAP may play critical roles when CAP source is used to directly
treat tumor tissues or even just using CAP source to affect the subcutaneous tissue with
skin as the barrier [126]. For in vitro studies, a liquid layer always covers the cells due to the
experimental setting. As a result, physical factors, thermal, UV, or other EM effects, have
been entirely or largely blocked by the liquid layer [40]. Thus, physical factors’ effect has
not been observed until the recent direct demonstration of a strong anti-cancer effect using
physically based CAP treatment. Physical factors, likely mainly the EM effect generated in
CAP, have several novel features compared with chemical factors such as ROS and RNS in
CAP. First, physical factors in CAP can penetrate the dielectric barrier (~1 mm) and air gap
(~8 mm) to affect cells, which is consistent with the widely observed non-invasive nature
of the transdermal capability of CAP treatment on the skin above tumor tissues [36,91].
Second, physical factors in CAP cause strong necrosis [36,41,127]. Necrosis will trigger
inflammation and other immune responses in vivo, which may explain some immune
responses in many in vivo studies.

Furthermore, the thermal effect of CAP treatment cannot be simply ignored. For
example, in the earliest in vivo demonstration (Figure 9a), the subcutaneous temperature
of a mouse after the treatment was close to the mouse’s body temperature [53]. However,
in another example (Figure 9b), the highest temperature in the treated mouse’s skin was at
least 50 ◦C after 4 min of treatment [50]. Clearly, the heating effect in this case and other
similar cases must be considered when the anti-tumor mechanism is analyzed. Thus, the
temperature data or the thermal effect in CAP treatment must be provided or be considered
in future in vivo studies. The naming of “CAP” cannot naturally guarantee the plasma is
actually “cold” or “nonthermal”. For example, some so-called “self-organized” patterns



Cancers 2022, 14, 3461 12 of 18

of plasma have a temperature of hundreds ◦C [128]. Strictly speaking, these “hot” CAP
sources cannot be regarded as cold plasma sources.
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9. Conclusions

Altogether, it is promising that CAP will play a unique role as a novel, self-adaptive
anti-tumor weapon. In a clinic, however, CAP cannot be used to quickly remove a tumor
tissue, which may be the largest limitation of its anti-tumor performance compared to
surgical approaches. To date, in clinical trials, CAP has been used either by treating the
potential residual tumor tissues post-surgical removal or by directly treating tumor sites
to improve other therapeutic modalities’ efficacy. Currently, CAP is more like a surgery-
assistant tool in cancer therapy.

Further clinical applications may be beyond this vision. Over the past decade, three
strategies to use CAP have been proposed and demonstrated in preclinical studies. First,
the direct killing effect of CAP on tumors by either the non-invasive transdermal diffusion
of reactive species or by the immunogenic cell death of cancer cells after CAP treatment.
This strategy is suitable for subcutaneous tumors, such as melanoma and neck and head
cancer. Second, for the tumors in depth, such as intraperitoneally tumor models, PAS can be
injected into deep tissue to inhibit tumor growth. Lastly, a novel strategy is the sensitization
of cancer cells to the cytotoxicity of chemotherapeutic drugs, either by reactive species or
by physical factors such as EM emission from CAP sources. Generally, these biological
responses of CAP may be not only due to chemical factors such as reactive species but also
physical factors such as EM and thermal effects.
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Abbreviations

AC Alternating Current
APPJ Atmospheric Pressure Plasma Jet
ATP Adenosine Triphosphate
CAP Cold Atmospheric Plasma
CHCP Canady Helios Cold Atmospheric Plasma
CRT Calreticulin
DAMP Damage-Associated Molecular Patterns
DBD Dielectric Barrier Discharge
DPI Diphenylenyleneiodonium
EM Electromagnetic
ICD Immunogenic Cell Death
IFN Inflammatory Cytokines
IL Interleukin
nsP Nanosecond Pulsed
PAS CAP-Activated Solutions
PAPB PLEL Biogel
PBS Phosphate-Buffered Saline
PDT Cold Plasma Discharge Tube
PLEL (Poly-DL-Lactide)-(Poly-Ethylene-Glycol)-(Poly-DL-Lactide)
RF Radiofrequency
ROS Reactive Oxygen Species
RNS Reactive Nitrogen Species
TMZ Temozolomide
USMI US Medical Innovation
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