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Abstract
Stevia rebaudiana Bertoni, Asteraceae, is an herbaceous perennial plant native to Paraguay. This species is considered since 
ancient times a medicinal plant with important bioactive compounds and pharmacologic and food properties, namely diter-
penes glycosides. The high natural sweetener potential stevioside and rebaudioside A produced by S. rebaudiana plants are 
suitable sucrose substitutes, and their obtention is influenced by environmental, phytosociological, and genetic factors. The 
plants’ genetic profile and sweet potential depiction are needed for suitable plant selection for improvement and deployment. 
Thirty-one S. rebaudiana accessions grown in the same plot where leaves samples were collected in early 2019, were geno-
typed using six microsatellite markers, including two steviol glycosides biosynthesis functionally involved markers. Addi-
tionally, an aqueous extract of each sample was obtained in a water bath and purified by SPE for stevioside and rebaudioside 
A quantification by normal phase HPLC. Stevioside and rebaudioside A contents varied between 0.53–7.36% (w w−1) and 
0.37–3.60% (w w−1), respectively. Two genotypes displayed interesting ratios of rebaudioside A/stevioside (number 3 and 
33). The level of genetic similarity between genotypes was tested through a pairwise similarity coefficient, and two groups of 
individuals had the same fingerprinting. Strong relatedness was found within genotypes, possibly due to cloning, thus, influx 
of new germplasm ought to be made to prevent mating between relatives, and for further selection and genetic improvement.
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Introduction

The genus Stevia consists of approximately 230 species [1, 
2], and Stevia rebaudiana features the sweetest essence [3]. 
Stevia genus is distributed worldwide, ranging from the 
southern parts of the USA to Argentina and Brazil. Nowa-
days, Stevia cultivation has spread worldwide, including 

Europe, propagated through seed and cuttings [2]. S. rebau-
diana Bertoni (2n = 22) is a perennial and branched shrub 
of the Asteraceae family, native to north-eastern Paraguay 
[4, 5]. Since ancient times, this plant has been known as a 
sweetener due to the high content of diterpene glycosides 
[6], found in the leaves (present in a minor amount in shoots, 
roots, and flowers) in concentrations from 4 to 20% of dry 
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matter [5, 6]. Stevioside and rebaudioside A are the interest-
ing steviol glycosides sugar-substitutes substances, which 
tend to accumulate in the aging tissues, thus, older leaves 
contain more sweeteners than younger ones. Conversely, at 
the beginning of flowering, the concentrations of glycosides 
in the leaves begin to decrease [1]. In general, stevioside 
is found in higher amounts than rebaudioside A, thus both 
substances’ production is negatively correlated. Rebaudio-
side A is a better commercial product than stevioside, due 
to higher solubility in water and sweeter capacity, and the 
latter is responsible for aftertaste bitterness [1, 7]. Accord-
ing to Ceunen and Geuns [8], this ratio can be influenced by 
ontogeny and day length, with larger ratios obtained during 
the vegetative stage under short days. Rebaudioside A/ste-
vioside ratio in leaves, together with the steviol-glycosides 
concentration and the leaf dry yield are significant economic 
parameters for stevia genotypes evaluation [9]. Moreover, 
in the former study, the ratio of rebaudioside A to stevio-
side revealed a significant effect of the genotype, in a trial 
conducted with two genotypes. An interesting approach to 
overcome the bitter aftertaste and improve the Stevia sweet-
ness potential is the biotransformation of stevioside into 
rebaudioside A. Adari et al. [10] explained the stevioside 
enzymatic transglycosylation performed via the Stevia leaves 
pre-treatment with cellulose. The steviol-glycosides are cur-
rently used as sweet-tasting non-caloric food additives, due 
to obesity and diabetes rates rise worldwide [4, 7, 11]. Fur-
thermore, displays therapeutic properties, such as antimicro-
bial, anti-inflammatory, antioxidant, antiviral, anti-jaundice, 
cardiotonic, and diuretic [7, 12]. The leaves and extracts can 
be taken raw or cooked, and added to various food products 
as sweeteners, due to the steviol-glycosides thermostabil-
ity [13]. Steviol-glycosides were approved for use as a food 
additive in Europe represented by the code E960, in 2011 
[14]. The existence of genetic variability in plant genetic 
resources provides plant breeders with the possibility to 
develop new and improved cultivars with desirable charac-
teristics to include stakeholders-preferred traits (e.g., [15]).

Some genetic studies were reported in this species using 
markers with several limitations, such as RAPDs [16–18], 
AFLPs, and ISSRs [19–21], due to their dominance and to 
RAPDs reproducibility problems [22]. Dominance leads to 
recessive allele frequency underestimation biasing genetic 
diversity estimates [23, 24]. Thus, for fingerprinting pur-
poses, microsatellite markers (SSRs) are the markers of 
choice, owing to their high polymorphism, multiallelism, 
codominance, high reproducibility, and uniform distribution 
in the genome [25–27]. These markers can competently be 
used in the genotyping process with a good genome sam-
pling, which makes them suitable to estimate genotypes 
relatedness that requires multilocus genotype identification 
[28]. Kaur et al. [29] and Bhandawat et al. [30] were the 
pioneers in microsatellite markers development and use in 

S. rebaudiana and, recently, from freely available expressed 
sequence data (ESTs), and Cosson et al. [31] also developed 
molecular markers (EST-SSRs) for population genetic and 
germplasm characterization studies. Recently, also a group 
of S. rebaudiana genotypes from Paraguay were studied 
with SSR and ISSR [32], and analysed as dominant markers. 
Additionally, molecular data can be pooled with biochemical 
data to detect stevia genotypes suitable to start a breeding 
program [18].

The use of microsatellite loci and the development of 
statistical tools made it possible inferring kin relationships 
from molecular data, in particular ‘relatedness’, meaning the 
estimation and assignment of pairs or groups of individuals 
to categories of relationship or a measure of the fraction of 
alleles shared identical by descent among individuals [33]. 
Indeed, to ensure that levels of co-ancestry and inbreeding 
among selected plants are kept to a minimum, it is advanta-
geous to know their relatedness [34]. Additionally, besides 
avoiding related individuals (in particular for outcrossed 
species), it is important to accurately identify the genotypes 
and to distinguish the new cultivars for registration pur-
poses. The germplasm fingerprint and cultivar identification 
with molecular markers-based grew in importance, due to 
generated data quality and speed, and also because mor-
phological characteristics are influenced by environmental 
factors [22, 35–37].

In addition to the genetic and environmental factors that 
can influence the steviol-glycosides content, the analytical 
methodology selection is important to obtain an efficient 
protocol for plant bioactive compounds present extraction, 
purification, and quantification. The Stevia leaves steviol-
glycosides were generally obtained subsequently to hot water 
application, followed sometimes by solid-phase extraction. 
However, extraction methods using other solvents, such as 
ethanol and methanol or even supercritical fluid extraction, 
were also described [38]. These solvents, namely methanol, 
appear to be used in the extraction process, presumably to 
improve extraction efficiency and facilitate the individual 
steviol-glycosides separation. However, regarding indus-
try food safety, the use of water for extraction should be 
favoured over methanol or ethanol use [11]. Additionally, the 
water extraction seems the extraction method to be used in 
this case, given that rebaudioside A water solubility is higher 
compared to stevioside [11]. Several HPLC methodologies 
used to quantify the steviol-glycosides in S. rebaudiana 
leaves samples were reported in the literature [38 and refer-
ences therein, 39]. Matrix load dramatically shortens chro-
matographic columns’ lifetime, thus the analytical purifica-
tion method, including solid phase extraction (SPE), must be 
applied [7, 38]. Finally, the HPLC methods was considered 
as the most reliable and simple method for the quantification 
of glycosides [40].
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The genotypes collection of S. rebaudiana established 
in the Pluridisciplinary Center for Chemical, Biological 
and Agricultural Research, State University of Campinas, 
São Paulo, Brazil (CPQBA/UNICAMP) were studied for 
breeding purposes. The aims of the present study were: (i) 
to genotype 31 individuals with microsatellite markers to 
compute the genetic diversity, the fingerprint, and the relat-
edness, and (ii) to identify the genotypes that produce the 
highest rebaudioside A/stevioside ratio.

Material and methods

Plant material

We have studied 31 individuals from the S. rebaudiana 
germplasm plot established in the campus of the CPQBA/
UNICAMP (Pluridisciplinary Center for Chemical, Biologi-
cal and Agricultural Research. State University of Campinas, 
São Paulo, Brazil). The S. rebaudiana seeds were previously 
collected in the species’ region of origin, but the exact loca-
tion is unfortunately unknown. Four to five leaves sampled 
in each genotype from different parts of the plant were col-
lected from January to February 2019. The genotypes were 
grown in the same plot with 1 × 0.5 m spacing, and 5 to 10 
replications per genotype and the sampling was made just 
before flowering. Afterward, the leaves were lyophilized and 
frozen at – 80 °C.

DNA extraction and amplification

DNA was extracted from 100 mg of fresh leaves of each S. 
rebaudiana genotype, using the CTAB method as described 
by Doyle and Doyle [41], and a high concentration of pure 
genomic DNA was obtained. The genomic DNA from all 
individuals was amplified using six microsatellites (SSR) 

markers selected from literature (Table 1). The two selected 
SUGMS (Stevia UniGene derived MicroSatellites) primers 
(Table 1) are putatively related to the steviol biosynthesis 
[30]. All amplifications were conducted separately for each 
primer pair and forward primers were 6-FAM fluorescently 
labelled. PCR reactions with the SUGMS primers (Table 1) 
were performed in 10 µL a total reaction volume, contain-
ing 50–60 ng of template DNA, 0.2 U Supreme NZYTaq 
2× Colourless Master Mix® separate MgCl2 (Nzytech, Lis-
bon, Portugal), 2.5 mM MgCl2, and 1.0 μM of each primer. 
The amplifications were performed on a UNO96 Gradient 
thermocycler (VWR®, Leuven, Belgium). The PCR pro-
tocol consisted of an initial denaturation step of 4 min at 
94 °C, followed by 35 amplification cycles composed of 
denaturation (1 min at 94 °C), annealing (1 min at optimal 
annealing temperature for each pair, see Table 1) and polym-
erizing (1 min at 72 °C). After the amplification cycles, a 
final extension step was performed for 7 min at 72 °C.

The PCR reactions with the ‘gi’ primers (Table  1) 
were performed in a 10 µL total reaction volume, contain-
ing 50–60 ng of template DNA, 0.8 U Supreme NZYTaq 
2× Colourless Master Mix® separate MgCl2 (Nzytech, Lis-
bon, Portugal), 2.5 mM MgCl2, and 1.5 μM of each primer. 
The amplifications were performed in the same thermocy-
cler, programmed with an initial denaturation step of 5 min 
at 95 °C, followed by 40 amplification cycles composed of 
denaturation (1 min at 95 °C), annealing (1 min at opti-
mal annealing temperature for each pair, see Table 1) and 
polymerizing (2 min at 72 °C). The PCR reaction with the 
stvia036 primer was performed in a 10 µL total reaction vol-
ume, containing 50–60 ng of template DNA, 0.5 U Supreme 
NZYTaq 2 × Colourless Master Mix® separate MgCl2 (Nzy-
tech, Lisbon, Portugal), 2.5 mM MgCl2, and 2.0 μM of each 
primer (Table 1). The amplifications were performed in the 
same thermocycler, programmed with an initial denaturation 
step of 15 min at 95 °C, followed by 35 amplification cycles 

Table 1   Primers used for the 
SSRs analysis

Primer Sequence 5′–3′ Size range (bp) Annealing 
temp. (°C)

References

SUGMS28 F: CAA​ATT​GGG​AAT​TGC​AGC​TT 210–310 55 Bhandawat et al. [30]
R: GAC​AAA​CAA​GCC​GAG​AGA​GG

SUGMS43 F: CCA​ATC​TAC​AAT​TGC​CAC​AAGA​ 225–255 55 Idem
R: TTT​TCC​GAG​GTT​TTT​GGT​TG

gi18465444 F: ATG​AAA​GCG​AGC​CTG​ATG​AT 100–610 56 Kaur et al. [29]
R: TCA​AGC​AAC​GAT​TCT​TTC​CA

gi16949765 F: CAA​GGC​TTG​CTC​CGA​AAT​AC 680–900 56 Idem
R: TCA​TCT​GCA​AGT​GCT​TCC​TC

gi18465673 F: CGG​GTT​AGA​AGG​AAA​CGT​GA 500–800 56 Idem
R: AAG​TTT​CCA​CCA​ACC​CAT​CA

stvia036 F: TGT​CTC​TGA​CAA​AAT​TTA​TACGG​ 144–180 55 Cosson et al. [31]
R: TTG​TCT​GTC​ACC​CTG​TGG​
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composed of denaturation (30 s at 94 °C), annealing (45 s 
at 55 °C, see Table 1) and polymerizing (1 min at 72 °C). 
After the amplification cycles, a final extension step was 
performed for 5 min at 72 °C. All PCR products were diluted 
in 50 μL of Milli-Q water and an aliquot of 3.0 µL of each 
dilution was mixed with 10 µL of formamide and 0.2 µL of 
LIZ-600 size standard. Genotyping was performed with an 
ABI 3130 Genetic Analyzer (Applied Biosystems, Foster 
City, CA, USA), the fragment analysis was performed using 
GeneMapper 4.0 software (Applied Biosystems, Foster City, 
CA, USA), and the data manually scored.

Aqueous extracts of S. rebaudiana

Lyophilized leaf samples were grounded with a mortar and 
pestle. Sample extracts were prepared by weighting 0.4 g of 
dried leaf powder and adding 8 mL of distilled water into 
15 mL centrifuge tubes, afterward mixed in the vortex and 
placed in a 90 °C water bath for 30 min. Subsequently, the 
extracts were cooled at ambient temperature and centrifuged 
at 4400 rpm for 30 min at 4 °C (CLINIconic 75003623, 
Thermo Scientific, Massachusetts, EUA). From each cen-
trifuged extract, the supernatant was transferred to a 25 mL 
volumetric flask. The pellet was reused for two more extrac-
tions and the supernatants transferred to the same volumetric 
flask. Finally, the volumetric flask was filled to 25 mL with 
distilled water.

Stevioside and rebaudioside A extracts purification 
and HPLC quantification

Both steviol-glycosides were quantified according to the 
improved HPLC method described by Woelwer-Rieck et al. 
[38], with some modifications. The extracts were purified 
two times by solid-phase extraction (SPE) with the C18-E 
column (100 mg, 1 mL, 55 µm, 70 Å, Strada, Phenomenex, 
California, USA), with a constant vacuum pressure of 15 
inHg. Columns were first conditioned with 3 mL of metha-
nol and 3 mL of Milli-Q water and subsequently charged 
with 400 µL of extract, followed by washing with 3 mL of 
Milli-Q water and 5 mL of acetonitrile: Milli-Q water (20:80 
v/v). Columns were left to dry for 3 min and then, steviol-
glycosides were eluted with 2 mL of acetonitrile:Milli-Q 
water (75:25 v/v) and recovered in a 5 mL volumetric flask.

Seven stevioside (Cayman Chemical, Michigan, USA) 
and rebaudioside A (Extrasynthese, Genay, France) stand-
ard solutions were prepared in acetonitrile:Milli-Q water 
(75:25 v/v) in the concentration range of 5–800 µg mL−1. 
Both standard solutions and purified extracts were filtered 
with a 0.45 µm nylon filter (0.4 mm diameter, Technocroma, 
Barcelona, Spain) before loading in HPLC.

The linearity was assessed by injecting standard solutions 
of stevioside and rebaudioside A from 10 to 800 µg mL−1, 
using six different concentrations, and all standard solutions 
were injected in two different days. Standards were loaded 
in triplicate and each purified extract in duplicate into HPLC 
(Agilent 1100 series, with a quaternary pump, autosampler, 
diode array detector, degasser, thermostat, and data system), 
equipped with an NH2 column (Purospher® STAR NH2, 
250 × 4 mm, 5 µm) under the following conditions: 20 µL of 
injection volume, 210 nm wave-length, mobile phase: HPLC 
grade acetonitrile:Milli-Q water (75:25 v/v), 1 mL min−1 con-
stant flow rate, 20 min at 36 °C. The qualitative determination 
was achieved by comparing the stevioside and rebaudioside A 
standard solutions retention times with those of the samples. 
The quantification was possible by applying the computed cali-
bration curves equations. The linear regression curves of ste-
vioside and rebaudioside A are presented below were obtained 
(both adjusted the interception in 0):

where Y is the peak area (mAU s−1) and X is concentra-
tion (µg mL−1) (unpublished results). The stevioside and the 
rebaudioside A concentration were represented in % w w−1 
(steviol glycoside/dry leave).

Genetic data analysis

The genetic diversity parameters Na (number of alleles), Ne 
(effective number of alleles), Ho (observed heterozygosity), 
He (unbiased expected heterozygosity), and F (fixation index) 
were obtained with the GenAIEx software version 6.502 [42]. 
To test the genotypes pairwise relatedness the Lynch and Rit-
land [43] kinship coefficient was used (hereafter LR), and this 
coefficient was selected for it was considered the most accurate 
in a simulation with a set of relatedness coefficients validated 
with an elite group genetic similarity of Eucalyptus globu-
lus with known pedigree [44]. The dendrogram (UPGMA 
method) was performed using the kinship matrix and the soft-
ware NTSyS-PC version 2.11 [45]. The genetic relationship 
among genotypes was further analyzed by principal coordinate 
analysis (PCoA) using GenAIEx, based on the same pairwise 
relatedness matrix. The maximum deviation method was 
used for the factorial rotation and the main components were 
extracted, with the first main component and the second main 
component being the leading coordinates. The LR pairwise 
matrix, the genotypes multilocus comparison analysis, were 
computed in the GenAlEx.

Stevioside: Y = 4.7091 X
(

r
2
= 0.9994

)

Rebaudioside A: Y = 4.1668 X
(

r
2
= 0.9998

)
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Results

SSRs analysis

The analysis of the genetic diversity parameters (Table 2) 
revealed that the number of alleles per locus (Na) ranged 
from 3 to 6, averaging 4 per locus. The effective number 
of alleles per locus (Ne) was 3.02, lower than the average 
Na, but reflecting more accurately genetic diversity. Indeed, 
three loci displayed the same Na (3) and two had higher Ne 
than the other one (gi16949765), also reflected in higher 
genetic diversity values: the SUGMS43 and Stevia36 loci 
(Table 2).

However, the loci with higher Na, in general, had higher 
Ne and Ho values (gi18465444 and gi18465673), which 

were found in putative non-coding regions, values in bold 
in Table 2. However, the SUGMS43 locus, found in the cod-
ing region, had appreciable genetic diversity (Ho = 0.84), 
though with only three alleles, yet with even frequencies 
(data not shown).

The total observed heterozygosity (Ho) ranged from 0.45 
to 0.87, with an average of 0.76. There was an excess of 
heterozygous in all loci since the observed is higher than 
that expected heterozygosity (Ho > He), while a lower dif-
ference is found in the SUGMS28 locus (Table 2). However, 
the analyzed germplasm is a group of individuals unlikely in 
Hardy–Weinberg equilibrium.

Genetic distances and clustering

Genotypes were grouped according to the level of genetic 
similarity using the LR index. In the PCoA analysis, based 
on the kinship distance (LR), individuals with the same gen-
otype plotted together (black circles, Fig. 1), but the remain-
ing ones were, in general, well individualized, except in the 
case of genotypes 2, 5 and 17. Both the first and the second 
component explained ≈ 6% of the total variation and the 
total variation explained was 12%.

The dendrogram (UPGMA method) obtained with the 
kinship matrix (LR) (Fig. 2) reveals the relatedness among 
S. rebaudiana genotypes. This analysis separated the geno-
types into two groups, with a very low degree of similarity 
(group 1: 4, 7, 9, 15, 17, 18, 19, 21, 23, 25, 26, 27, 30, 33, 
and 31; group 2: 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 20, 
22, 24, 28 and 29). According to the literature for a value 
of LR coefficient > 0.25 the genotypes may be considered 
half-sibs, resulting from cross-fertilization; for LR > 0.5 the 
genotypes may be full-sibs, sharing both mother and father, 

Table 2   Genetic diversity parameters by locus for the 31 genotyped 
S. rebaudiana individuals

Values in bold correspond to primers with the highest genetic diver-
sity parameters: Na, Ne, Ho and He
Na number of alleles, Ne effective number of alleles, Ho observed 
heterozygosity, He expected unbiased heterozygosity, F fixation index

Locus Na Ne Ho He F

gi18465444 5 4.06 0.84 0.77 − 0.11
gi16949765 3 1.60 0.45 0.38 − 0.21
gi18465673 6 3.59 0.87 0.73 − 0.21
SUGMS28 4 3.42 0.77 0.72 − 0.09
SUGMS43 3 2.66 0.84 0.63 − 0.34
Stvia36 3 2.81 0.81 0.65 − 0.25
Mean 4 3.02 0.76 0.65 − 0.20
SE 0.35 0.06 0.06 0.04

Fig. 1   The principal component 
analysis was based on the LR 
pairwise kinship matrix. Black 
circles embodied individuals 
with the same genotype, all 
the others were represented by 
white diamonds. Both the first 
and the second components 
account for 6% of the total 
variation.
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for LR > 0.67 they may be the result of self-pollination, and 
for LR = 1 for the same genotype or clones [33, 44]. Indeed, 
two sets of individuals shared the same multilocus genotype 
(1st set: 10 and 22, and 2nd set: 23, 25, and 26), meaning 
that they share the same genotype, possibly a sampling/labe-
ling error or clones. The fingerprinting of the two sets that 
displayed the same genotype are listed in Table S1.

HPLC quantification of steviol‑glycosides

The contents of stevioside and rebaudioside A in the dif-
ferent genotypes were determined using calibration curves 
obtained by authentic standards. The linearity corresponds to 
the method’s ability to provide results directly proportional 
to the analyzed compound concentration, within a given 
interval. The calibration curves were linear in the range of 
10–800 µg mL−1 for both steviol glycosides standards and 
the linearity of the HPLC method was excellent (r2 > 0.99).

The stevioside and rebaudioside A retention time (RT) 
were 5.28 ± 0.05 min and 6.91 ± 0.10 min (mean ± standard 
deviation) respectively, with the HPLC method. Figure 3 
shows the stevioside and rebaudioside A mean concentra-
tions (% w w−1 dry leaf) for each sample and the respective 
rebaudioside A/stevioside ratio. The rebaudioside A-con-
centrations were lower in all the genotypes compared to the 

stevioside ones. From the results, significant among sam-
ple differences existed in both steviol glycoside concentra-
tions. Samples 10, 17, and 22 had the highest stevioside 
content (6.64–7.36%), while samples 19, 20, and 29 had 
the highest rebaudioside A value (2.53–3.60%). Samples 8, 
11, and 28 showed a lower concentration of both steviol 
glycosides compared to the other samples. Several samples 
revealed undetectable rebaudioside A content (8, 9, 10, 11, 
22, 28, and 31), considering the HPLC conditions linearity 
method. The rebaudioside A/stevioside ratio should be as 
high as possible, given the rebaudioside A better sweetening 
properties than stevioside, as previously referred. The ratio 
ranged from 0.17 to 0.86, and the highest rebaudioside A/
stevioside ratio was observed in samples 3 and 33, rating 
0.81 and 0.86, respectively (Fig. 3). Decreasing ratio values 
were found in samples 2, 20, and 29, with 0.60, 0.69, and 
0.64, respectively.

Discussion

The S. rebaudiana is undergoing domestication [31], not-
withstanding that the species was used as a sweetener as 
earlier as the 1940s, and cultivated worldwide [1 and refer-
ences therein]. Nevertheless, few studies reported both the 

Fig. 2   Accessions’ dendrogram using the UPGMA clustering methods and the Lynch and Ritland [43] pairwise kinship matrix
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species genetic information and the steviol glycosides con-
tent [31 and references therein], and no study stated both the 
genotypes’ genetic relatedness and their fingerprint. In this 
study, microsatellite markers were used to reveal the genetic 
diversity and the genetic relationship among the 31 individu-
als analyzed and to further detect highly similar genotypes. 
In the study made by Bhandawat et al. [30] the authors used 
40 selected genotypes with a set of SUGMS markers and 
they found that the observed diversity was significantly 
higher than the expected one (0.80 and 0.63, on average, 
respectively), similarly to the results from the current study 
(0.76 and 0.65). In both studies, the expected diversity was 
slightly lower than the observed one, resulting in a negative 
fixation index. But the plants used in the two studies had 
different origins making a genotype collection improbably 
in Hardy–Weinberg equilibrium. Possibly this could result 
in a “melting pot”, meaning a mixture of individuals from 
different origins, and putatively with very different allelic 
compositions [46]. Simultaneously, the average He value 
(0.78) obtained by Cosson et al. [31], was higher than the 
value from the current study, but the authors surveyed a 
much larger germplasm set (145 genotypes) with a wider 
origin range and a high number of markers. In a meta-study 
surveying species with different mating systems and using 
nuclear microsatellite markers to evaluate genetic diversity, 
the observed and expected estimates were, on average, 0.65 
and 0.63, respectively [23], for the group of outcrossed 
species. The high level of genetic variability obtained in 

S. rebaudiana is most likely due to allogamy in this spe-
cies mating system [31]. Moreover, the use of an artificial 
population constituted by individuals from different origins 
could explain a high value of observed genetic diversity in 
our study.

Estimators are useful to identify relatives and to mini-
mize consanguinity in breeding populations in the absence 
of pedigree information [44]. Different relatedness estima-
tors exist in the literature and they respond differently to 
the available sample [47]. The Lynch and Ritland [43] coef-
ficient (LR) was selected as the appropriate kinship estima-
tor in this study, as it proved to be impartial, accurate, with 
a low percentage of overlapping values between kinship 
groups and low percentiles of exact confidence [44]. The 
genotypes were initially divided into two groups and distrib-
uted according to the level of similarity in the dendrogram. 
Considering the values of LR, two sets of individuals had the 
same genotype, possibly for they were the same individual 
due to cloning (LR = 1.0). Vegetative propagation was used 
to maintain the collection, and mislabeling is possible in 
these cases (Ílio Montanari Jr., personal communication). In 
the other cases, the LR values grouping the genotypes was 
very high, detecting appreciable relatedness in the group of 
individuals studied. Indeed, cultivar mislabelling is possible 
[36], and the rapid development of DNA-based molecular 
markers are helpful to overcome this problem.

The steviol-glycosides content and variability determina-
tion are important for the plant producers and industries to 

Fig. 3   Stevioside (white bars) and rebaudioside A (black bars) content (% w w−1 dry leaf). White labels show the S. rebaudiana genotypes 
rebaudioside A/stevioside ratio. Two genotypes had the highest ratio level (3 and 33).
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obtain performant cultivars through selection and breeding. 
Therefore, all individuals from the current study were grown 
in the same conditions and collected just before flowering, 
when steviol-glycosides content is expected to be highest. 
The steviol-glycosides concentrations in the current study 
varied between 0.53–7.36% (w w−1) for stevioside, and 
0.37–3.60% (w w−1) for rebaudioside A. In some samples, 
the rebaudioside A remained undetected, probably due to 
either steviol-glycoside production being lower than needed 
for quantification by the linearity HPLC conditions or to 
the genotype lack of production. In general, the steviol-
glycosides concentrations observed in the thirty-one sam-
ples are following the values found in the literature, with 
stevioside content always higher than the rebaudioside A 
content [7, 11, 40]. Woelwer-Rieck et al. [38] reported that 
plants growing in a different cultivated field also showed a 
higher stevioside content than rebaudioside A values, with 
mean values of 7.90% (w w−1) and 4.93% (w w−1), respec-
tively. Similar steviol-glycosides values were also obtained 
in another study, by water extraction, with stevioside values 
ranging between 3.84 and 9.36% (w w−1), and the rebaudio-
side A values ranging between 2.59 and 7.77% (w w−1) [48].

Despite the glycosides great solubility in water, some 
studies reported extraction with other solvents (e.g., [11]). 
Methanolic extracts had a range 4.10–8.20% (w w−1) and 
0.60–4.44% (w w−1) of stevioside and rebaudioside A, 
respectively [39]. Analogous values have been reported 
in hydroethanolic extracts with a range of stevioside and 
rebaudioside A concentration between 3.78–9.84% (w w−1) 
and 1.62–7.27% (w w−1), respectively [9]. Regardless of the 
steviol-glycosides absolute quantity, the quality is defined by 
a high rebaudioside A/stevioside ratio. Indeed, the rebau-
dioside A/stevioside ratios obtained in the current study are 
under the numbers reported in the literature, with values 
ranging from 0.34 to 0.77 [9, 38]. Actually, in this study 
two genotypes showed interesting levels of rebaudioside A/
stevioside ratio, the genotypes 3 and 33, with 0.81 and 0.86, 
respectively. In wild plants, this ratio is less than 0.5 [1]. 
Besides, those two genotypes were found in the two different 
clusters of the dendrogram, with very low LR, and they are 
unrelated individuals.

Comparing the genetics with the chemical results, it is 
worth noting that individuals 8, 11, and 28 revealed close 
genetic relatedness and similar chemical profile, with low 
steviol-glycosides concentration. Individuals 10 and 22 had 
displayed the same genetic fingerprint and the same chemi-
cal profile, both in stevioside concentration and absence or 
very low rebaudioside A synthesis. Individuals 23, 25, and 
26 had the same fingerprint, and they also revealed a very 
similar chemical profile, being probably the same genotype/
clone. Indeed, since the late 1980s, DNA fingerprinting has 

become an immensely important instrument for genotype 
identification in wild plant and cultivated species. Addi-
tionally, when the morphological characters are mostly 
quantitative, correspondence with DNA marker estimates 
is generally quite high as compared to qualitative charac-
ters, which are more likely to reflect only a small number of 
mutation events [37]. But, due to this group of individuals’ 
high relatedness, a new influx of unrelated genotypes should 
be included in this collection to further improve breeding 
and selection and avoiding relatedness. Additionally, other 
studies should be undertaken to reveal, e. g., genotypes’ 
leaves biomass production and other plant characteristics 
that would increase steviol-glycosides production (see Ref. 
[1] for details).
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