
Brain explorer for connectomic analysis

Huang Li . Shiaofen Fang . Joey A. Contreras . John D. West .

Shannon L. Risacher . Yang Wang . Olaf Sporns . Andrew J. Saykin .

Joaquin Goni . Li Shen . for the Alzheimer’s Disease Neuroimaging Initiative

Received: 17 May 2017 / Accepted: 12 August 2017 / Published online: 23 August 2017

� The Author(s) 2017. This article is an open access publication

Abstract Visualization plays a vital role in the analysis of

multimodal neuroimaging data. A major challenge in neu-

roimaging visualization is how to integrate structural,

functional, and connectivity data to form a comprehensive

visual context for data exploration, quality control, and

hypothesis discovery. We develop a new integrated visual-

ization solution for brain imaging data by combining sci-

entific and information visualization techniques within the

context of the same anatomical structure. In this paper, new

surface texture techniques are developed to map non-spatial

attributes onto both 3D brain surfaces and a planar volume

map which is generated by the proposed volume rendering

technique, spherical volume rendering. Two types of non-

spatial information are represented: (1) time series data from

resting-state functional MRI measuring brain activation; (2)

network properties derived from structural connectivity data

for different groups of subjects, which may help guide the

detection of differentiation features. Through visual explo-

ration, this integrated solution can help identify brain regions

with highly correlated functional activations as well as their

activation patterns. Visual detection of differentiation fea-

tures can also potentially discover image-based phenotypic

biomarkers for brain diseases.

Keywords Brain connectome � Magnetic resonance

imaging � Diffusion tensor imaging � Functional magnetic

resonance imaging � Visualization

1 Introduction

Human connectomics [1] is an emerging field that holds

great promise for a systematic characterization of human

brain connectivity and its relationship with cognition and

behavior. The analysis of human brain connectome

Data used in preparation of this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). As such, the investigators within the ADNI

contributed to the design and implementation of ADNI and/or

provided data but did not participate in analysis or writing of this

report. A complete listing of ADNI investigators can be found at:

http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_

Acknowledgement_List.pdf

H. Li � S. Fang � J. A. Contreras � J. D. West �
S. L. Risacher � A. J. Saykin � L. Shen (&)

Department of Radiology and Imaging Sciences,

Indiana University School of Medicine, Indianapolis,

IN, USA

e-mail: shenli@iu.edu

H. Li

Department of Computer and Information Science, Indiana

University-Purdue University Indianapolis, Indianapolis, IN,

USA

Y. Wang

Department of Radiology Imaging Research, Medical College of

Wisconsin, Milwaukee, WI, USA

O. Sporns

Department of Psychological and Brain Sciences, Indiana

University Bloomington, Bloomington, IN, USA

J. Goni

School of Industrial Engineering, Purdue University,

West Lafayette, IN, USA

J. Goni

Weldon School of Biomedical Engineering, Purdue University,

West Lafayette, IN, USA

J. Goni

Purdue Institute for Integrative Neuroscience, Purdue University,

West Lafayette, IN, USA

123

Brain Informatics (2017) 4:253–269

DOI 10.1007/s40708-017-0071-9

http://orcid.org/0000-0002-5443-0503
http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40708-017-0071-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40708-017-0071-9&amp;domain=pdf


networks faces two major challenges: (1) how to reliably

and accurately identify connectivity patterns related to

cognition, behavior, and also neurological conditions based

on an unknown set of network characterization and fea-

tures; (2) how to seamlessly integrate computational

methods with human knowledge and how to translate this

into user-friendly, interactive software tools that optimally

combines human expertise and machine intelligence to

enable novel contextually meaningful discoveries. Both

challenges require the development of highly interactive

and comprehensive visualization tools that can guide

researchers through a complex sea of data and information

for knowledge discovery.

Scientific visualization has traditionally beenplaying a role

of visually interpreting and displaying complex scientific

data, such as medical image data, to reveal structural and

material details so as to help the understanding of the scientific

phenomena. Example studies include diffusion tensor imag-

ing (DTI) fiber tract visualization [2–7], network visualization

[8–11], and multimodal data visualization [12–14]. In this

context, recent development in information visualization

provides newways to visualize non-structural attributes or in-

depth analysis data, such as graph/network visualization and

time series data visualization. These, however, are usually

separate visual representations away from the anatomical

structures, which are limited at providing effective support for

visual exploration of multimodal brain data.

To remedy the visual inefficiency and maximize human

cognitive abilities during visual exploration, this paper

proposes to integrate the visual representations of the

connectome network attributes onto the surfaces of the

anatomical structures of human brain. Multiple visual

encoding schemes, combined with various interactive

visualization tools, can provide an effective and dynamic

data exploration environment for neuroscientists to better

identify patterns, trends and markers. In addition, we

develop a spherical volume rendering (SVR) algorithm

using omni-directional ray casting and information-en-

coded texture mapping. It provides a single 2D map of the

entire rendered volume to provide better support for global

visual evaluation and feature selection for analysis purpose.

Our primary contributions in this work include:

1. Development of a method to represent rich attribute

information using information-encoded textures.

2. Development of a new spherical volume rendering

(SVR) technique that can generate a complete and

camera-invariant view (volume map) of the entire

structure.

3. Application of this approach to human brain visual-

ization. Our experiments show great potential that this

approach can be very useful in the analysis of

neuroimaging data.

In the rest of this paper, we first discuss previous work

related to this topic in Sect. 2. In Sect. 3, we will describe

the data we used in this study. In Sect. 4, we will present

technical details of encoded textures to visualize rich

attribute information. In Sect. 5, we will present technical

details and results of the SVR algorithm. Some imple-

mentation details and visualization evaluation will be

provided in Sect. 6. We conclude the paper in Sect. 7 with

our final remarks and future work.

2 Related work

Human brain connectomics involves several different

imaging modalities that require different visualization

techniques. More importantly, multimodal visualization

techniques need to be developed to combine the multiple

modalities and present both details and context for con-

nectome-related data analysis. Margulies et al. [3] provided

an excellent overview of the various available visualization

tools for brain anatomical and functional connectivity data.

Some of these techniques are capable of carrying out

multimodal visualization involving magnetic resonance

imaging (MRI), fiber tracts as obtained from DTI and

overlaying network connections. Various graphics render-

ing tools, along with special techniques such as edge

bundling (to reduce clutter), have been applied to visualize

DTI fiber tracts [2–5]. Due to tracking uncertainties in DTI

fibers, these deterministic rendering can sometimes be

misleading. Hence, rendering techniques for probabilistic

DTI tractography have also been proposed [6, 7]. Several

techniques have been developed to provide anatomical

context around the DTI fiber tracts [12–14]. This typically

requires semitransparent rendering with carefully defined

transfer functions.

Multimodal visualization is typically applied in the

scientific visualization domain. The integration of infor-

mation visualization and scientific visualization remains a

challenge. In brain connectomics, connectome network’s

connectivity data are usually visualized as weighted

graphs. Graph visualization has been extensively studied in

information visualization. There are some works that focus

on visual comparison of different weighted graphs. For

example, Alper et al. [15] used superimposed matrix rep-

resentations to visually compare the difference of two

connectome networks. Yang et al. [16] improved and

designed a two-step hierarchical strategy and NodeTrix

representation to get a better result. For connectomics

application, the networks can be either visualized as sep-

arate graphs, away from the anatomical context, but con-

nected through interactive interfaces [8–11] or embedded

into the brain anatomical context [17–19]. The embedded

graphs, however, have their nodes constrained to their
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anatomical locations and therefore do not need a separate

graph layout process as in other graph visualization algo-

rithms. Aside from embedded graphs, there has been little

work in integrating more sophisticated information visu-

alization, such as time series data and multi-dimensional

attributes, within the context of brain anatomical structures.

Many visualization techniques for time series data have

been developed in information visualization, such as time

series plot [20], spiral curves [21], and ThemeRiver [22],

for non-spatial information and time-variant attributes.

Several variations of ThemeRiver styled techniques have

been applied in different time series visualization appli-

cations, in particular in text visualization [23]. Depicting

connectivity dynamics has been mostly done via traditional

key-frame-based approach [24, 25] or key frames com-

bined with time series plots [26, 27].

Texture-based visualization techniques have been

widely used for vector field data, in particular, flow visu-

alization. Typically, a grayscale texture is smeared in the

direction of the vector field by a convolution filter, for

example, the line integral convolution (LIC), such that the

texture reflects the properties of the vector field [28–30].

Similar techniques have also been applied to tensor fields

[31, 32].

As to volume datasets, volume rendering is a classic

visualization technique. Both image-space and object-

space volume rendering algorithms have been thoroughly

studied in the past several decades. The typical image-

space algorithm is ray casting, which was first proposed by

Levoy [33]. Many improvements in ray casting have since

been developed [34–37]. Splatting is the most common

object-space approach. It directly projects voxels to the 2D

screen to create screen footprints which can be blended to

form composite images [38–42]. Hybrid approaches such

as shear-wrap algorithm [43] and GPU-based algorithms

provide significant speedup for interactive applications

[44, 45]. Although iso-surfaces are typically extracted from

volume data as polygon meshes [46], ray casting methods

can also be applied toward volumetric iso-surfacing

[47, 48].

There are a few freely available toolkits for visualizing

human brain data. MRIcron (http://people.cas.sc.edu/ror

den/mricron/) is a convenient tool to view 2D slices of MRI

data. TrackVis (http://trackvis.org/) can visualize DTI fiber

tracts with MRI data as background in 3D view. FSLView

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslView) is a sub-

module of the FSL library which can do 2D/3D rendering

of MRI and functional MRI (fMRI) data. Braviz (http://

diego0020.github.io/braviz/) is a visual analytics tool sup-

porting the visualization of MRI, fMRI, and DTI data

including fiber tracts. While these tools are excellent at

visualizing individual modalities separately, they typically

do not emphasize on the functionality of an integrated

visualization of all kinds of brain data within the context of

the same anatomical background.

3 Brain imaging data and connectome construction

We first describe the MRI and DTI data used in this study,

then present our methods for constructing connectome

networks from the MRI and DTI data, and finally discuss

the resting-state functional MRI (fMRI) data used in our

time series visualization study.

3.1 MRI and DTI data from the ADNI cohort

The MRI and DTI data used in the preparation of this

article were obtained from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database (adni.loni.usc.edu).

The ADNI was launched in 2003 as a public–private

partnership, led by Principal Investigator Michael W.

Weiner, MD. The primary goal of ADNI has been to test

whether serial MRI, positron emission tomography (PET),

other biological markers, and clinical and neuropsycho-

logical assessment can be combined to measure the pro-

gression of mild cognitive impairment (MCI) and early

Alzheimer’s disease (AD). For up-to-date information, see

www.adni-info.org.

We downloaded the baseline 3T MRI (SPGR) and DTI

scans together with the corresponding clinical data of 134

ADNI participants, including 30 cognitively normal older

adults without complaints (CN), 31 cognitively normal

older adults with significant memory concerns (SMC), 15

early MCI (EMCI), 35 late MCI (LMCI), and 23 AD

participants. In our multi-class disease classification

experiment, we group these subjects into three categories:

healthy control (HC, including both CN and SMC partici-

pants, N = 61), MCI (including both EMCI and LMCI

participants, N = 50), and AD (N = 23).

Using their MRI and DTI data, we constructed a struc-

tural connectivity network for each of the above 134 par-

ticipants. Our processing pipeline is divided into three

major steps described below: (1) generation of regions of

interest (ROIs), (2) DTI tractography, and (3) connectivity

network construction.

1. ROI generation. Anatomical parcellation was per-

formed on the high-resolution T1-weighted anatomical

MRI scan. The parcellation is an automated operation

on each subject to obtain 68 gyral-based ROIs, with 34

cortical ROIs in each hemisphere, using the FreeSurfer

software package (http://freesurfer.net/). The Lausanne

parcellation scheme [48] was applied to further sub-

divide these ROIs into smaller ROIs, so that brain

networks at different scales (e.g., Nroi = 83, 129, 234,
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463, or 1015 ROIs/nodes) could be constructed. The

T1-weighted MRI image was registered to the low

resolution b0 image of DTI data using the FLIRT

toolbox in FSL, and the warping parameters were

applied to the ROIs so that a new set of ROIs in the

DTI image space were created. These new ROIs were

used for constructing the structural network.

2. DTI tractography. The DTI data were analyzed using

FSL. Preprocessing included correction for motion and

eddy current effects in DTI images. The processed

images were then output to Diffusion Toolkit (http://

trackvis.org/) for fiber tracking, using the streamline

tractography algorithm called FACT (fiber assignment

by continuous tracking). The FACT algorithm initial-

izes tracks from many seed points and propagates these

tracks along the vector of the largest principle axis

within each voxel until certain termination criteria are

met. In our study, stop angle threshold was set to 35

degree, which meant if the angle change between two

voxels was greater than 35 degree, the tracking process

stopped. A spline filtering was then applied to smooth

the tracks.

3. Network Construction. Nodes and edges are defined

from the previous results in constructing the weighted,

undirected network. The nodes are chosen to be Nroi

ROIs obtained from Lausanne parcellation. The weight

of the edge between each pair of nodes is defined as the

density of the fibers connecting the pair, which is the

number of tracks between two ROIs divided by the

mean volume of two ROIs [49]. A fiber is considered

to connect two ROIs if and only if its end points fall in

two ROIs, respectively. The weighted network can be

described by a matrix. The rows and columns corre-

spond to the nodes, and the elements of the matrix

correspond to the weights.

To demonstrate our visualization scheme for integrative

exploration of the time series of resting-state fMRI (rs-

fMRI) data with brain anatomy, we employed an additional

local (non-ADNI) subject, who was scanned in a Siemens

PRISMA 3T scanner (Erlangen Germany). A T1-weighted

sagittal MP-RAGE was obtained (TE = 2.98 ms, TR par-

tition = 2300 ms, TI = 900 ms, flip angle = 9�, 128 sli-

ces with 1 9 1 9 1 mm voxels). A resting-state session of

10 min was also obtained. Subject was asked to stay still

and awake and to keep eyes closed. BOLD acquisition

parameters were: TE = 29 ms, TR = 1.25 s, flip

angle = 79�, 41 contiguous interleaved 2.5 mm axial sli-

ces, with in-plane resolution = 2.5 9 2.5 mm. BOLD time

series acquired were then processed according to the fol-

lowing steps (for details see [50]): mode 1000 normaliza-

tion; z-scoring and detrending; regression of 18 detrended

nuisance variables (6 motion regressors [X Y Z pitch jaw

roll], average gray matter (GM), white matter (WM) and

cerebral spinal fluid (CSF) signals, and all their derivatives

computed as backwards difference); band-pass filter of

0.009 to 0.08 Hz using a zero-phase second-order Butter-

worth filter; spatial blurring using a Gaussian filter

(FWHM = 2 mm); regression of the first 3 principal

components of WM (mask eroded 3 times) and CSF

(ventricles only, mask eroded 1 time). The Desikan-Kil-

liany Atlas (68 cortical ROIs, as available in the FreeSurfer

software) was registered to the subject. The resulting pro-

cessed BOLD time series where then averaged for each

ROI. Note that the Lausanne parcellation scheme (men-

tioned above) at the level of Nroi = 83 consists of the

above 68 cortical ROIs together with the brain stem (as 1

ROI) and 14 subcortical ROIs. As a result, we will use 68

time series (one for each cortical ROI) in our time series

visualization experiments.

4 Information visualization: methods and results

In this section, we propose a few information visualization

methods. We have implemented and packaged these

methods into a software tool named as BECA, standing for

Brain Explorer for Connectomic Analysis. A prototype

software is available at http://www.iu.edu/*beca/.

4.1 Visualizing structural connectivity networks

3D visualization of a connectivity network within an

anatomical structure can provide valuable insight and

better understanding of the brain networks and their func-

tions. In a brain network, we render nodes as ROI surfaces,

which are generated using an iso-surface extraction algo-

rithm from the MRI voxel sets of the ROIs. Drawing the

network edges is, however, more challenging since straight

edges will be buried inside the brain structures. We apply

the cubic Bezier curves to draw curved edges above the

brain structure. The four control points of each edge are

defined by the centers of the ROI surfaces and the exten-

sion points from the centroid of the brain, as shown in

Fig. 1 Building a Bezier curve connecting two ROIs
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Fig. 1. Figure 2 shows visualization examples of a con-

nectome network, along with the cortical surface, the ROIs,

and the DTI fibers.

Brain connectivity networks obtained through the above

pipeline can be further taken into complex network anal-

ysis. Network measures (e.g., node degree, betweenness,

closeness) can be calculated from individuals or average of

a population. Different measures may characterize different

aspects of the brain connectivity [51]. In order to visualize

these network attributes, we propose a surface texture-

based approach. The main idea is to take advantage of the

available surface area of each ROI and encode the attribute

information in a texture image, and then texture-map this

image to the ROI surface. Since the surface shape of each

ROI (as a triangle mesh) is highly irregular, it becomes

difficult to assign texture coordinates for mapping the

texture images. We apply a simple projection plane tech-

nique. A projection plane of an ROI is defined as the plane

with a normal vector that connects the center of the ROI

surface and the centroid of the entire brain. The ROI sur-

face can then be projected onto its projection plane, and the

reverse projection defines the texture mapping process.

Thus, we can define our attribute-encoded texture image on

this project plane to depict a visual pattern on the ROI

surface. Visually encoding attribute information onto a

texture image is an effective way to represent multiple

attributes or time series attributes. Below we will demon-

strate this idea in two different scenarios: time series data

from rs-fMRI and multi-class disease classification.

4.2 Visualizing fMRI data and functional connectivity

As a functional imaging method, rs-fMRI can measure

interactions between ROIs when a subject is resting [52].

Resting brain activity is observed through changes in blood

flow in the brain which can be measured using fMRI. The

resting-state approach is useful to explore the brain’s func-

tional organization and to examine whether it is altered in

neurological or psychiatric diseases. Brain activation levels

Fig. 2 a DTI fiber tracts, b MRI-ROIs and DTI fibers, c, d network

edges as Bezier curves (thresholded by edge intensity)

Fig. 3 Offset contours with different colors or different shades of the

same color
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in each ROI represent a time series that can be analyzed to

compute correlations between different ROIs. This correla-

tion-based network represents the functional connectivity

networks, and analogously to structural connectivity, it may

be represented as a square symmetric matrix.

Using the surface texture mapping approach, we need to

first encode this time series data on a 2D texture image. We

propose an offset contour method to generate patterns of

contours based on the boundary of each projected ROI. The

offset contours are generated by offsetting the boundary

curve toward the interior of the region, creating multiple

offset boundary curves, as shown in Fig. 3. There are

several offset curve algorithms available in curve/surface

modeling. Since in our application, the offset curves do not

need to be very accurate, we opt to use a simple image

erosion algorithm [53] directly on the 2D image of the map

to generate the offset contours.

In time series data visualization, the time dimension can

be divided into multiple time intervals and represented by

the offset contours. Varying shades of a color hue can be

used to represent the attribute changes over time. Figure 4

shows the steps for constructing the contour-based texture.

First, we map each ROI onto a projection plane perpen-

dicular to the line connecting the centroid of the brain and

the center of this ROI. The algorithm then iteratively

erodes the mapped shape and assigns colors according to

the activity level of this ROI at each time point. Lastly we

overlay the eroded regions to generate a contour-based

texture. We also apply a Gaussian filter to smooth the

eroded texture image to generate more gradual changes in

the activities over time. Figure 5 shows a few examples of

the offset contours mapped to the ROIs. The original data

have 632 time points, which will be divided evenly across

the contours depending on the number of contours that can

be fitted into the available pixels within the projected ROI.

4.3 Visualizing discriminative patterns among multiple

classes

In this case study, we performed the experiment on the

ADNI cohort mentioned before, including 61 HC, 50 MCI,

and 23 AD participants. The goal is to generate intuitive

visualization to provide cognitively intuitive evidence for

discriminating ROIs that can separate subjects in different

classes. This can be the first step of a diagnostic biomarker

discovery process.

The goal of the visual encoding in this case is to gen-

erate a color pattern that can easily distinguish bias toward

any of the three classes. To do so, we first assign a distinct

color to each class. Various color patterns can be generated

using different color blending and distribution methods. In

our experiment, a noise pattern is applied with three colors

representing the three classes. The same noise pattern

approach can also accommodate more colors.

Since color blending is involved in a noise pattern,

we choose to use an RYB color model, instead of the

Fig. 4 a Original ROI, b ROI mapping, c iterative erosion, d overlaying, e Gaussian blurring, f applying the texture
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RGB model. This is because color mix using RYB

model is more intuitive in a way that the mixed colors

still carry the proper amount of color hues of the

original color components. For example, red and yellow

mix to form orange, and blue and red mix to form

purple. Thus, RYB model can create color mixtures that

more closely resemble the expectations of a viewer. Of

course these RYB colors still need to be eventually

converted into the RGB values for display. For the

conversion between these two color models, we adopt

the approach proposed in [54, 55], in which a color

cube is used to model the relationship between RYB

and RGB values. For each RYB color, its approximated

RGB value can be computed by a trilinear interpolation

in the RYB color cube.

We first construct noise patterns to create a random

variation in color intensity, similar to the approach in [54].

Different color hues are used to represent the attributes in

different classes of subjects. Any network measurement

can be used for color mapping. In our experiment, we use

the node degrees averaged across subjects in each class. A

turbulence function [56] is used to generate the noise pat-

terns of different frequencies (sizes of the subregions of the

noise pattern). An example is shown in Fig. 6; we blend

RYB channels with weights 0.5, 0.25, and 0.25, respec-

tively. The blended texture is red-dominated with a little

yellow and blue color.

Figure 7 shows some examples of the texture mapped

views of the three classes: HC (red), MCI (yellow), and AD

(blue). The colors of the edges also represent the blended

RYB color values, based on the average edge weights in

the three classes. From the resulting images, we can

identify a specific ROI that exhibits bias toward one or two

base colors. This can be a potential indication that this ROI

may be a good candidate for further analysis as a potential

imaging phenotypic biomarker.

Fig. 5 Some examples of a connectome network with time series data. Various transparencies are applied

Fig. 6 Blending RYB channels

with weights 0.5, 0.25, and 0.25
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5 Spherical volume rendering (SVR)

In previous sections, we mapped attributes onto the ROI

surface. However, each rendering shows only one per-

spective, and subcortical structures remain unseen. There-

fore, it does not provide an overall view of the complete

structure. In this section, we develop a spherical volume

rendering algorithm that provides a single 2D map of the

entire brain volume to provide better support for global

visual evaluation and feature selection for analysis purpose.

Traditional volume rendering projects voxels to a 2D

screen defined in a specific viewing direction. Each new

viewing direction will require a new rendering. Therefore,

users need to continuously rotate and transform the volu-

metric object to generate different views, but never have

the complete view in one image. Spherical volume ren-

dering employs a spherical camera with a spherical screen.

Thus, the projection process only happens once, providing

a complete image from all angles.

Fig. 7 Examples of connectome networks with noise patterns: a, b ROIs with noise textures; c, d ROIs with noise textures and color bended

edges

Fig. 8 Ray casting toward the center of the brain (sliced)
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5.1 Spherical ray casting

A spherical ray casting approach is taken to produce a

rendering image on a spherical surface. A map projection

will then be applied to construct a planar image (volume

map). The algorithm includes three main steps:

1. Define a globe as a sphere containing the volume. The

center and radius of the sphere may be predefined or

adjusted interactively.

2. Apply spherical ray casting to produce an image on the

globe’s spherical surface (ray casting algorithm).

3. Apply a map projection to unwrap the spherical surface

onto a planar image (similar to the world map).

Fig. 9 An example of layer

sorting for regions of interest

(ROIs): a 6 Rays and 5 ROIs,

b occlusion information of each

ray, c occlusion graph and

layers

Fig. 10 A brain map: a without ROI labels, b with ROI labels
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Rays are casted toward the center of the global from

each latitude–longitude grid point on the sphere surface. In

brain applications, the center of the global needs to be

carefully defined so that the resulting image preserves

proper symmetry, as shown in Fig. 8.

Along each ray, the sampling, shading, and blending

process is very similar to the regular ray casting algorithm

[33, 36]. The image produced by this ray casting process on

the spherical surface will be mapped to a planar image

using a map projection transformation, which projects each

latitude–longitude grid point on the spherical surface into a

location on a planar image. There are many types of map

projections, each preserving some properties while toler-

ating some distortions. For our application, we choose to

use Hammer–Aitoff Projection, which preserves areas but

not angles. Details of this map projection can be found in

[57].

5.2 Layered rendering

Volume rendering often cannot clearly show the deep

interior structures. One remedy is to use layered rendering.

When objects within the volume are labeled (e.g., seg-

mented brain regions), we can first sort the objects in the

spherical viewing direction (i.e., along the radius of the

sphere) and then render one layer at a time.

Fig. 11 Layers of a brain map: a second layer, b third layer, c all

layers stacked

Fig. 12 Textured brain map for fMRI data: a first layer textures,

b second layer texture
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The spherical viewing order can usually be established

by the ray casting process itself as the rays travel through

the first layer of objects first, and then the second layer, etc.

If we record the orders in which rays travel through these

objects, we can construct a directed graph based on their

occlusion relationships, as shown in Fig. 9. Applying a

topological sorting on the nodes of this graph will lead to

the correct viewing order.

Since the shapes of these labeled objects may not be

regular or even convex, the occlusion orders recorded by

the rays may contradict each other (e.g., cyclic occlusions).

Our solution is to define the weight of each directed edge as

the number of rays that recorded this occlusion relation-

ship. During the topologic sorting, the node with minimum

combined incoming edge weight will be picked each time.

This way, incorrect occlusion relationship will be kept to

the minimum.

5.3 Brain map by SVR

Using a spherical volume rendering algorithm, we can gen-

erate a 2D brain map that contains all the ROIs in one image.

This allows the users to view clearly relationships between

different ROIs and the global distributions of network attri-

butes andmeasurements for feature selection and comparison.

Figure 10a shows a brain map generated by SVR

without any ROI labeling. Figure 10b shows the same

brain map with color coded ROI labels.

Layered rendering was also applied to brain ROIs. With

opacity at 1, Fig. 10 shows the first layer of the ROIs.

Figure 11 shows all the layers. Different scaling factors are

applied to the layers to adjust their relative sizes. This is

necessary because the spherical ray casting will create

enlarged internal ROIs and just like perspective projection

will make closer objects larger, except that in this case the

order is reversed.

In the following two subsections, we demonstrate two

approaches to overlay additional information on top of the

brain map: (1) encoding attribute information onto a tex-

ture image and then mapping the texture to the ROI sur-

face; (2) drawing network edges directly over the brain

map. Below, we apply the first approach to an application

of visualizing discriminative patterns among multiple

classes. In addition, we combine both approaches to visu-

alize fMRI data and the corresponding functional connec-

tivity network.

5.4 Visualizing fMRI data and discriminative pattern

Figure 12 shows the fMRI textured brain map for the first

two layers. Figure 14 shows the network edges across

multiple layers for both time series and multi-disease tex-

tures (Fig. 13).

5.5 User interface and interaction

Compared with traditional volume rendering in the native

3D space, this approach views the brain from its center. On

the one hand, this can reduce the volume depth it sees

through. On the other hand, it renders ROIs in a polar

fashion and arranges ROIs more effectively in a bigger

space. With more space available, it is easier to map

attributes onto the ROIs and plot the brain networks among

ROIs. Compared with traditional 2D image slice view, this

Fig. 13 Textured brain map for disease classification: a first layer

textures, b second layer textures. A noise pattern is applied with three

colors representing the three categories (i.e., red for HC, yellow for

MCI, and blue for AD). (Color figure online)
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approach can render the entire brain using much fewer

layers. The user interface (Fig. 15) is flexible enough for

users to adjust camera locations and viewing direction.

Users can conveniently place the camera into an ideal

location to get an optimized view. Users can also easily

navigate not only inside but also outside the brain volume

to focus on the structures of their interest or view the brain

from a unique angle of their interest (Fig. 16).

6 Implementation, performance, and evaluation

An overview of the architecture of the prototype software

BECA is illustrated in Fig. 17. The user interface of the

prototype software BECA is built with Qt library [58]. The

fiber tracts are rendered as polylines by VTK library [59].

The surfaces of brain structures are extracted from MRI

scans by vtkMarchingCubes filter and then rendered as

vtkPolyData in VTK. fMRI textures are then generated and

mapped on the mesh as vtkTexture. The SVR algorithm is

implemented on GPU with OpenCL [60] on NVIDIA

GeForce GTX 970 graphics card with 4 GB memory. We

pass the volume data to kernel function as image3d_t

objects in OpenCL in order to make use of the hardware-

accelerated bilinear interpolation when sampling along

each ray. The normal of each voxel, which is required in

Blinn–Phong shading model, is pre-calculated on CPU

when the MRI volume is loaded. The normal is also treated

as a color image3d objects in OpenCL, which can save lots

on time on interpolation. We make each ray one OpenCL

work-item in order to render each pixel in parallel. The

global work-item size is the size of the viewport. The

performance depends on the output image size, which is

shown in Table 1. With an 800 9 600 viewport size, the

performance is around 29.41 frames per second.

We have developed tools using Qt framework and VTK

to allow user to interact with the 2D map. Users can drag

the sphere camera around in the 3D view, and the 2D map

will update in real-time. A screenshot of the user interface

is shown in Fig. 15. The upper half is the brain in 3D

perspective view, while the lower half is the 2D brain map

generated by the SVR algorithm. When user moves the

position of spherical camera (intersection of the white lines

in Fig. 15) in the 3D view, the 2D map will change

accordingly. The software enables user to navigate in the

3D brain and builds the visual correspondence between the

3D and 2D representation. We also provide users with a

switch to reverse the direction of rays. As shown in

Fig. 16a, rays are travels outward and we can see the

exterior of the brain. On the contrary, when we reverse the

direction of the ray in Fig. 16b, we can see the interior

structures of the brain.

Fig. 14 a Network edges over multiple layers for time series

textures, b network edges over multiple layers for multi-disease

textures
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We demonstrated our prototype system and the resulting

visualization to the domain experts in IU Center for Neu-

roimaging. The following is a summary of their evaluation

comments.

Fig. 16 Reverse the direction of ray. a Rays travel outwards, b rays travel inwards

Fig. 17 Architecture of the

prototype software BECA

Table 1 Frame rates for

different output resolutions
Output resolution Avg. fps

640 9 480 45.45

800 9 600 29.41

1024 9 768 11.76

1600 9 1200 7.04

Fig. 15 A screenshot of the

user interface. When user drag

the camera (intersection of the

white lines) on the top, the 2D

map on the bottom which will

be re-rendered in real-time
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6.1 Evaluation on the visualization

of the discriminative pattern

The discriminative pattern shown in Fig. 13 has the pro-

mise to guide further detailed analysis for identifying dis-

ease-relevant network biomarkers. For example, in a recent

Nature Review Neuroscience paper [35], C. Stam reviewed

modern network science findings in neurological disorders

including Alzheimer’s disease. The most consistent pattern

the author identified is the disruption of hub nodes in the

temporal, parietal, and frontal regions. In Fig. 13, red

regions in superior temporal gyri and inferior temporal gyri

indicate that these regions have higher connectivity in HC

than MCI and AD. This is in accordance with the findings

reported in [35]. In addition, in Fig. 13, the left rostral

middle frontal gyrus shows higher connectivity in HC (i.e.,

red color), while the right rostral middle frontal gyrus

shows higher connectivity in AD (i.e., blue color). This

also matches the pattern shown in figure 3 of [35], where

the hubs at left middle frontal gyrus (MFG) were reported

in controls and those at right MFG were reported in AD

patients. These encouraging observations demonstrate that

our visual discriminative patterns have the potential to

guide subsequent analyses.

6.2 Evaluation on the visualization of fMRI data

and functional network

It is helpful to see all the fMRI signals on the entire brain in

a single 2D image (Fig. 14). Drawing a functional network

directly on the flattened spherical volume rendering image

(Fig. 14) offers an alternative and effective strategy to

present the brain networks. Compared with traditional

approach of direct rendering in the 3D brain space, while

still maintaining an intuitive anatomically meaningful

spatial arrangement, this new approach has more spatial

room to work with to render an attractive network visual-

ization on the background of interpretable brain anatomy.

The network plot on a multi-layer visualization (Fig. 14)

renders the brain connectivity data more clearly and

effectively.

6.3 Evaluation on the user interface and interaction

Compared with traditional volume rendering in the native

3D space, this approach views the brain from its center. On

the one hand, this can reduce the volume depth it sees

through. On the other hand, it renders ROIs in a polar

fashion and arranges ROIs more effectively in a bigger

space. With more space available, it is easier to map

attributes onto the ROIs and plot the brain networks among

ROIs. Compared with traditional 2D image slice view, this

approach can render the entire brain using much fewer

layers (4 in our case) than the number of image slices (e.g.,

256 slices in a conformed 1 mm3 isotropic brain volume).

The user interface (Fig. 15) is flexible enough for users to

adjust camera locations and viewing direction. Users can

conveniently place the camera into an ideal location to get

an optimized view. Users can also easily navigate not only

inside but also outside the brain volume to focus on the

structures of their interest or view the brain from a unique

angle of their interest.

7 Conclusions

We have presented an integrated visualization solution for

human brain connectome data. Multiple modalities of

images are involved including MRI, DTI, and fMRI. Our

focus is on the integration of analysis properties of the

connectome networks into the anatomical brain structures.

We apply a surface texture-based approach to encode

network properties and attributes onto the surfaces of the

brain structures to establish visual connections and context.

Surface texture is an effective approach to integrate

information visualization and scientific visualization since

scientific data typically have spatial structures containing

surface areas, which can be taken advantage of for visual

encoding.

In the future, we would like to continue developing the

integrated visualization tool for public domain distribution.

Currently, a prototype BECA software tool is available at

http://www.iu.edu/*beca/, and we will continue improv-

ing it. We would also like to study interesting visual ana-

lytic topics to compare multiple networks from different

network construction procedures, in particular, between

structural networks and functional networks.
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