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Multilevel item response theory (MLIRT) models are used widely in educational and
psychological research. This type of modeling has two or more levels, including an
item response theory model as the measurement part and a linear-regression model
as the structural part, the aim being to investigate the relation between explanatory
variables and latent variables. However, the linear-regression structural model focuses
on the relation between explanatory variables and latent variables, which is only from the
perspective of the average tendency. When we need to explore the relationship between
variables at various locations along the response distribution, quantile regression is
more appropriate. To this end, a quantile-regression-type structural model named as
the quantile MLIRT (Q-MLIRT) model is introduced under the MLIRT framework. The
parameters of the proposed model are estimated using the Gibbs sampling algorithm,
and comparison with the original (i.e., linear-regression-type) MLIRT model is conducted
via a simulation study. The results show that the parameters of the Q-MLIRT model could
be recovered well under different quantiles. Finally, a subset of data from PISA 2018 is
analyzed to illustrate the application of the proposed model.

Keywords: multilevel item response theory, quantile regression, Bayesian analysis, Gibbs sampling, non-
normality of latent variable

INTRODUCTION

Multilevel or hierarchical linear models are used widely in educational and psychological researches
(e.g., Raudenbush, 1988; Goldstein, 1995; Snijders and Bosker, 1999). These models allow data to
be collected at different levels; for example, test data are obtained from students, students are nested
within schools, and so on. Item response theory (IRT) models can be plugged in multilevel models,
known as multilevel IRT (MLIRT) models. In educational research and educational assessment, the
MLIRT model is widely applied, where the main objective is to investigate the relationship between
covariates (e.g., student’s social background, school financial resources) and outcome variables (e.g.,
student’s ability; Fox, 2010).

Adams et al. (1997) noted that a two-level IRT model could be seen as a multilevel perspective
on item response modeling. In this formulation, we can divide the two-level IRT model in two
components: the measurement part with the respective IRT measurement model and the structural
part with the respective regression model. Furthermore, Kamata (2001) and Fox and Glas (2001)
extended the two-level IRT model to three levels, with both studies proposing a two-level regression
model (i.e., student-level and group-level covariates were analyzed in different levels) on the
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ability parameters as the structural model. Because the
explanatory variables might not always be measured accurately,
Fox and Glas (2003) showed how to model latent explanatory
variables with measurement errors within the MLIRT model.
Additionally, MLIRT models can also be applied to handle
more-complicated factors such as longitudinal response data
and response times. For example, Huang (2015); Schmidt et al.
(2016) introduced MLIRT models for longitudinal data to assess
the changes in students’ abilities over time. Also, when jointly
modeling the responses and response times, the ability and
speed parameters can be considered as outcome variables of a
multivariate multilevel model for various analyses (e.g., Entink
et al., 2009; Fox, 2010).

Regarding the estimation of MLIRT models, studies have
shown that all the model parameters can be estimated
simultaneously using a fully Bayesian method, regardless
of whether the IRT model is a two-parameter model for
dichotomous response data or a graded response model for
polytomous response data (Fox, 2005; Natesan et al., 2010).
Compared with the traditional two-stage estimation procedure,
this estimation procedure in the MLIRT models leads to a proper
treatment of the measurement error associated with the ability
parameter (Adams et al., 1997; Fox and Glas, 2001, 2003; Fox,
2004, 2005, 2010). See Fox (2010) for more advantages of the
MLIRT modeling framework.

One fact that needs to be noted is that the distribution
of latent variables in the IRT model is often assumed to be
normal (e.g., Bock and Lieberman, 1970; Bock and Aitkin, 1981;
Wirth and Edwards, 2007). This assumption may be reasonably
when students follow a normally distributed population, but in
many cases, it is not satisfied (e.g., Woods, 2006, 2015; Woods
and Thissen, 2006; Sass et al., 2008). It has been shown that
when a non-normal latent distribution is assumed to be normal,
estimates of IRT model parameters are biased (e.g., Stone, 1992;
Sass et al., 2008; Woods, 2015). This issue has also been explored
regarding multidimensional and graded response models (e.g.,
Finch, 2010, 2011; Svetina et al., 2017; Wang et al., 2018).
However, there has been little attention to the non-normality of
latent variables in the MLIRT framework.

On the other hand, the structural models in the MLIRT
models are always linear regression (LR) approaches. Herein,
LR generally assumes that the errors are normally distributed
and should be homoscedastic, which are not often in accordance
with practice, because of non-normality of latent variables or
heterogeneity of errors (Harvey, 1976; Koenker and Bassett,
1978, 1982; Jarque and Bera, 1980; Tsionas, 2003). It is also
well known that a LR model mainly focuses on the relation
between explanatory variables and the conditional mean of latent
variables, however, it is quite possible that the relationship
between variables may vary at different points along the
response distribution, researchers also might be interested in
the relationships between variables on various locations of the
distribution, such as on one or both of the tails of the distribution.

These problems can be addressed by the quantile regression
(QR) (Koenker and Bassett, 1978), which is a valuable and
robust tool for analyzing the conditional quantile functions
of latent variables. When considering the relationship between

explanatory variables and latent variables, QR allows to compute
several different regression curves corresponding to the various
percentage points of the distribution and thus obtain a more
complete relationship between them. In addition, QR is regarded
as a robust method in regression because the estimation results
are insensitive to outliers or the non-normality of response
distributions. Overview of QR methods, one can refer to Yu
et al. (2003); Koenker and Ng (2005). As such, QR has been used
by many researchers in the field of education (e.g., Wößmann,
2005; Haile and Nguyen, 2008; Chen and Chalhoub-Deville, 2014;
Giambona and Porcu, 2015; Gürsakal et al., 2016; Costanzo and
Desimoni, 2017). The aim of most studies has been to scrutinize
inequality of opportunity in education through investigating the
determinants of student achievement, or to analyze individual
and/or family background determinants of student achievement
with respect to test results.

In recent years, QR has also been applied successfully in latent
variable models (e.g., Dunson et al., 2003; Allen and Powell,
2011; Burgette and Reiter, 2012; Wang et al., 2016; Feng et al.,
2017; Belloni et al., 2019; Liu et al., 2020). Burgette and Reiter
(2012) considered QR in a factor analysis model to analyze the
effects of latent variables on the lower quantiles of the response
distribution. Wang et al. (2016) introduced QR into a structural
equation model (SEM) to assess the conditional quantile of the
outcome latent variable given the explanatory latent variables
and covariates. Liu et al. (2020) proposed a quantile hidden
Markov model to examine the entire conditional distribution
of the response given the hidden state and potential covariates.
Factor analysis models can be converted to IRT models under
possible parameterizations (Kamata and Bauer, 2008; Wang and
Zhang, 2019). Therefore, it is reasonable and implementable to
apply QR to MLIRT models.

This study is motivated by the MLIRT models focus largely
on the relationship between variables at the mean level, which
may result in neglecting potential differences across the response
distribution. Herein, taking a two-level (i.e., item level and
student level) IRT model as a demonstration, we embed the QR
approach in a MLIRT model to obtain what we refer to as the
quantile MLIRT (Q-MLIRT) model. This approach enables us
to investigate the relationship between explanatory variables and
latent variables at various locations of the response distribution,
as well as having minimal assumptions on error terms, which
is a flexible and applicable approach in general. Moreover, the
Q-MLIRT model can be estimated in a Bayesian framework
with a Markov chain Monte Carlo (MCMC) algorithm. It
should be emphasized that the Q-MLIRT model is not a
replacement but a supplement to the conventional MLIRT model.
If the relationship between explanatory variables and latent
variables on the entire distribution is of interest, Q-MLIRT is a
good recommendation.

The rest of this paper is organized as follows. The proposed
Q-MLIRT model is introduced in Section “ Model Description,”
the MCMC algorithm is presented in Section “ Bayesian
Estimation,” and a simulation study conducted to evaluate the
empirical performance of the proposed method is reported in
Section “Simulation Study.” A real data study to demonstrate
the use of Q-MLIRT models is reported in Section “Empirical

Frontiers in Psychology | www.frontiersin.org 2 January 2021 | Volume 11 | Article 607731

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-607731 December 26, 2020 Time: 15:33 # 3

Zhu et al. Quantile MLIRT Model

Example,” and finally a discussion and suggestions for further
research are presented in Section “ Discussion.”

MODEL DESCRIPTION

Before describing the Q-MLIRT model considered here, we
revisit MLIRT models briefly. We consider only a two-level IRT
model, namely an item level and a student level. As presented
by Adams et al. (1997), the two-level IRT model consists of
two components: the measurement part—an IRT measurement
model—which describes the probability of observed responses
conditional upon the latent variable, and the structural part—a
LR model—which describes the between-student variation in the
latent variable. The LR model is on ability parameters, where the
ability parameter is dependent on the covariates:

θi = XT
i β+ δi, (1)

where θi is the latent trait (i.e., ability) of student i (i =
1, . . . , n), Xi is a q×1 vector of known covariates (e.g., gender,
socioeconomic status, and major) for student i, and β is the
corresponding q×1 vector of regression coefficients. We assume
that δi are independently and identically normally distributed
with mean zero and variance α2. In this form, a student’s
achievement or performance is represented as ability parameter
θi, and the relationship between students’ abilities and the
involved explanatory variables is reflected in the regression
coefficients β. Note that the coefficients of all covariates are
treated as fixed effects here.

LR analysis measures the relationship between explanatory
variables and students’ abilities by modeling a conditional mean
function of θi. Given explanatory variables Xi, then:

E(θi|Xi) = XT
i β. (2)

That is, the conditional distribution of θi is assumed to be a linear
combination of covariates Xi with normally distributed errors.
In usual LR approaches, the data are used to find out a single
regression line that minimizes the sum of squared errors (least
squared estimation) to estimate the relationship. Consequently,
the focus is on average performance of response variables about
covariates. However, as mentioned above, the errors may be non-
normally distributed or even heteroscedastic in reality, and when
a distribution is asymmetric (e.g., heavy-tailed or skewed), the
mean is not the center of the distribution, while the median
is likely to be a more appropriate measure of central tendency
than the mean (Edgeworth, 1888; Fox, 1997; Koenker and Ng,
2005; Hao and Naiman, 2007; Trafimow et al., 2018). What
is more, the relation between explanatory variables and latent
variables may be different across the entire distribution. As a
result, the conditional mean fails to meet the research needs in
many cases. Therefore, we must provide an elaborate or specific
description of the inter-relationship among latent variables and
explanatory variables.

A more appropriate analysis can be achieved from conditional
quantiles of θi. QR provides a suitable method for modeling
conditional quantile functions (Koenker and Hallock, 2001).

Under a number of different quantiles τ ∈ (0, 1), we say the
τth quantile of δi is the value qτ, for which p(δi < qτ) = τ, that
is Qτ(δi) = qτ. The τth conditional quantile of θi can be then
expressed as:

Qτ(θi|Xi) = Xi
Tβτ, (3)

where βτ is a q×1 vector of QR coefficients depend on
τ, and it reflects the relationship between Xi and the τth
conditional quantile of θi, which means the marginal effects of the
explanatory variables may differ over quantiles of the distribution
of θi. Since numerous quantiles (e.g., 25%, 50%, 75%) are modeled
in QR, it is possible to understand the relationship between
variables at various locations of the response distribution. For
example, when τ = 0.5, Xi

Tβτ is the conditional median of θi,
and βτ reflects the relationship between explanatory variables and
the conditional median of θi. In QR approaches, the classical
inference of βτ is through a minimization of the weighted sum
of absolute residuals for all the observations.

Therefore, θi can be assessed in the following QR-type
structural model, by the τth conditional quantile of θi plus an
error term:

θi = XT
i βτ + δi. (4)

Unlike in the LR model [i.e., Eq. (1)], here the distribution of
δi is not specified. The only assumption is that the τth quantile
of δi is zero, that is qτ = 0, so that we have Eq. (3). In other
words, the QR structural model does not rely on any parametric
specification of the conditional distribution of θi. Note that
when the error term δi in Eq. (4) is normally or symmetrically
distributed, results of LR and QR at the median (τ = 0.5) are
consistent, in other words, the MLIRT model of Eq. (1) is a special
version of the Q-MLIRT model with normality of δi and τ = 0.5.

Therefore, the two-level Q-MLIRT model can be defined by
combining Eq. (4) with an IRT model, namely:

P(Yik = 1|θi, ak, bk) = 8(ak(θi − bk)),

θi = XT
i βτ + δi, (5)

where we adopt a two-parameter normal ogive (2PNO) model
in the first level. In this article, only dichotomously scored
items are considered. Here, 8 denotes the cumulative standard
normal distribution function, Yik= 1 means a correct response
of student i on item k (k = 1, . . . K), and ak and bk are the
discrimination and difficulty parameters, respectively, of item k.
The second level is QR on the ability parameters with an arbitrary
quantile τ ∈ (0, 1), and the parameters have the same meanings
as those in Eq. (4).

Herein, we fix the item parameters of one item as known
(i.e., a1 = 1 and b1 = 0) to identify the Q-MLIRT model as
did Fox and Glas (2001). In the subsequent analysis, we show
that the proposed model offers a more complete view of the
relationship among explanatory variables and latent variables
at various locations of the response distribution, including the
central tendency, upper tail, and lower tail. In many cases,
the error terms are non-normally distributed or heterogeneous,
which fails to meet the assumption of LR, but nevertheless QR is
also suitable for such cases.
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BAYESIAN ESTIMATION

We adopt the Bayesian estimation approach in the QR structural
model (e.g., Yu and Moyeed, 2001; Lee and Neocleous, 2010;
Reich et al., 2011; Wang et al., 2016). Combined with the
Gibbs sampling method for 2PNO models (Albert, 1992), a fully
Bayesian approach is presented to estimate the parameters of
the Q-MLIRT model. Similar to Wang et al. (2016), we adopt
the asymmetric Laplace distribution1 (ALD1; Yu and Moyeed,
2001) to approximate the distribution of error terms in the QR
structural model. More details about the ALD and the Bayesian
QR method are presented in Appendix. Specifically, we assume
δi ∼ ALD(0, ω, τ), then θi follows ALD(XT

i βτ, ω, τ). As shown
by Reed and Yu (2009); Kozumi and Kobayashi (2011), if a
random variable follows ALD (µ, ω, τ) then it can be represented
as a normal distribution, so we obtain:

θi|βτ, ω, ei
ind
∼ N(XT

i βτ + k1ei, k2ωei), (6)

where k1 =
1−2τ

τ(1−τ) , k2 =
2

τ(1−τ) , and e={e1, e2, · · · , en} follows
an exponential distribution with scale parameter ω. That is to
say, the parameter space is augmented by a latent variable e.
This mixed representation of ALD(XT

i βτ, ω, τ) enables Bayesian
inference based on the Gibbs sampling algorithm to estimate the
parameters of the QR structural model.

Gibbs Sampling
From Eq. (5), the observations consist of the item responses Y in
the first level and the explanatory variables X in the second level.
As a result, the full posterior distribution of the parameters given
the observed data is:

p(Z, θ, a, b, βτ, e, ω|Y, X) ∝

n∏
i=1

(( K∏
k=1

p(zik|θi, ak, bk, yik

))
p(θi|βτ, ei, ω, Xi))

p(e|ω)p(a)p(b)p(βτ)p(ω), (7)

where the augmented data zik follow:

p(zik|θi, ak, bk, yik) ∝ ϕ(zik; ak(θi − bk), 1)[I(zik > 0)I(yik = 1)

+I(zik ≤ 0)I(yik = 0)],

where ϕ is the normal probability density function (PDF) and I (·)
is an indicator function.

The following conjugate prior distributions of the model
parameters are used:

ak ∼ N(µa, σ
2
a)I(ak > 0),

bk ∼ N(µb, σ
2
b),

βτ ∼ Nq(30β, H0β),

ω−1
∼ Gamma (α0ω, β0ω) ,

where µa, σa, µb, σb, 30β, H0β, α0ω, and β0ω are
hyperparameters. The detailed procedure of the Gibbs sampling
algorithm is summarized below.

Step 1: Sampling zik. Let ξ be the vector of all item parameters,
given the parameters θ and ξ , the variables zik are independent.
For i = 1, . . . , n and k = 1, . . . , K, the fully conditional posterior
distribution of zik can be written as:

(zik|θ, ξ , y)

∼

{
N(ak(θi − bk), 1) truncated at the left by 0 if yik = 1

N(ak(θi − bk), 1) truncated at the right by 0 if yik = 0
.(8)

Step 2: Sampling ak. According to the principle of conjugate
distribution and combined with the prior of a, the fully
conditional posterior density of ak follows:

(ak|zk, θ, bk)

∼ N

 µa
σ2

a
+
∑n

i=1 [zik(θi−bk)]

1
σ2

a
+
∑n

i=1 (θi−bk)
2 ,

1
1
σ2

a
+
∑n

i=1 (θi−bk)
2

 .(9)

Step 3: Sampling bk. The fully conditional posterior density of
bk is:

(bk|zk, θ, ak) ∼ N

 µb
σ2

b
−
∑n

i=1 (zik − akθi)ak

1
σ2

b
+ nak2

,
1

1
σ2

b
+ nak2

 .

(10)
Step 4: Sampling θi. The ability parameters are independent given
other parameters. Using Eqs. (6) and (8), it follows that:

f (θi|zi, ξ , βτ, ω, ei) ∝ f (zi | θi, ξ) f (θi|βτ, ω, ei), (11)

Eq. (11) is a normal model, where θi has a normal prior
parameterized by βτ, ei, and ω. So the fully conditional posterior
density of θi is given by:(

θi
∣∣ zi, ξ , βτ, ω, ei

)
∼ N

 µθ

σ2
θ

+
∑K

k=1
(
zik + akbk

)
ak

1
σ2
θ

+
∑K

k=1 ak2
,

1
1
σ2
θ

+
∑K

k=1 ak2

 , (12)

where µθ = XT
i βτ + k1ei, σ2

θ = k2ω ei.
Step 5: Sampling ω. Letting v = ω−1 and using the gamma

conjugate prior density for v and the PDF of ALD(XT
i βττ, ω, τ),

the fully conditional posterior distribution of v is given by:

p(v | θ, βτ) ∝ vn+α0ω−1exp{−[β0ω +

n∑
i=1

ρτ

(
θi − XT

i βτ

)
]v},

from which we have:

(ω−1
|θ, βτ) ∼ Gamma(n+ α0ω, β0ω +

n∑
i=1

ρτ(θi − XT
i βτ)).

(13)
Step 6: Sampling ei. From Eq. (6) together with an exponential
distribution of ei with scale parameter ω, the fully conditional
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posterior distribution of ei
−1 follows an inverse Gaussian

distribution.(
ei
−1 ∣∣ θi, βτ, ω

)
∼ Inverse− Gaussian


√

2k2 + k2
1∣∣θi − XT

i βτ

∣∣ , 2k2 + k2
1

k2ω

 . (14)

Step 7: Sampling βτ . Because Eq. (6) is a normal distribution
conditionally on ei, it is straightforward to derive the fully
conditional posterior distribution of βτ, which is given by:

(βτ|θ, e, ω) ∼ N(µβ, 6
−1
β

), (15)

where µβ =
∑
−1
β (H−1

0β
30β +

∑n
i=1

(θi−k1ei)Xi
k2ωei

) and∑
β = H−1

0β
+
∑n

i=1
XiXT

i
k2ω ei

.

SIMULATION STUDY

In this section, a simulation study is carried out to evaluate the
performance of the Q-MLIRT model. We evaluate the parameter
recovery with the Gibbs sampler. The Gibbs sampling algorithm
is implemented in MATLAB (MathWorks, 2016), and the source
code is available to readers upon request.

Simulation Design
Two covariates X1 and X2 are considered, which are independent
standard normal variables. The latent variable θi (i = 1, . . . , n) is
generated from three different models:

Case 1: θi = β1Xi1 + β2Xi2 + δi, δi ∼ N(0, 0.5)
Case 2: θi = β1Xi1 +β2Xi2 − ρτ|β1Xi1 +β2Xi2| +|β1Xi1

+β2Xi2|δi, δi ∼ N(0, 1)
Case 3:θi = β1Xi1 + β2Xi2 + δi. δi ∼ Gamma(0.5, 1)− 0.5
Parameters β1 and β2 are set to 0.5. Case 1 represents

a normal and homoscedastic error model, the assumption of
which conforms to that of LR models, case 2 represents a
heteroscedastic error model, and case 3 represents a skewed
error model. Of these, cases 2 and 3 evaluate the Q-MLIRT
model with heavy-tailed and non-normal latent variables,
respectively. For cases 1 and 3, the conditional τth quantile of
θ takes the form Qτ(θ|X1, X2) = β0τ + β1τX1 + β2τX2, where
β0τ = ρτ, β1τ = 0.5, β2τ = 0.5 for τ ∈ (0, 1), and ρτ is the
τth quantile of δi. For case 2, the conditional quantile
function is Qτ(θ|X1, X2) = β1X1 + β2X2 − ρτ |β1X1 + β2X2| +

ρτ |β1X1 + βX2| = β1τX1 + β2τX2, where β1τ = 0.5 and β2τ =

0.5 for τ ∈ (0, 1).
In order to estimate the QR coefficients β1τ and β2τ under

different quantiles, and compare with their theoretical values
0.5, three quantile levels (i.e., τ = 0.25, 0.5, and 0.75) are
chosen, which represent the lower, central, and upper tail of
the response distribution, respectively. We consider three sample
sizes (i.e., n = 500, 1000, 2000) and two test lengths (i.e.,
K = 20, 40). Overall, there are 54 conditions (3 structural
models × 3 quantiles × 3 sample sizes × 2 test lengths).
Response patterns are generated by the 2PNO model, with the

discrimination parameters generated from U(0.5, 1.5) and the
difficulty parameters generated from N(0, 0.5).

For the conjugate normal prior of βτ, we set the prior mean
30β = (0, 0, 0) and the covariance matrix H0β is 100 times an
identity matrix; which is a type of weakly informative prior. For
the conjugate inverse gamma prior of ω, we set α0ω = 28 and
β0ω = 4. For the prior of item parameters a and b, we set µa = 0,
σa = 200 and µb = 0, σb = 100, respectively.

The Gibbs sampling estimation procedure of the Q-MLIRT
model was iterated 10,000 times. A burn-in period of 5,000
iterations was used, and the parameter estimate was the mean
of the posterior distribution of the parameter. The convergence
of the Gibbs sampler was checked by the Gelman–Rubin method
(Gelman and Rubin, 1992), and the values of the potential scale
reduction factor (PSRF) in the burn-in period were less than
1.10 for all parameters. Overall, 100 replications were conducted
across all simulation conditions.

A related issue must be considered in the application of
Q-MLIRT, namely that the estimates of item parameters differ
for different quantiles because of the fact that the fully conditional
posterior distribution of item parameters depends on τ. As can be
seen from Eq. (6), the location and scale of θi are changed in the
estimation process of item parameters under different quantiles.
In this case, bias may not make sense, a large bias does not
mean poor estimates, and the results of different quantiles are
also not comparable. We expect the estimates of item parameters
under different quantiles are close to each other after some
transformation. To this end, we introduce a new measurement
that is actually suitable for situations in which item parameters
are estimated on different IRT scales, to further illustrate the
similarity and comparability between them.

It is known that if θi have a transformation relationship on two
scales, namely:

θ∗i = pθi + t,

where p and t are constants, then the relationships between the
item parameters can be formulated as:

a∗k =
ak

p
,

b∗k = pbk + t.

In this case, we can use similarity functions, such as the cosine
function, to measure the similarity of item parameters at different
scales. Two vectors are defined to be similar if the distance
between them is small, which is measured by the cosine of the
angle between them. Let a = (a1, . . . , ak) and a∗ =

(
a∗1, . . . , a∗k

)
be the discrimination parameter vectors on two different scales,
then the cosine similarity between the two vectors is defined as:

cos(a, a∗) =
∑

k aka∗k√∑
k (ak)

2
√∑

k
(
a∗k
)2

. (16)

If a∗k =
ak
p , then cos(a, a∗) = 1. Similarly, the cosine similarity

between two difficulty parameter vectors b =
(
b1, . . . , bk

)
and
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b∗ =
(
b∗1, . . . , b∗k

)
can be defined as:

cos(b, b∗) =
∑

k (bk − Eb)(b∗k − Eb∗)√∑
k
(
bk − Eb

)2
√∑

k
(
b∗k − Eb∗

)2
, (17)

where Eb and Eb* are the means of the elements in vectors b and
b∗, respectively. If b∗k = pbk + t, then cos(b, b ∗) = 1.

In this sense, if the cosine of the angle between the true-
parameter vector and the estimated-parameter vector is close to
1, it can be concluded that these two vectors are very similar
and close, and the estimates can also be called “good estimates;”
conversely, if the cosine is away from 1, it indicates that these
two vectors are very different, and the estimates can also be
called “bad estimates.” The higher the cosine similarity, the
closer they are. Note that the “good” and “bad” estimates are
just defined in the context of the transformation relationship
that we considered as above, and accuracy of all the item
parameters’ estimations is measured by the cosine similarity.
The upshot is, when the estimated results of item parameters
under each quantile are close to each other and are both good
(i.e., the calculated cosine similarity of item parameters under
each quantile is close to 1), we say that the item parameters are
well recovered and that any group of estimates can be selected.
Otherwise, the recovery of item parameters is poor and the
results of different quantiles are not comparable to one another
to some extent.

Given that there is no existing work on Q-MLIRT in the
literature, we compare the estimated results with the two-level
structural IRT model denoted in Eq. (1), where the structural
model is a LR on θi. Hereafter, we refer to it as the mean
regression multilevel IRT (M-MLIRT) model. We estimate it
through a fully Bayesian estimation procedure that is easily
extracted from the estimation procedure in Fox and Glas
(2001). We use the average root-mean-square error (RMSE),
the average bias, and the average cosine similarity to evaluate
parameter recovery.

Simulation Results
Tables 1, 2 summarize the parameter recovery of the item
parameters for the Q-MLIRT model in comparison to the
M-MLIRT model for small and large test lengths respectively.
In general, the item parameters are estimated accurately in
all the cases (i.e., cases 1, 2, and 3). For each sample size,
estimates of the item parameters of the Q-MLIRT model under
different quantiles are close to the true parameter values,
reflected mainly in the facts that (i) the cosine similarities
between the true-parameter vector and the estimated-parameter
vectors under different quantiles are all very close to 1
and (ii) the RMSEs are all small. In addition, when the
sample size increases from 500 to 2,000, the cosine similarities
increase, the RMSE and the bias in almost cases decrease
for the estimates of item parameters. Results show that with
increasing test length, the accuracy of almost all item parameters’
estimations also has some improvement, this could because
we can get more accurate information from students as they
answer more items.

From Tables 1, 2, it is also indicated that, as for the
estimation of item parameters, the item parameters’ estimations
of the M-MLIRT model and the Q-MLIRT model are close
in each case, mainly from the reflect of the cosine similarities
and RMSEs. It should be noted that although for case 2 and
case 3, the distribution of ability is non-normal, it seems not
to have effects on the estimation of item parameters for the
MLIRT model. Specifically, for case 3, the bias of the difficulty
parameters for the M-MLIRT model are always larger than the
Q-MLIRT model, but from the cosine similarity and RMSE
points of view, the estimates of the difficulty parameters for
the M-MLIRT model and Q-MLIRT model are close. The
relationship between the cosine similarity and the bias, and how
they behave in more different situations, are worthy of further
study and discussion.

Tables 3, 4 give the estimated results of the structural
regression coefficients for the Q-MLIRT model in comparison
with those of the M-MLIRT model. First, it can be concluded
that the regression coefficients are estimated accurately in all the
cases (cases 1, 2, and 3) for the Q-MLIRT model. When the
sample size increases from 500 to 2,000, the RMSEs decrease
with increasing sample size, which means that the estimates
are increasingly stable. The bias of regression coefficients also
decreases obviously with increasing sample size, especially when
τ = 0.5. The trends are less obvious for quantiles 0.25 and
0.75, mainly because there are few samples at the upper and
lower tails (τ = 0.75 and 0.25, respectively) of the conditional
distribution of θi. Nevertheless, the directions of the bias are
increasingly consistent with increasing sample size, especially
when n = 2, 000, which means that the estimates tend to
true and stable values. From Table 4, the results show that
as larger test length leads to more accurate estimations of
the structural regression coefficients, mainly reflecting in the
decreased biases and RMSEs in almost all conditions. Together
with the estimation of item parameters, it can be concluded that
the increase of test length will improve the accuracy of parameter
estimation of the Q-MLIRT model, especially for the structural
regression coefficients.

When comparing the estimation of regression coefficients
of the M-MLIRT model and the Q-MLIRT model, we find
that: first, M-MLIRT slightly outperforms Q-MLIRT in case 1.
This is because that the error distribution in case 1 is normal,
which meets the assumption of the LR model, so we expect
the M-MLIRT model to outperform in that case; second, for
case 2, the regression coefficients estimated by the M-MLIRT
model are worse than those by the Q-MLIRT model to some
extent. Specifically, the results are similar at τ = 0.5 when the
sample size is small, but with increasing sample size, there are
larger bias and RMSE for the estimates of the M-MLIRT model
than those of the Q-MLIRT model. This is mainly because
the error is heteroscedastic and the distribution of θi is heavy-
tailed, and LR models are sensitive to heavy-tailed distributions
and extreme outliers. For case 3, the results are close to each
other, although the error term has a skewed distribution. It is
perhaps that the degree of skewness of the distribution in case
3 is insufficient to influence the estimation of the regression
coefficients in MLIRT.
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TABLE 1 | Summary of parameter recovery of item parameters when K = 20.

Case n Method τ a b

Cos Bias RMSE Cos Bias RMSE

1 500 Q 0.25 0.994 0.069 0.162 0.985 0.010 0.115

0.5 0.994 0.124 0.198 0.987 −0.004 0.112

0.75 0.994 0.074 0.171 0.986 −0.009 0.116

M 0.995 0.024 0.158 0.992 −0.002 0.118

1,000 Q 0.25 0.997 0.042 0.114 0.992 0.007 0.082

0.5 0.997 0.050 0.111 0.993 2E–04 0.077

0.75 0.997 0.032 0.111 0.992 −0.006 0.083

M 0.997 2E–04 0.112 0.996 0.001 0.071

2,000 Q 0.25 0.998 0.020 0.084 0.996 0.002 0.059

0.5 0.999 0.030 0.079 0.996 −0.009 0.056

0.75 0.998 0.020 0.080 0.996 −0.014 0.061

M 0.999 0.003 0.070 0.997 4E–04 0.047

2 500 Q 0.25 0.993 0.054 0.163 0.984 0.038 0.102

0.5 0.992 0.108 0.194 0.986 −0.003 0.099

0.75 0.993 0.056 0.166 0.982 −0.037 0.107

M 0.992 0.031 0.197 0.985 −4E–04 0.105

1,000 Q 0.25 0.996 0.052 0.130 0.991 0.046 0.089

0.5 0.996 0.064 0.131 0.993 0.004 0.071

0.75 0.996 0.051 0.123 0.991 −0.039 0.084

M 0.997 0.021 0.107 0.992 3E–04 0.070

2,000 Q 0.25 0.998 0.043 0.097 0.995 0.049 0.075

0.5 0.998 0.032 0.089 0.996 0.003 0.054

0.75 0.998 0.045 0.096 0.996 −0.041 0.071

M 0.998 0.011 0.083 0.996 3E–04 0.053

3 500 Q 0.25 0.994 0.015 0.139 0.986 −0.003 0.111

0.5 0.994 0.067 0.162 0.986 −0.015 0.108

0.75 0.992 0.062 0.175 0.984 −0.025 0.116

M 0.993 −0.003 0.144 0.987 0.021 0.106

1,000 Q 0.25 0.997 −0.006 0.096 0.993 0.013 0.078

0.5 0.997 0.039 0.118 0.993 −0.008 0.082

0.75 0.995 0.018 0.124 0.991 −0.007 0.082

M 0.996 −0.014 0.124 0.995 0.027 0.078

2,000 Q 0.25 0.999 0.009 0.074 0.996 −0.005 0.055

0.5 0.998 0.035 0.089 0.996 −0.016 0.061

0.75 0.997 0.020 0.096 0.995 −0.023 0.067

M 0.998 −0.013 0.098 0.997 0.023 0.061

Q, Q-MLIRT model; M, M-MLIRT model.

EMPIRICAL EXAMPLE

The main research question in this section is how the explanatory
variables of interest regarding individual characteristics and
family background are related to students’ achievement in
mathematics. It is quite possible that the relation between
explanatory variables and students’ achievement may differ
across different levels of students’ achievement, while LR
only provides us the information about the conditional mean
of students’ achievement and ignores the characteristics of
the entire distribution of students’ achievement. Thus, the
proposed Q-MLIRT model is expected to achieve a more
appropriate analysis.

Data Source
In this section, a subset of the PISA 2018 mathematics data
was analyzed. There were 24 test forms/booklets that contained
clusters of items from the mathematics domain. Each test form
included four clusters, two clusters of items from the reading
domain and one or two clusters of items from the mathematics
domain. We chose a group of students from the United States
who were administered test forms 1 to 6 for analysis. Each of these
forms contained two mathematics clusters. Therefore, there were
six clusters (i.e., M01-M06) in which contained 64 mathematical
items. Because each student received one of the forms from his
or her assigned group, and each form contained different items,
so each student answered about 20 items and each item was
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TABLE 2 | Summary of parameter recovery of item parameters when K = 40.

Case n Method τ a b

Cos Bias RMSE Cos Bias RMSE

1 500 Q 0.25 0.995 0.051 0.147 0.986 0.019 0.111

0.5 0.995 0.096 0.169 0.985 −0.001 0.112

0.75 0.995 0.079 0.159 0.987 −0.026 0.111

M 0.995 0.011 0.146 0.985 0.005 0.114

1,000 Q 0.25 0.997 0.039 0.113 0.993 0.001 0.078

0.5 0.998 0.059 0.121 0.992 0.003 0.082

0.75 0.997 0.039 0.113 0.993 −0.012 0.079

M 0.998 −0.003 0.091 0.993 0.002 0.073

2,000 Q 0.25 0.999 0.022 0.075 0.996 0.009 0.060

0.5 0.999 0.030 0.075 0.997 0.002 0.054

0.75 0.999 0.022 0.074 0.996 −0.003 0.058

M 0.999 0.009 0.070 0.997 −0.002 0.047

2 500 Q 0.25 0.993 0.054 0.167 0.984 0.029 0.106

0.5 0.994 0.097 0.183 0.985 0.005 0.099

0.75 0.993 0.067 0.161 0.983 −0.032 0.102

M 0.994 −0.002 0.152 0.984 −0.002 0.099

1,000 Q 0.25 0.997 0.038 0.115 0.991 0.037 0.082

0.5 0.997 0.042 0.108 0.993 0.001 0.067

0.75 0.997 0.047 0.119 0.991 −0.037 0.081

M 0.996 −0.001 0.113 0.991 0.003 0.071

2,000 Q 0.25 0.998 0.030 0.088 0.996 0.040 0.068

0.5 0.998 0.030 0.084 0.996 −0.001 0.049

0.75 0.998 0.032 0.088 0.996 −0.039 0.067

M 0.998 −0.007 0.080 0.996 −0.002 0.046

3 500 Q 0.25 0.995 6E–05 0.139 0.986 −0.005 0.116

0.5 0.995 0.069 0.160 0.985 −0.010 0.112

0.75 0.994 0.064 0.158 0.985 −0.029 0.117

M 0.995 0.019 0.148 0.985 0.025 0.099

1,000 Q 0.25 0.997 −0.005 0.101 0.994 2E–05 0.084

0.5 0.997 0.047 0.117 0.993 −0.008 0.081

0.75 0.997 0.030 0.116 0.993 −0.015 0.084

M 0.997 0.021 0.114 0.994 0.022 0.073

2,000 Q 0.25 0.999 −0.005 0.070 0.996 1E–04 0.057

0.5 0.999 0.015 0.071 0.996 −0.008 0.056

0.75 0.998 0.012 0.082 0.996 −0.013 0.061

M 0.998 5E–04 -0.082 0.996 0.027 0.057

Q, Q-MLIRT model; M, M-MLIRT model.

answered about by 375 students. The sample size was n = 840
after eliminating students with missing data, and there were
K = 64 dichotomous items. More information on the PISA 2018
data can be found at www.oecd.org/pisa/data/2018database/.

Three individual and family background variables, that have
been used in most studies (e.g., Adams et al., 1997; Fox and Glas,
2001; Fox, 2005; Lu et al., 2018), were chosen as explanatory
variables of interest. The student-grade variable (X1) equaled
−1, 0, and 1, which represented grade 9, grade 10, grade 11,
respectively. The corresponding number of students in each
grade was 59, 630, and 150. Since only one student was in
grade 12, so her was removed, hence the final sample size
was n = 839. The student-gender variable (X2) equaled 0

(female) or 1 (male), the corresponding number of students
was 421 and 418. The ESCS (economic, social, and cultural
status of parents) variable (X3) was normally standardized.
Information of these explanatory variables are summarized in
Table 5.

Method
The PISA 2018 technical report stated that the item parameters
were calibrated by the two-parameter logistic model (2PLM)
or the generalized partial credit model (GPCM). As only
dichotomously scored items are considered, we use the 2PNO
model here, and we fix the first discrimination parameter to one
and the first difficulty parameter to zero to identify the model. To
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TABLE 3 | Bayesian estimates of regression coefficients when K = 20.

Case n Method τ β1τ β2τ

Bias RMSE Bias RMSE

1 500 Q 0.25 −0.030 0.080 −0.036 0.081

0.5 −0.049 0.084 −0.046 0.084

0.75 −0.030 0.081 −0.032 0.083

M 0.021 0.089 0.015 0.088

1,000 Q 0.25 −0.029 0.060 −0.026 0.064

0.5 −0.017 0.055 −0.025 0.056

0.75 −0.028 0.061 −0.026 0.060

M 0.007 0.058 0.008 0.058

2,000 Q 0.25 −0.021 0.045 −0.018 0.046

0.5 −0.016 0.041 −0.015 0.043

0.75 −0.025 0.047 −0.021 0.046

M 0.004 0.041 0.005 0.039

2 500 Q 0.25 −0.043 0.080 −0.044 0.081

0.5 −0.068 0.095 −0.073 0.096

0.75 −0.046 0.086 −0.046 0.089

M −0.054 0.096 −0.062 0.099

1,000 Q 0.25 −0.046 0.069 −0.049 0.070

0.5 −0.049 0.071 −0.047 0.070

0.75 −0.047 0.068 −0.047 0.068

M −0.067 0.082 −0.067 0.082

2,000 Q 0.25 −0.042 0.054 −0.046 0.058

0.5 −0.034 0.051 −0.037 0.052

0.75 −0.047 0.057 −0.048 0.060

M −0.069 0.076 −0.070 0.076

3 500 Q 0.25 0.012 0.068 0.013 0.065

0.5 −0.016 0.068 −0.010 0.067

0.75 −0.032 0.080 −0.030 0.079

M 0.016 0.082 0.011 0.080

1,000 Q 0.25 0.017 0.051 0.013 0.051

0.5 −0.012 0.054 −0.010 0.054

0.75 −0.018 0.057 −0.023 0.061

M 0.010 0.054 0.010 0.056

2,000 Q 0.25 0.006 0.036 0.005 0.037

0.5 −0.012 0.039 −0.012 0.039

0.75 −0.021 0.043 −0.022 0.044

M 0.005 0.041 0.006 0.037

Q, Q-MLIRT model; M, M-MLIRT model.

assess the effects of the explanatory variables above on students
with different ability levels, the QR model is given by:

Qτ(θi) = XT
i βτ,

where i = 1, . . . , 839, βτ = (β0τ, β1τ, β2τ, β3τ)
T is a 4× 1 vector

of unknown QR coefficients under the τth quantile of the
ability distribution, Xi = (1, X1i, X2i, X3i)

T is a 4 × 1 vector that
represents the explanatory variables of student i, the distribution
of the error term is assumed as AL(0, ω, τ). The estimation
was conducted for the quantiles of τ = 5%, 10%, 25%, 50%,
75%, 90%, and 95% to obtain a more thorough overview of the
relationship between these explanatory variables and students’
mathematical achievement.

TABLE 4 | Bayesian estimates of regression coefficients when K = 40.

Case n Method τ β1τ β2τ

Bias RMSE Bias RMSE

1 500 Q 0.25 −0.021 0.075 −0.024 0.074

0.5 −0.037 0.075 −0.037 0.078

0.75 −0.038 0.079 −0.034 0.081

M 0.012 0.078 0.013 0.077

1,000 Q 0.25 −0.023 0.057 −0.023 0.056

0.5 −0.025 0.060 −0.026 0.060

0.75 −0.021 0.058 −0.019 0.055

M 0.008 0.054 0.008 0.052

2,000 Q 0.25 −0.011 0.040 −0.014 0.039

0.5 −0.013 0.040 −0.015 0.041

0.75 −0.012 0.040 −0.015 0.037

M 0.006 0.039 0.008 0.040

2 500 Q 0.25 −0.026 0.075 −0.027 0.074

0.5 −0.047 0.084 −0.040 0.083

0.75 −0.036 0.073 −0.035 0.072

M −0.042 0.086 −0.037 0.088

1,000 Q 0.25 −0.024 0.059 −0.027 0.060

0.5 −0.020 0.057 −0.020 0.056

0.75 −0.028 0.058 −0.029 0.058

M −0.047 0.069 −0.044 0.068

2,000 Q 0.25 −0.024 0.045 −0.023 0.045

0.5 −0.018 0.042 −0.019 0.043

0.75 −0.025 0.046 −0.024 0.046

M −0.052 0.061 −0.051 0.060

3 500 Q 0.25 0.014 0.066 0.015 0.067

0.5 −0.021 0.068 −0.020 0.066

0.75 −0.024 0.073 −0.035 0.076

M 0.015 0.075 0.014 0.075

1,000 Q 0.25 0.013 0.052 0.016 0.051

0.5 −0.017 0.053 −0.013 0.051

0.75 −0.021 0.060 −0.012 0.057

M −0.009 0.052 −0.006 0.054

2,000 Q 0.25 0.011 0.035 0.009 0.035

0.5 −0.003 0.035 −0.005 0.034

0.75 −0.008 0.039 −0.009 0.040

M 0.003 0.038 0.001 0.038

Q, Q-MLIRT model; M, M-MLIRT model.

TABLE 5 | Summary of explanatory variables.

Label Description Mean SD

Grade (X1) −1 = grade 9
0 = grade 10
1 = grade 11

0.1085 0.2376

Gender (X2) 0 = female
1 = male

0.4982 0.2503

ESCS (X3) Normally distributed 0.1314 1.0356

In the Bayesian analysis, the hyperparameters of the prior
distributions were given as assigned in the simulation study.
In the implementation of the Gibbs sampling algorithm, 10,000
iterations were done to estimate the parameters with an initial
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burn-in of 5,000 iterations. Convergence of the chains was
checked by PSRF, and the PSRF values were less than 1.10 in the
burn-in phase for all parameters under each quantile.

The M-MLIRT model was also used to fit the data, and
compared with the Q-MLIRT model using deviance information
criterion (DIC, Spiegelhalter et al., 2002). The model with
smaller DIC was recommended as a better-fitting one. The DIC
calculated using the joint likelihood conditioned on parameters
at all levels. For the Q-MLIRT model, the joint likelihood is:

f (θ, Z|ξ , βτ, ω, e) = f (Z | θ, ξ) f (θ|βτ, ω, e), (18)

and the joint DIC for the τth quantile of the Q-MLIRT model is
defined as:

DICτ = −2log
{

f (θ, Z|ξ , βτ, ω, e)
}
. (19)

For the M-MLIRT model, the joint likelihood is:

f (θ, Z|ξ , β, α2) = f (Z | θ, ξ) f (θ|β, α2), (20)

and the joint DIC is defined as:

DIC = −2log
{

f (θ, Z|ξ , β, α2)
}
. (21)

Interested readers can refer to Celeux et al. (2006); Wang et al.
(2013), Zhang et al. (2019) for more information of the joint DIC.

Results
The parameter estimates of the Q-MLIRT model under various
quantiles and the M-MLIRT model (reported in column “M”) are
presented in Tables 6, 7. For the limited space, we only present
the results of the item parameters of cluster 1 from form 1, there
are 9 items. From Table 6, it is showed that the estimates of item

TABLE 6 | Item parameter estimates of PISA data.

Estimation at different quantiles

M 5% 10% 25% 50% 75% 90% 95%

a1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

a2 1.660 0.943 1.249 1.579 1.580 1.473 1.278 1.067

a3 2.831 1.828 2.412 3.006 2.786 2.495 2.083 1.727

a4 1.319 0.710 0.937 1.196 1.260 1.258 1.080 0.893

a5 3.011 1.743 2.323 2.896 2.989 2.951 2.527 2.107

a6 1.922 1.105 1.474 1.812 1.758 1.740 1.511 1.239

a7 3.302 1.851 2.484 3.083 3.232 3.317 3.038 2.688

a8 3.480 2.143 2.791 3.371 3.460 3.468 3.190 2.832

a9 1.923 1.008 1.359 1.700 1.795 1.863 1.701 1.452

b1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

b2 −0.282 −0.253 −0.307 −0.231 −0.303 −0.312 −0.392 −0.439

b3 −0.346 −0.327 −0.361 −0.273 −0.360 −0.373 −0.470 −0.539

b4 −0.029 0.195 0.033 0.042 −0.037 −0.028 −0.066 −0.055

b5 −0.004 0.211 0.045 0.056 −0.011 0.009 −0.012 0.012

b6 0.067 0.354 0.151 0.141 0.070 0.083 0.063 0.103

b7 0.253 0.666 0.388 0.329 0.250 0.269 0.276 0.349

b8 0.177 0.504 0.271 0.241 0.167 0.194 0.196 0.256

b9 0.291 0.788 0.477 0.394 0.304 0.308 0.311 0.392

TABLE 7 | Structural regression coefficient estimates of PISA data.

τ β0τ SD β1τ SD β2τ SD β3τ SD

5% −0.474 0.053 0.237 0.041 0.033 0.031 0.170 0.024

10% −0.432 0.042 0.185 0.028 0.033 0.025 0.131 0.018

25% −0.235 0.052 0.177 0.024 0.049 0.023 0.115 0.013

50% −0.133 0.058 0.190 0.025 0.077 0.021 0.117 0.013

75% 0.070 0.040 0.196 0.026 0.098 0.023 0.125 0.013

90% 0.210 0.046 0.213 0.029 0.109 0.026 0.144 0.015

95% 0.337 0.044 0.238 0.030 0.131 0.030 0.168 0.016

M −0.120 0.054 0.181 0.025 0.068 0.023 0.121 0.013

parameters obtained based on the M-MLIRT model are close
to the results obtained from the Q-MLIRT model, especially at
50% quantile. We calculated the cosine similarity between each
two discrimination-parameter vectors and each two difficulty-
parameter vectors estimated under different quantiles, and these
values were all very close to 1, that means they are very similar
to each other, and we can choose any group of them as the
estimations. Figure 1 shows item parameter estimates of the
M-MLIRT model and three selected groups of item parameters
estimated under τ = 25%, 50%, and 75% of the Q-MLIRT model,
which represent the corresponding results of the lower, middle,
and higher quantiles, respectively. As can be seen, all the estimates
of item parameters under different quantiles are close and of the
same size order.

The relationship between students’ mathematical achievement
and the predictors can be deduced from the structural regression
coefficients, the estimates of the QR and LR coefficients associate
with the posterior standard deviations (SD) are showed in
Table 7. The results of the M-MLIRT model show that, on
average, the student grade and family background (i.e., ESCS)
variables have significantly positive correlations with students’
mathematical achievement. Specifically, students in higher
grades perform better, and students whose parents have higher
economic, social, and cultural status have better mathematical
achievement. But for gender, results of M-MLIRT show that there
is a weakly positive correlation between gender and mathematical
achievement, the performance of male students is slightly better
than female students.

When the results of M-MLIRT and Q-MLIRT are compared,
it is argued that there are several differences between these
two models. The results of the Q-MLIRT model show that
relationships between these explanatory variables and students’
mathematical achievement are different across the achievement
distribution. First, we find positive correlations between those
explanatory variables and mathematical achievement at various
locations along the distribution, and the results of Q-MLIRT at
50% quantile are as close as the M-MLIRT. For student grade
and family background variables, it is found that the positive
correlations between them and mathematical achievement are
more significant at lower and higher quantiles of the distribution,
that is the relationships between them and mathematical
achievement are stronger in students with high-ability and
low-ability. Regarding gender, we find that the QR structural
coefficient of gender increases from 5% quantile towards the 95%
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FIGURE 1 | Item parameter estimates of the M-MLIRT(M) model and the Q-MLIRT model under different quantiles (τ = 25, 50, and 75%).

FIGURE 2 | Regression coefficients of Q-MLIRT model across different quantiles in the analysis of PISA data, along with the corresponding 50 and 95% credible
intervals.

quantile of the achievement distribution, which means that male
students perform better than female students in mathematics,
and the difference is exacerbated among high-ability students.
This finding is consistent with González de San Román and
De La Rica (2012). They analyzed gender gaps in PISA test
scores in their study, and showed that in most PISA participating
countries, male students outperformed than female students
in mathematical achievement, moreover, gender gap in test
scores differed significantly in different parts of the test score
distribution, where the gap increased from the lower tail to
the upper tail. The structural regression coefficients across the
various quantiles are illustrated further in Figure 2.

In addition, Table 8 shows a comparison of the Q-MLIRT
model and the M-MLIRT model based on the joint DIC.
Results indicate that for the Q-MLIRT model, 25% quantile is
the best-fitting, followed by quantiles at 75%, 50%, 10%, 5%,

TABLE 8 | Comparing the Q-MLIRT and M-MLIRT using joint DIC for PISA data.

M-MLIRT DIC of Q-MLIRT at different quantiles

5% 10% 25% 50% 75% 90% 95%

51926.1 52012.9 51990.1 51859.7 51980.2 51971.5 52076.0 52189.4

90% and 95% ones. And the fitting situation of M-MLIRT
is nearly equally to the Q-MLIRT model when the quantile
is 50% or 75%, this is consistent with what is found in the
estimation of parameters, that the parameter estimation results
of M-MLIRT is mostly close to the results of Q-MLIRT at 50%
and 75% quantiles.

To sum up, the analysis results make it clear that the Q-MLIRT
model offers a more comprehensive picture of the relationship
between students’ mathematical achievement and the student-
background variables. The results suggest that the relationships
between students’ mathematical achievement and its predictors
differ across different levels of student ability, which can’t be
achieved with MLIRT. We find that for students with lower and
higher mathematical performances in PISA, their achievements
are related more closely to grade, and the socioeconomic status
of their family, and the gender difference is more pronounced
among high-level students. In this respect, Q-MLIRT is a useful
research tool to better understand the relationship between
students’ individual characteristics or family background factors
and educational achievement. Note that the results, together with
some educational knowledge, would provide a deeper insight for
related educators on mathematical learning, and these findings
will also help them to develop more-targeted policies for students
of different ability levels.
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DISCUSSION

In this article, a quantile-regression-type structural model
was introduced to MLIRT models. The main advantage
of this form is that it offers a richer analysis of the
relationship between covariates and latent variables. Meanwhile,
Q-MLIRT is more robust and is applicable to various
distribution of latent variables. In other words, it is more
flexible and applicable in general. We also proposed a fully
Bayesian estimation algorithm for the Q-MLIRT model
so that the parameters in the model could be estimated
simultaneously. In addition, we proposed a new evaluation
index based on the cosine similarity function to evaluate
further the accuracy of the item parameter estimates under
different quantiles.

In the simulation study, we used Gibbs sampling to estimate
the Q-MLIRT model. The results showed that the parameters
could be recovered well in almost all conditions. The Q-MLIRT
model was applied to analyze a PISA data set, and the results
provided more specific and in-depth insights into the relationship
between the explanatory variables of interest and students’
achievement. Also, note that the item parameter estimates differ
for different quantiles, although we know they are very close
to each other according to the cosine similarity evaluation. An
alternative and easy way of applying the Q-MLIRT model in
practical problems is to obtain the item parameters at a certain
quantile first, such as τ = 0.5 of the model, and then, for analysis
with a different value of τ, the item parameters are pre-fixed
(Wang et al., 2016).

This study was the first attempt at combining the QR
approach with the IRT model in a multilevel modeling
framework. However, this study focused only on item
response data nested within students. We intend to extend
the model to a higher level (school level) and estimate

how the school level affects students’ abilities. Moreover,
we considered herein only dichotomous response data and
one-dimensional ability parameters, whereas Q-MLIRT could
be applied to multidimensional and/or polytomous data. In
addition, the explanatory variables that we have considered are
known covariates, whereas it would make sense to consider
latent explanatory variables measured by observations with
measurement errors. Finally, variable selection would be of
interest applied in Q-MLIRT, especially when some explanatory
variables are either insignificant or significant only under some
quantiles but not others.
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APPENDIX

Here we give more details about the ALD and the Bayesian QR method. We consider a general QR model given by:

yi = dT
i rτ + εi, i = 1, . . . , n, (A1)

where yi and di denote response variable and a 4× 1 vector of covariates for the ith observation, rτ is a 4× 1 vector of QR coefficients
under the τth quantile of yi, and the τth quantile of εi is assumed to be zero. The QR model does not have a specific likelihood function
because the distribution of the error term εi is not specified. Yu and Moyeed (2001) first proposed Bayesian QR methods, they assigned
each error term an asymmetric Laplace distribution (ALD), and considered MCMC methods for posterior inference.

About the main properties of the ALD(µ, ω, τ), parameters µ and τ in ALD satisfy: µ is the τth quantile of the distribution, and
if X ∼ ALD(0, 1, τ), then G = µ+ ωX ∼ ALD(µ, ω, τ). In particular, the mean and variance of g are given by E(g) = µ+

ω(1−2τ)
τ(1−τ)

and var(g) = ω2(1−2τ+2τ2)
(1−τ)2τ2 respectively. These important features of ALD have been generally adopted for the quantile inference (Yu

et al., 2003). Further details about ALD can be found in Yu and Zhang (2005).
By assuming the error terms in Eq. (A1) distributed as ALD(0, ω, τ), then yi follows ALD(dT

i rτ, ω, τ), in this case the likelihood
function for the model (i.e., Eq. A1) is:

L(r; y, τ) =
τn(1− τ)n

ωn exp

{
−

∑n
i=1 ρτ(yi − dT

i rτ)

ω

}
.

Yu and Moyeed (2001) noted that the maximum likelihood estimation of rτ is equivalent to the solution of the frequentist approach
to the estimation of coefficients, which is to solve the following optimization problem as pointed out by Koenker and Bassett (1978):

min
r

n∑
i=1

ρτ(yi − dT
i rτ).

As discussed in Yu and Moyeed (2001), the use of ALD for the error terms provides a natural way to deal with the
Bayesian QR problem.

Since ALD is not a standard distribution so that it lacks a conjugate prior, direct use of the likelihood above is rather inconvenient
for Bayesian inference. In this case, Reed and Yu (2009); Kozumi and Kobayashi (2011) used a mixture representation of ALD to
develop the Gibbs sampling algorithm to estimate the parameters in QR. Specifically, if a random variable y follows ALD(µ, ω, τ),
then it can be represented as the following form:

y = µ+ k1e+
√

k2ωeς, (A2)

where k1 =
1−2τ

τ(1−τ) , k2 =
2

τ(1−τ) , e follows exponential distribution with scale parameter ω, and ς is a standard normal distribution.
That is to say, y is augmented by a latent variable e, thus the conditional distribution of y is normal with mean µ+ k1e and variance
k2ωe. It has been shown that the mixture representation provided fully conditional posterior densities and simplified the existing
estimation procedures for QR models.

1A random variable g is said to follow ALD(µ, ω, τ) if it has density f (g|µ, ω, τ) = τ(1−τ)
ω

exp
{
−ρτ(

g−µ

ω
)
}

, where µ is the location
parameter, ω is the scale parameter, τ is the skewness parameter, and ρτ(x) = x(τ− I(x < 0)) is called the check function.
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