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Benchmark decadal forecast skill for terrestrial
water storage estimated by an elasticity framework
Enda Zhu 1,2, Xing Yuan 1,3 & Andrew W. Wood4

A reliable decadal prediction of terrestrial water storage (TWS) is critical for a sustainable

management of freshwater resources and infrastructures. However, the dependence of TWS

forecast skill on the accuracy of initial hydrological conditions and decadal climate forecasts is

not clear, and the baseline skill remains unknown. Here we use decadal climate hindcasts and

perform hydrological ensemble simulations to estimate a benchmark decadal forecast skill for

TWS over global major river basins with an elasticity framework that considers varying skill of

initial conditions and climate forecasts. The initial condition skill elasticity is higher than

climate forecast skill elasticity over many river basins at 1–4 years lead, suggesting the

dominance of initial conditions at short leads. However, our benchmark skill for TWS is

significantly higher than initial conditions-based forecast skill over 25 and 31% basins for the

leads of 1–4 and 3–6 years, and incorporating climate prediction can significantly increase

TWS prediction skill over half of the river basins at long leads, especially over mid- and high-

latitudes. Our findings imply the possibility of improving decadal TWS forecasts by using

dynamical climate prediction information, and the necessity of using the new benchmark skill

for verifying the success of decadal hydrological forecasts.
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Terrestrial water storage (TWS), including snow and ice,
surface water stored in reservoirs, lakes and rivers, and
underground water in vadose zones and aquifers, is critical

for the global hydrological cycle and freshwater resources1–3. Its
variations not only influence weather and climate significantly
through a series of complex processes and feedbacks4, but also
change sea level and affect Earth’s rotation5,6. Therefore, pre-
dicting TWS change a few years in advance can provide invalu-
able information for additional sources of climate predictability,
and for a sustainable management of water resources and
infrastructures7,8. However, decadal prediction of TWS is at an
exploratory stage9 due to limited knowledge of hydrological
predictability and forecast skill at interannual to decadal scales,
and a benchmark skill is needed to guide the applications of
decadal hydrological predictions.

Hydrological predictability mainly comes from two sources: the
memory in initial hydrological conditions (IHCs) and the pre-
dictability of meteorological forcings10–14. IHCs can be significant
sources of hydrological predictability even at interannual to
decadal scales. Based on the information in IHCs alone, TWS
over one third of the world’s land areas could be skillfully pre-
dicted 2–5 years ahead, especially over semiarid regions such as
northern China, southern Africa, and the Middle East, where the
hydrological variability is not negligible and the hydrological
anomalies can persist for a long time9. Besides IHCs, the success
of decadal climate forecasts (DCFs) determines the skill of TWS
prediction at long leads. DCFs rely on the understanding of the
low frequency of climate variability (e.g., Pacific Decadal Oscil-
lation and Atlantic Multidecadal Oscillation), natural forcings
such as volcanic activities, and human-induced climate change
through the emissions of anthropogenic aerosols and greenhouse
gases. These internal and external factors affect temperature and
precipitation through complicated ocean-atmosphere tele-
connections and cloud-aerosol-radiation interactions. Decadal
prediction has been regarded as one of the seven grand challenges
by the World Climate Research Program, with gradual
improvement during past 20 years15,16. Recently, a number of
international projects, including the Decadal Climate Prediction
Project17, which will contribute to the sixth Coupled Model
Intercomparison Project18, have been launched to investigate
decadal climate predictability and variability, and to provide
experimental quasi-real-time decadal prediction. Given the pro-
gress in utilizing the memory in IHCs and the information in
DCFs, the era for decadal hydrological prediction is expected in
the near future.

To distinguish the effects of IHCs and meteorological forcings
(e.g., DCFs) on the hydrological forecasts, simulations based on
the ensemble streamflow prediction (ESP) method that uses
accurate (deterministic) IHCs but climatological ensemble
meteorological forcings, were compared with simulations based
on the reverse ESP (rev-ESP) method that uses accurate (deter-
ministic) meteorological forcings but climatological ensemble
IHCs19–21. Comparing the performances of ESP and rev-ESP
simulations enables estimation of the influence of IHCs relative to
that of boundary conditions—e.g., DCFs9. In past demonstrations
and applications, this framework only considered perfect-model
experiments—that is, treating IHCs (i.e., ESP) or meteorological
forcings (i.e., rev-ESP) as observations for the purpose of deter-
mining relative errors. However, in reality, there are variable
uncertainties in IHCs and climate forecasts depending on the
characteristics of the hydroclimate system. Therefore, the concept
of forecast skill elasticity framework has been recently proposed
to investigate the streamflow predictability at seasonal time
scale22,23, where the accuracy of IHCs and DCFs can vary from 1
(perfect) to 0 (climatology). The forecast skill elasticities22 (i.e.,
Eqs. 3 and 4 in Methods) represent the gradients in hydrological

forecast skill (e.g., streamflow forecast skill) relative to gradients
in accuracy for predictors (e.g., IHCs or meteorological forcings),
hence a larger elasticity of a predictability source means a larger
contribution to the improvement of the hydrological prediction
given an improved skill in the predictability source.

However, whether such an elasticity framework is applicable
for quantifying potential benefit of improving IHCs and DCFs for
decadal TWS prediction over global major river basins needs
further investigation. In addition, there is an opportunity to
obtain a benchmark forecast skill by incorporating the-state-of-
the-art information of DCFs from the fifth Coupled Model
Intercomparison Project (CMIP5) decadal hindcasts24. Prior
studies and operational applications have employed post-ESP or
statistical-dynamical (hybrid and hierarchical) approaches to
incorporate climate information into the seasonal hydrological
forecasting25,26. Here, we propose a method for estimating a
benchmark decadal hydrological prediction skill based on a
climate-hydrology approach11 (e.g., physical hydrological model
predictions driven by CMIP5 decadal climate predictions), and
further use the elasticity framework to quantify predictability
gradients. The benchmark skill can provide a new norm or
starting point to assess whether different strategies for future
upgrades in the climate-hydrology approach11 are beneficial for
decadal hydrological prediction.

Results
TWS forecast skill elasticity over global river basins. To analyze
TWS prediction skill with different levels of accuracy in IHCs and
DCFs, we applied the ESP and rev-ESP methods by resampling23

the ensemble simulations (see Methods and Supplementary
Figs. 1–3 for details). The ESP and rev-ESP experiments were
carried out by performing Community Land Model version 4.5
(CLM4.5)27 simulations. In these experiments, the DCFs include
atmospheric temperature, humidity, wind and pressure near the
surface, radiation, and precipitation, while IHCs represent the
initial states of TWS, soil moisture and soil temperature, etc.
Along the x-axis in each panel in Fig. 1, the Nash-Sutcliffe Effi-
ciency (NSE; see Methods for details), a metric of skill for IHCs,
increases from the left to the right with the ending point, ESP
(representing perfect initial conditions together with climatolo-
gical DCFs). Along the y-axis, the DCFs NSE increases from
bottom to top with the ending point, rev-ESP (representing
perfect meteorological forcings (DCFs) together with climatolo-
gical IHCs). The upper right corner for each panel shows a perfect
TWS forecast (both IHCs and DCFs are perfect) with a NSE value
of one, while the lower left corners (climo, abbreviation for cli-
matology) show forecast skill based on climatological information
only, resulting in NSE values of zero or less (Fig. 1a).

As the forecast lead time increases from 1–4 years to 7–10
years (here, 1–4 years lead prediction represents 4-year average
prediction with 0-year lead, 2–5 years lead prediction represents
that with 1-year lead, and so on), the increasingly horizontal
contours show that the NSE skill becomes less sensitive to the
IHCs uncertainty and is more dominated by DCFs, as the
prediction becomes more of a boundary value than an initial
value challenge (Fig. 1). For instance, when the DCFs NSE is
about 0.5 at 5–8 years lead, there is no obvious improvement for
TWS prediction even if the IHCs NSE increases from 0 to 1 for
the Amazon basin (Fig. 1c). However, at 1–4 years lead (Fig. 1a),
increasing IHCs NSE results in significant improvement of TWS
prediction, given the same DCFs NSE (e.g., 0.5). The insensitivity
of TWS skill to the increasing skill in IHCs is more obvious for
the Amazon basin in the humid area (Fig. 1a–d) than the other
two basins (Fig. 1e–l), while the TWS skill sensitivity to increasing
IHCs skill for the Yenisei basin in the semiarid area (Fig. 1i–l, see
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Supplementary Fig. 1 for the locations) is the largest. This
suggests that increasing IHCs skill has significant potential benefit
to improve decadal prediction of TWS over the Yenisei basin,
while the control for IHCs drops quickly in the first few years for
the Amazon basin. The results for the Yangtze basin, a semi-
humid river basin, fall between the humid and semiarid basins

(Fig. 1). Similar characteristics for skill variations are also found
by using correlation as the metric (Supplementary Fig. 4).

Given a range of skill in IHCs or DCFs, the corresponding
TWS forecast skill elasticity can be estimated (see Methods for
details) for each river basin at each forecast lead. The elasticity
can quantity the contribution of improved skill in predictability
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Fig. 1 The decadal hindcast skill for terrestrial water storage with varying skill of initial conditions and climate forecasts. The results are for 4-year mean
basin-averaged terrestrial water storage over three selected basins (a–d Amazon; e–h Yangtze; i–l Yenisei) at different lead times. x- and y-axes represent
skill for initial hydrological conditions (IHCs) and decadal climate forecasts (DCFs). The skill used here is the Nash-Sutcliffe efficiency (NSE), with a value
of one representing a perfect forecast, and a value less than zero representing a forecast poorer than a climatological forecast
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sources (e.g., IHCs or DCFs) to the improvement of TWS
prediction. Figure 2 shows skill elasticity over 32 global major
river basins with forecast lead times from 1–4 years to 7–10 years.
As the forecast lead time increases, the IHCs skill elasticity
decreases but the DCFs skill elasticity increases. At shorter leads
(e.g., 1–4 years), the IHCs’ skill elasticity is higher than DCFs’
skill elasticity over half of the river basins, especially in high-
latitude and arid and semiarid regions (e.g., Yenisei, Ob,
Mackenzie, Niger, and Nelson) (Fig. 2a, e). This suggests that
increasing the accuracy in IHCs can bring more benefit to TWS
decadal prediction in these regions. On the contrary, DCFs
dominate the predictability in humid regions. For instance, the
DCFs skill elasticity is consistently higher than the IHCs skill
elasticity for the Amazon and Yangtze basins even for the first 4
years forecasts, but the IHCs skill elasticity can be dominant up to
5 years over the Yenisei basin (Supplementary Fig. 5). Averaged
over the major river basins, the DCFs NSE (correlation)
elasticities increase from 0.48 (0.36) to 0.81 (0.73) as lead time
increases from 1–4 years to 7–10 years, while the IHCs NSE
(correlation) elasticities decrease from 0.55 (0.36) to 0.19 (0.13)
(Fig. 2 and Supplementary Fig. 6). DCFs elasticities are larger

than one over 15% (22% for correlation) of the basins at 7–10
years lead, suggesting great benefits for advancing TWS long-lead
prediction by improving decadal climate prediction.

Benchmark decadal forecast skill for TWS. With the skill elas-
ticity framework, we can estimate the decadal forecast skill for
TWS given a DCFs skill or IHCs skill (Fig. 1). For example, when
the NSE skill for meteorological forcings is equal to 0.2 and IHCs
are perfect, the TWS prediction skill is about 0.25 for the Amazon
basin at lead 1–4 years (Fig. 1a).

To estimate the actual decadal forecast skill for meteorological
forcings, ten CMIP5 models were selected (see Methods for
details). The NSE values for the multi-model ensemble mean
precipitation averaged over global major river basins at different
lead times are shown in Fig. 3. For the 1–4 years lead, there are
skillful predictions (NSE > 0 and correlation larger than 0.5) over
the Amazon basin in South America, the Shatt el Arab basin in
Middle East, the Ob and Syr-Darya basins in central Asia, and the
Lena basin in Far East (Fig. 3a and Supplementary Fig. 7a). The
predictions are also skillful over certain regions even at long leads,
such as the North American and high-latitude river basins at the
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Fig. 2 Skill elasticities for climate forecasts and initial conditions. The skill elasticities were calculated by using Eqs. 3 and 4 in the Methods for 4-year mean
terrestrial water storage (TWS) hindcasts at different lead times over 32 major river basins, both for a–d decadal climate forecasts (DCFs) and e–h initial
hydrological conditions (IHCs). For example, a value of 0.8 represents that 100% improvement in the accuracy of DCFs or IHCs (e.g., Nash-Sutcliffe efficiency
(NSE) increases from 0.2 to 0.4) would result in 80% increase in TWS forecast skill (e.g., NSE increases from 0.3 to 0.54). Maps were created by using the
NCAR Command Language (Version 6.3.0) [Software]. (2016). Boulder, Colorado: UCAR/NCAR/CISL/TDD. https://doi.org/10.5065/D6WD3XH5
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7–10 years lead (Fig. 3b–d). The prediction skill does not
necessarily decrease over leads, which might be caused by the
perturbations from external forcings24. However, these external
forcings, such as volcanic eruptions, are unpredictable before
their occurrence28, and their effects on the skill variation may be
amplified given limited decadal hindcast samples.

After obtaining the actual DCFs skill based on the CMIP5
hindcasts analysis above, we can estimate the benchmark skill,
which considers skill both in IHCs and DCFs comprehensively,
for the decadal prediction of TWS by using the elasticity
framework. At 1–4 years lead, the benchmark skill is beyond
0.7 over 25% basins (8 in 32 basins) (Fig. 4a), which are located in
high-latitude (e.g., Volga, Yenisei and Lena) or semiarid regions
(e.g., Niger and Nile) where memory of IHCs is important for
hydrological predictability. As forecast lead time increases, the
benchmark skill averaged over the 32 major river basins decreases
from 0.51 (0.67 for correlation) at 1–4 years lead (Fig. 4a and

Supplementary Fig. 8a) to 0.25 (0.42), 0.19 (0.30), and 0.11 (0.17)
at leads of 3–6 years, 5–8 years, and 7–10 years, respectively
(Fig. 4b–d and Supplementary Figs. 8b–d). Compared with ESP
forecast skill, which has been used for the benchmark in most
hydrological applications (Fig. 4e–h and Supplementary Figs. 8e–
h), the new benchmark skill is significantly (p < 0.05) higher over
25% (43% for correlation) river basins after incorporating CMIP5
decadal prediction information at 1–4 years lead. The increases
are more obvious at longer lead time, with significant NSE
(correlation) increases over 31% (56%), 44% (66%), and 47%
(59%) basins at leads of 3–6, 5–8, 7–10 years.

Discussion
Decadal TWS prediction can be influenced by both IHCs and
DCFs. With the improvement in DCFs, a more skillful TWS pre-
diction is expected. In this study, we provide a benchmark skill for
TWS decadal prediction by comprehensively considering skill of
both DCFs from CMIP5 decadal prediction models and perfect
IHCs through an elasticity framework. Compared with the ESP that
is regarded as a benchmark for most hydrological forecasting stu-
dies, our proposed benchmark significantly increases skill (NSE)
over 25% and 31% basins for the 1–4 years and 3–6 years TWS
prediction respectively. The average NSE for the ESP predicted
TWS is close to zero beyond 5 years, but the benchmark skill (NSE)
is 0.19 and 0.11 for the TWS predictions at 5–8 years and 7–10
years lead. In addition, the elasticity framework based on the
coordinate transformation (see Methods for details) can be applied
to analyze the major sources of hydrological decadal predictability,
as well as the actual forecast skill enhancement given improvements
in IHCs and/or DCFs. Our benchmark skill provides a new norm to
guide the application of decadal hydrological predictions.

A reliable hydrological prediction provides a valuable reference
for optimal operation and management of water resources,
therefore, hydrological skill elasticity can suggest whether
investing on IHCs or DCFs can bring more benefit, and which
way is the most cost-effective. The major source of hydrological
predictability is different over different basins at different lead
times. Therefore, whether improving IHCs or DCFs is more
effective depends on specific situations. For example, the elasticity
analysis shows that improving IHCs skill can bring more
potential value than improving DCFs skill over northern parts of
Eurasia, North America and Africa at 1–4 years lead (Fig. 2).

Here, we calculate NSE instead of variational weights (fraction
of climatology)22,23 to make the elasticity framework more
straightforward for assessing actual skill. Through coordinate
transformation, we can obtain the TWS prediction skill in the
background of CMIP5 DCFs skill. It is viewed as a new bench-
mark, including information not only from IHCs but also from
the state-of-the-art DCFs. In addition, we can obtain the
benchmark skill for decadal TWS prediction through the elasti-
city framework instead of downscaling CMIP5 DCFs and driving
a land surface hydrological model to produce TWS prediction
that is similar to most seasonal hydrological forecasting studies11.
In other words, the benchmark skill estimated in our study can be
regarded as a new reference for verifying the usefulness of any
seasonal to decadal hydrological forecasts, regardless of using
complicated downscaling approaches such as Bias Correction and
Spatial Downscaling method29, Bayesian method30, or even
dynamical downscaling31. This paper analyzed TWS decadal
predictability and benchmark skill, but it can be applied to other
hydrological variables (e.g., streamflow, soil moisture) from
subseasonal to decadal scales.

Methods
Study basins. This study analyzed the TWS predictability and prediction skill over
global major river basins32. The selected 32 river basins are the focus of the Global
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Fig. 3 Decadal hindcast skill for basin-averaged precipitation. Nash-Sutcliffe
efficiency (NSE) values were calculated for CMIP5 multi-model-predicted
4-year mean precipitation averaged over global major river basins at
different lead times (a–d). The anomaly of CMIP5 model-predicted
precipitation to CMIP5 climatology was used to calculate NSE, to
circumvent the bias in the interpretation of results. Maps were created by
using the NCAR Command Language (Version 6.3.0) [Software]. (2016).
Boulder, Colorado: UCAR/NCAR/CISL/TDD. https://doi.org/10.5065/
D6WD3XH5
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Energy and Water EXchanges (GEWEX) project, representing a broad range of
climate and land cover conditions (Supplementary Fig. 1). Three basins (i.e.,
Amazon, Yangtze, and Yenisei) were selected to illustrate details of variable
uncertainty in IHCs and DCFs, and their corresponding TWS predictability over
different basins. The Amazon basin is located in the low latitude with an area of
5,854,000 km2, where the annual rainfall is abundant. The Yangtze basin is located
in the middle latitude, covering 1,794,000 km2 where the amount of rainfall is less
than the Amazon, and there are significant interannual variations for precipitation
due to the East Asian Summer Monsoon activities. The Yenisei basin is mainly
located in Russia, a high-latitude basin with an area of 2,579,000 km2 and a con-
tinental subarctic climate. In this study, all the statistics were calculated based on
basin average values.

CMIP5 decadal climate predictions. Precipitation outputs from the decadal
hindcasts of 10 CMIP5 models, i.e., bcc-csm 1-1, MRI-CGCM3, CNRM-CM5, EC-
EARTH, IPSL-CM5A, FGOALS-g2, FGOALS-s2, MIROC4h, MPI-ESM-LR, MPI-
ESM-MR, were equally averaged to form a multi-model ensemble mean to estimate
decadal prediction skill for precipitation33, which was used as the DCFs skill in this
work. For each CMIP5 model, the r1i1p1 realization was used. The hindcasts
started every 5 year from 1960 to 2005, and ran over 10 years periods. The century-
long Climatic Research Unit-National Centers for Environmental Prediction
(CRUNCEP34) observed meteorological forcings data was used to drive the land
surface model, and was used as a reference to assess the performance of pre-
cipitation predictions from CMIP5 models. The dataset is a widely used gauge-

based product, and its monthly precipitation values are the same as the CRU data.
As compared with other precipitation products based on gauge-observation or
satellite-estimates, including CPC, GPCC, GPCP, and PREC, regional differences
in precipitation magnitude do exist between CRU and other products (Supple-
mentary Fig. 9). However, to be consistent with ESP and rev-ESP experiments for
elasticity and benchmark skill estimation which are based on CRUNCEP-driven
CLM4.5 simulations, we kept using CRUNCEP as a reference for validating CMIP5
decadal prediction of precipitation. The time series of decadal precipitation fore-
casts along with the time series of observed precipitation for each river basin are
shown in Supplementary Fig. 10.

Prediction skill. We use the Nash-Sutcliffe Efficiency (NSE) to assess the skill. NSE
is calculated as:

NSEq ¼ 1�
Pn
i¼1

x′
obs

i;q � x′
sim

i;q

� �2
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i¼1

x′
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i;q

� �2

2
664

3
775 ð1Þ

where q is forecast lead (years; e.g., 1–4 years, 2–5 years), i stands for the ith
initialization year (i.e., 1961, 1966, 1971, 1976, 1981, 1986, 1991, 1996, 2001, 2006),
x′

obs

i;q is the anomaly of observation for the ith initialization year at lead q years for

the concerned component (e.g., precipitation or TWS), x′
sim

i;q is the same as x′
obs

i;q but
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Fig. 4 Comparison between benchmark decadal hindcast skill and initial conditions-based hindcast skill. The results are for 4-year mean terrestrial water
storage (TWS) averaged over global major river basins. Here, the CMIP5/TWS benchmark hindcasts (a–d) were obtained by using the TWS skill elasticity
analysis with decadal climate forecast skill specified by CMIP5 multi-model-predicted precipitation, while initial conditions-based hindcasts (e–h) were
from ensemble streamflow prediction (ESP) simulations. The dotted regions represent river basins with benchmark skill that is significantly (p < 0.05)
higher than ESP skill, estimated by using bootstrapping 1000 times. Maps were created by using the NCAR Command Language (Version 6.3.0)
[Software]. (2016). Boulder, Colorado: UCAR/NCAR/CISL/TDD. https://doi.org/10.5065/D6WD3XH5

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09245-3

6 NATURE COMMUNICATIONS |         (2019) 10:1237 | https://doi.org/10.1038/s41467-019-09245-3 | www.nature.com/naturecommunications

https://doi.org/10.5065/D6WD3XH5
www.nature.com/naturecommunications


for the anomaly of simulations or predictions (we use anomaly to avoid the impact
of prediction bias), and n (= 10 in this study) is the total number of initialization
years in the CMIP5 decadal hindcasts. NSE spans from -∞ to 1, with NSE= 1
means a perfect prediction. The values between 0 and 1 are generally viewed as
acceptable levels of performance, but the values <0 means the climatological
forecast is even better than model forecast, which indicates unacceptable perfor-
mance. NSE is commonly used in the hydrological field35.

ESP and rev-ESP. In this work, decadal hydrological simulations and predictions11

were produced by CLM4.5. Terrestrial water storage (TWS), including liquid and
solid soil moisture, unconfined aquifer water, canopy water, snow water, river
water storage, and surface water storage for wetlands and small subgrid-scale water
bodies27, was used to illustrate the elasticity framework. Previous studies have
verified that the model is able to simulate large-scale TWS dynamics reasonably36.

A continuous CLM4.5 control simulation (CTL) was driven by CRUNCEP data
during 1901–2010 to provide the IHCs and verification data, viewed as a true
situation. The first 50-year simulations during 1901–1950 were used as land surface
model spin-up. Similar to CMIP5 decadal climate hindcast experiments, the
decadal hydrological hindcasts were designed to start every 5 years from 1951 to
2001 by using IHCs obtained from CLM4.5 CTL experiment, and were run over
10-year periods. As shown in Supplementary Fig. 2, both ESP and rev-ESP
simulations were performed. The ESP-type simulations, which we regard as real
decadal hydrological hindcasts based on IHCs alone, have ten ensemble members
with the same (true) initial hydrological conditions from CTL experiments but
different meteorological forcings from 10-year samples overlapped every 5 years
during 1951–2001 (excluding that started from the target year). Rev-ESP21

simulations have a set of initial conditions sampled from the study period
(excluding the target years) but with the same (true) meteorological forcings.

Elasticity framework. The IHCs and DCFs for ESP and rev-ESP are either perfect
or climatological. To analyze TWS predictability under different accuracy levels of
IHCs and DCFs, the predictions were produced via the linear combination of the
climatological and perfect IHCs/DCFs. The weights used for combinations were
(w= 0, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 1.0)22. A weight (wIHC or wDCF) equal
to zero yields a perfect condition and equal to unity means the climatological
knowledge. The skill of TWS prediction for each wIHC and wDCF combination can
be estimated. As shown in Supplementary Fig. 3a, the blue dots are the end points
of the variable weight assessment: the ESP, the perfect forecast, the rev-ESP, and
the climatological forecast. By using end points blending (EPB) method23, we
combined the four end points to generate hindcasts for each wIHC and wDCF

combination without running additional simulations. For each combination point,
we blended the four end points based on the given weight to generate a 100-
member ensemble, and we calculated the percentage of each end point (EP(%); i.e.,
the number of members randomly selected from each end point) using the fol-
lowing equation:

EPð%Þ ¼ 1� xEP � wIHCj jð Þ ´ 1� yEP � wDCF

�� ��� �
; ð2Þ

where wIHC and wDCF are the weights for IHCs and DCFs respectively, xEP and yEP
are the wIHC and wDCF values at the end points for which the percentage is
calculated (e.g., xEP= 1 and yEP= 0 are for the ESP-point). This procedure was
carried out for each 10-year simulation and for each basin. Through the method
mentioned above, we obtained a surface plot for TWS skill in terms of NSE, where
x- and y-axis are the weights in IHCs and DCFs, respectively (Supplementary
Fig. 3a). Then, we used the same method to generate 100 members for each weight
value on the axis, and calculated the NSE for DCFs and IHCs to replace the
specified weights. Taking 1966-01 simulation for Amazon basin as an example, for
the weight= 0.25 for y-axis, we chose 25 sets of 10-years forcings randomly from
the ten groups (without 1966–75) of meteorological forcings (1951–61, 1956–65,
1961–70, 1971–80, 1976–85, 1981–90, 1986–95, 1991–2000, 1996–2005,
2001–2010) from CRUNCEP, and 75 sets of real forcings (1966–75). Thereafter, we
calculated the NSE for DCFs to replace the 0.25 on y-axis (Supplementary Fig. 3b).
As a result, the surface plot was transformed to another coordinate, representing
NSE skill for IHCs and DCFs (Supplementary Fig. 3b). As the random resampling
produced random biases, we did a 9-point smoothing along the y-axis to generate a
more uniform response surface. Finally, we calculated the gradients in TWS pre-
diction skill relative to IHC and DCF skill from a number of blending points
(shown with plus plotting symbols in Supplementary Fig. 3b), and we called them
as decadal hydrological prediction skill elasticity:

EIHC ¼

NSE TWSð0:50;0:90Þ½ ��NSE TWSð0:90;0:90Þ½ �
NSE½IHCð0:50Þ��NSE½IHCð0:90Þ�

þ NSE TWSð0:50;0:75Þ½ ��NSE TWSð0:90;0:75Þ½ �
NSE½IHCð0:50Þ��NSE½IHCð0:90Þ�

þ NSE TWSð0:50;0:50Þ½ ��NSE TWSð0:90;0:50Þ½ �
NSE½IHCð0:50Þ��NSE½IHCð0:90Þ�

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

=3 ð3Þ

EDCF ¼

NSE TWSð0:90;0:50Þ½ ��NSE TWSð0:90;0:90Þ½ �
NSE½DCFð0:50Þ��NSE½DCFð0:90Þ�

þ NSE TWSð0:75;0:50Þ½ ��NSE TWSð0:75;0:90Þ½ �
NSE½DCFð0:50Þ��NSE½DCFð0:90Þ�

þ NSE TWSð0:50;0:50Þ½ ��NSE TWSð0:50;0:90Þ½ �
NSE½DCFð0:50Þ��NSE½DCFð0:90Þ�

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

=3 ð4Þ

where the numerators, expressed as NSE½�; �� � NSE½�; ��, contain the gradients in the
hydrological prediction skill between IHC (DCF) weight values of 0.5, 0.75, and 0.9.

Code availability
Statistical methods are illustrated through text and figure captions. The analyzing data
and drawing plots computer codes are in Fortran or NCAR Command Language (NCL)
scripts. All the scripts are available upon request.

Data availability
The CRUNCEP forcing data are available at UCAR website (https://svn-ccsm-inputdata.
cgd.ucar.edu/trunk/inputdata/atm/datm7/). The other four precipitation datasets (CPC,
GPCC, GPCP, and PREC) are available at (https://www.esrl.noaa.gov/psd/data/gridded/).
The CMIP5 decadal hindcast data was provided by the World Climate Research
Program’s Working Group on Coupled Modeling (http://cmip-pcmdi.llnl.gov/cmip5/
availability.html). The CLM4.5 is available at CESM website (http://www.cesm.ucar.edu/
models/cesm1.2/).

Received: 5 August 2018 Accepted: 26 February 2019

References
1. Alsdorf, D. E. & Lettenmaier, D. P. Tracking fresh water from space. Science

301, 1491–1494 (2003).
2. Famiglietti, J. S. & Rodell, M. Water in the Balance. Science 340, 1300–1301

(2013).
3. Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557,

651–659 (2018).
4. Trenberth, K. E. & Asrar, G. R. Challenges and opportunities in water cycle

research: WCRP contributions. Surv. Geophys. 35, 515–532 (2014).
5. Kuehne, J. & Wilson, C. R. Terrestrial water storage and polar motion. J.

Geophys Res-Solid. 96, 4337–4345 (1991).
6. Pokhrel, Y. N., Hanasaki, N., Yeh, P. J. F., Yamada, T. J., Kanae, S. & Oki, T.

Model estimates of sea-level change due to anthropogenic impacts on
terrestrial water storage. Nat. Geosci. 5, 389–392 (2012).

7. Wang, B. et al. Toward predicting changes in the land monsoon rainfall a
decade in advance. J. Clim. 31, 2699–2714 (2018).

8. Wanders, N. & Wada, Y. Decadal predictability of river discharge with climate
oscillations over the 20th and early 21st century. Geophys. Res. Lett. 42,
10689–10695 (2015).

9. Yuan, X. & Zhu, E. A first look at decadal hydrological predictability by
land surface ensemble simulations. Geophys. Res. Lett. 45, 2362–2369
(2018).

10. Koster, R. D., Mahanama, S. P. P., Livneh, B., Lettenmaier, D. P. & Reichle, R.
H. Skill in streamflow forecasts derived from large-scale estimates of soil
moisture and snow. Nat. Geosci. 3, 613–616 (2010).

11. Yuan, X., Wood, E. F. & Ma, Z. G. A review on climate-model-based seasonal
hydrologic forecasting: physical understanding and system development.
Wiley Interdiscip. Rev. -Water 2, 523–536 (2015).

12. Pappenberger, F., Bartholmes, J., Thielen, J., Cloke, H.L., Buizza, R. &
de Roo, A. New dimensions in early flood warning across the globe using
grand-ensemble weather predictions. Geophys. Res. Lett. 35, L10404
(2008).

13. Cloke, H. L. & Pappenberger, F. Ensemble flood forecasting: A review. J.
Hydrol. 375, 613–626 (2009).

14. Emerton, R., Cloke, H. L., Stephens, E. M., Zsoter, E., Woolnough, S. J. &
Pappenberger, F. Complex picture for likelihood of ENSO-driven flood
hazard. Nat. Commun. 8, 1–9 (2017).

15. Keenlyside, N. S., Latif, M., Jungclaus, J., Kornblueh, L. & Roeckner, E.
Advancing decadal-scale climate prediction in the North Atlantic sector.
Nature 453, 84–88 (2008).

16. Cassou, C. et al. Decadal climate variability and predictability: challenges and
opportunities. Bull. Am. Meteorol. Soc. 99, 479–490 (2018).

17. Boer, G. J. et al. The decadal climate prediction project (DCPP) contribution
to CMIP6. Geosci. Model. Dev. 9, 3751–3777 (2016).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09245-3 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1237 | https://doi.org/10.1038/s41467-019-09245-3 | www.nature.com/naturecommunications 7

https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/atm/datm7/
https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/atm/datm7/
https://www.esrl.noaa.gov/psd/data/gridded/
http://cmip-pcmdi.llnl.gov/cmip5/availability.html
http://cmip-pcmdi.llnl.gov/cmip5/availability.html
http://www.cesm.ucar.edu/models/cesm1.2/
http://www.cesm.ucar.edu/models/cesm1.2/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


18. Eyring, V. et al. Overview of the coupled model intercomparison project phase
6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 9,
1937–1958 (2016).

19. Shukla, S., Sheffield, J., Wood, E. F. & Lettenmaier, D. P. On the sources of
global land surface hydrologic predictability. Hydrol. Earth. Syst. Sci. 17,
2781–2796 (2013).

20. Yuan, X., Wood, E. F., Roundy, J. K. & Pan, M. CFSv2-based seasonal
hydroclimatic forecasts over the conterminous United States. J. Clim. 26,
4828–4847 (2013).

21. Wood, A. W. & Lettenmaier, D. P. An ensemble approach for attribution
of hydrologic prediction uncertainty. Geophys. Res. Lett. 35, 14401–14405
(2008).

22. Wood, A. W., Hopson, T., Newman, A., Brekke, L., Arnold, J. & Clark, M.
Quantifying streamflow forecast skill elasticity to initial condition and climate
prediction skill. J. Hydrometeorol. 17, 651–668 (2016).

23. Arnal, L., Wood, A. W., Stephens, E., Cloke, H. L. & Pappenberger, F. An
efficient approach for estimating streamflow forecast skill elasticity. J.
Hydrometeorol. 18, 1715–1729 (2017).

24. Bellucci, A. et al. An assessment of a multi-model ensemble of decadal climate
predictions. Clim. Dyn. 44, 2787–2806 (2015).

25. Mendoza, P. A. & Wood, A. W. et al. An intercomparison of approaches for
improving operational seasonal streamflow forecast. Hydro. Earth Syst. Sci. 21,
3915–3935 (2017).

26. Slater, L. J. & Villarini, G. Enhancing the predictability of seasonal streamflow
with a statistical‐dynamical approach. Geophys. Res. Lett. 45, 6504–6513
(2018).

27. Oleson, K.W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M.,
Koven, C. D. et al. Technical Description of Version 4.5 of the Community
Land Model (CLM) (Rep. NCAR/TN-503+STR, 420), National Center for
Atmospheric Research, Boulder, CO (2013).

28. Mehta, V.M., Mendoza, K. & Wang, H. Predictability of phases and
magnitudes of natural decadal climate variability phenomena in CMIP5
experiments with the UKMO HadCM3, GFDL-CM2.1, NCAR-CCSM4, and
MIROC5 global earth system models. Clim. Dyn. https://doi.org/10.1007/
s00382-018-4321-1 (2018)

29. Wood, A. W., Maurer, E. P., Kumar, A. & Lettenmaier, D. P. Long-range
experimental hydrologic forecasting for the eastern United States. J. Geophys.
Res. -Atmos. 107, 4429–4444 (2002).

30. Luo, L. F. & Wood, E. F. Monitoring and predicting the 2007 U.S. drought.
Geophys. Res. Lett. 34, 22702 (2007).

31. Yuan, X. & Liang, X. Z. Improving cold season precipitation prediction
by the nested CWRF-CFS system. Geophys. Res. Lett. 38, L02706
(2011).

32. Yuan, X., Roundy, J. K., Wood, E. F. & Sheffield, J. Seasonal forecasting of
global hydrologic extremes system development and evaluation over GEWEX
basins. Bull. Am. Meteorol. Soc. 96, 1895–1912 (2015).

33. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the
experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

34. Piao, S. L. et al. The carbon budget of terrestrial ecosystems in East Asia over
the last two decades. Biogeosciences 9, 3571–3586 (2012).

35. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D. &
Veith, T. L. Model evaluation guidelines for systematic quantification of
accuracy in watershed simulations. T. ASABE 50, 885–900 (2007).

36. Xia, Y. L. et al. Comparison and assessment of three advanced land surface
models in simulating terrestrial water storage components over the United
States. J. Hydrometeorol. 18, 625–649 (2017).

Acknowledgements
This work was supported by National Key R&D Program of China (2018YFA0606002),
National Natural Science Foundation of China (41875105), the Startup Foundation for
Introducing Talent of NUIST, and CAS Key Research Program of Frontier Sciences
(QYZDY-SSW-DQC012).

Author contributions
X.Y. conceived and designed the study. E.Z. conducted the simulations and performed
the analyses. E.Z. and X.Y. wrote the paper. E.Z. and X.Y. are co-first authors. A.W.
provided critical insights on the results interpretation.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-09245-3.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Journal Peer review information: Nature Communications thanks Hui Wang and the
other anonymous reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09245-3

8 NATURE COMMUNICATIONS |         (2019) 10:1237 | https://doi.org/10.1038/s41467-019-09245-3 | www.nature.com/naturecommunications

https://doi.org/10.1007/s00382-018-4321-1
https://doi.org/10.1007/s00382-018-4321-1
https://doi.org/10.1038/s41467-019-09245-3
https://doi.org/10.1038/s41467-019-09245-3
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Benchmark decadal forecast skill for terrestrial water storage estimated by an elasticity framework
	Results
	TWS forecast skill elasticity over global river basins
	Benchmark decadal forecast skill for TWS

	Discussion
	Methods
	Study basins
	CMIP5 decadal climate predictions
	Prediction skill
	ESP and rev-ESP
	Elasticity framework

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




