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ACTH = adrenocorticotropic hormone; DAG = diacylglycerol; DDAVP = 1-deamino-8-D-arginine vasopressin; GPCR = G-protein-coupled recep-
tor; GRK = G protein-coupled receptor kinase; OTR = oxytocin receptor; PKC = protein kinase C; P2R = P2 purinergic receptors; V1R = V1 vascu-
lar receptor; V2R = V2 renal receptor; V3R = V3 pituitary receptor.
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Introduction
Arginine vasopressin (hereafter referred to as vasopressin),
also known as antidiuretic hormone, is essential for survival,
as attested by its teleologic persistence. Oxytocin- and vaso-
pressin-like peptides have been isolated from four inverte-
brate phyla and the seven major vertebrate families,
representing more than 120 species [1]. Therefore, the
ancestral gene encoding the precursor protein appears to
antedate the divergence of the vertebrate and invertebrate
families, about 700 million years ago [2]. Virtually all verte-
brate species possess an oxytocin-like and a vasopressin-like
peptide, and so two evolutionary lineages can be traced. The
presence of a single peptide, vasotocin ([Ile3]-vasopressin or
[Arg8]-oxytocin), in the most primitive cyclostomata supports
the notion that primordial gene duplication with subsequent
mutations gave rise to the two lineages [2].

Vasopressin is essential for cardiovascular homeostasis. The
vasopressor effect of pituitary extract, first observed in 1895,
was attributed to the posterior lobe of this gland [3]. It was not
until 18 years later that the antidiuretic effect of neurohypophy-
seal extract was demonstrated [4,5]. After isolation and syn-
thesis of vasopressin in the 1950s, it was proven that the
same hormone in the posterior pituitary possessed both anti-
diuretic and vasopressor effects [6,7]. The importance of
vasopressin in osmotic defense is fundamental. Indeed, the
antidiuretic effect of vasopressin has been exploited clinically
for over half a century to treat diabetes insipidus. Only recently
has vasopressin emerged as a therapy for shock states,
renewing interest in the cardiovascular effects of vasopressin.

Shock states induce an increase in vasopressin levels from
20- to 200-fold [8–12]. These supraphysiologic levels cause
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profound vasoconstriction and help to maintain end-organ
perfusion [13,14]. Prolonged shock is associated with a fall in
vasopressin levels [15–18], probably due to depletion of
vasopressin stores [19,20], and may contribute to the refrac-
tory hypotension that is seen in advanced shock states. Para-
doxically, vasopressin has also been demonstrated to cause
vasodilation in some vascular beds [21–28], distinguishing
this hormone from other vasoconstrictor agents.

The present review explores the vascular actions of vaso-
pressin. First, a discussion of the signaling pathways and dis-
tribution of vasopressin receptors is necessary to gain an
understanding of the seemingly paradoxic vasodilatory and
vasoconstrictor actions of vasopressin. We discuss the struc-
tural elements responsible for the functional diversity found
within the vasopressin receptor family. In part 2 of our review,
we explore the mechanisms of vasoconstriction and vasodila-
tion of the vascular smooth muscle, with an emphasis on
vasopressin interaction in these pathways. We review the
seemingly contradictory studies and some new information
regarding the actions of vasopressin on the heart. Finally, we
summarize the clinical trials of vasopressin in vasodilatory
shock states and comment on areas for future research.

Overview of vasopressin
Structure of the hormone and the genes
Vasopressin is a nonapeptide with a disulfide bridge between
two cysteine amino acids [29] and is synthesized by the
magnocellular neurons of the hypothalamus [30] (Fig. 1).
Although oxytocin differs from vasopressin by only one amino
acid (80% homology), they have clearly divergent physiologic
activity. Vasopressin is involved in osmotic and cardiovascular
homeostasis, whereas oxytocin is important in parturition, lac-
tation, and sexual behavior.

Oxytocin and vasopressin are encoded by separate genes
but they lie on the same chromosome, at 20p [31], separated
by a segment of DNA only 12 kilobases long [32]. The simi-
larities in structure as well as the close apposition are sug-
gestive of recent gene duplication [33]. Despite ample
documentation of cell-specific expression and physiologic
regulation of the vasopressin gene, there is striking lack of
progress in identifying transcription factors that act on the
vasopressin promoter [34].

Structure of the receptor

The actions of vasopressin are mediated by stimulation of
tissue-specific G-protein-coupled receptors (GPCRs), which
are currently classified into V1 vascular (V1R), V2 renal (V2R),
V3 pituitary (V3R) and oxytocin (OTR) subtypes [35] and P2
purinergic receptors (P2R) [36]. The GPCRs are comprised
of seven hydrophobic transmembrane α-helices joined by
alternating intracellular and extracellular loops, an extracellular
amino-terminal domain, and a cytoplasmic carboxyl-terminal
domain (Fig. 2) [29]. The actions of vasopressin are signaled
through pathways that are similar to extracellular agents such

as hormones (glucagon, luteinizing hormone, and epinephrine
[adrenaline]), neurotransmitters (acetylcholine, dopamine, and
serotonin) and chemokines (interleukin-8). Local mediators
signal to the four main G protein families to regulate cellular
machinery such as metabolic enzymes, ion channels, and
transcriptional regulators [37]. The extracellular signals are
routed to specific G proteins through distinct types of recep-
tors. For example, epinephrine’s signal is transmitted through
the β-adrenergic receptor coupled to Gi, and the α1-adrener-
gic receptor coupled to Gq and G11. Many important hor-
mones, including epinephrine, acetylcholine, dopamine, and
serotonin, interact with the Gi pathway, which is character-
ized by inhibition of adenylyl cyclase [37].

Figure 1

Hypothalamic nuclei involved in vasopressin control. The hypothalamus
surrounds the third ventricle ventral to the hypothalamic sulci. The main
hypothalamic nuclei subserving vasopressin control are the median
preoptic nucleus (MNPO), the paraventricular nuclei (PVN), and the
supraoptic nuclei (SON), which project to the posterior pituitary along
the supraoptic–hypophyseal tract. Afferent nerve impulses from stretch
receptors in the left atrium (inhibitory), aortic arch, and carotid sinuses
(excitatory) travel via the vagus nerve, and neural pathways project to
the PVN and the SON. These nuclei also receive osmotic input from the
lamina terminalis, which is excluded from the blood–brain barrier and is
thus affected by systemic osmolality. Vasopressin is synthesized in the
cell bodies of the magnocellular neurons located in the PVN and SON.
The magnocellular neurons of the SON are directly depolarized by
hypertonic conditions (hence releasing more vasopressin) and
hyperpolarized by hypotonic conditions (hence releasing less
vasopressin). Finally, vasopressin migrates (in its prohormone state)
along the supraoptic–hypophyseal tract to the posterior pituitary, where
it is released into the circulation. Used by permission from Chest [95].
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Agonist stimulation of vasopressin receptors leads to recep-
tor subtype-specific interactions with G-protein-coupled
receptor kinases (GRKs) and protein kinase C (PKC)
through specific motifs that are present in the carboxyl
termini of the receptors [38]. Guanine nucleotide-binding
proteins (G-proteins) are signal transducers, attached to the
cell surface membrane, that connect receptors to effectors
and thus to intracellular signaling pathways [39]. Functional
characterization of the G-proteins, including Gs, Gi/o, Gq/11,
and G12/13 [37], indicates that a single receptor can acti-
vate multiple second messenger pathways through interac-
tion with one or more G-proteins [40–42].

Vasopressin’s signal is transmitted through both Gs and
Gq/11 subtypes [37]. The Gs pathway is characterized by
inhibition of adenylyl cyclase, leading to increased levels of
cAMP that in turn connects to multiple cellular machines,
including ion channels, transcription factors, and metabolic
enzymes. Both β-adrenergic receptors and vasopressin
receptors regulate Gs protein signaling. The Gq/11 pathway
is the classical pathway that is activated by calcium-mobiliz-
ing hormones and stimulates phospholipase-β to produce
the intracellular messengers inositol trisphosphate and dia-
cylglycerol (DAG) [37]. Inositol trisphosphate triggers the
release of calcium from intracellular stores and DAG recruits
PKC to the membrane and activates it. The α-subunit of Gq
also activates the transcription factor nuclear factor-κB [43].

The V1 receptor
The V1R gene is located on chromosome 12 and maps to
region 12q14-15 [44]. Functionally, the V1R activates G-
proteins of the Gq/11 family. The α-subunits regulate the activ-
ity of the β-isoforms of phospholipase C [29]. A variety of
signaling pathways is associated with the V1R, and these
pathways include activation of calcium influx, phospho-
lipase A2, phospholipase C, and phospholipase D [45].

V1Rs are found in high density on vascular smooth muscle and
cause vasoconstriction by an increase in intracellular calcium
via the phosphatidyl–inositol-bisphosphonate cascade.
Cardiac myocytes also possess the V1R and are discussed in
part 2 of the review. Additionally, V1Rs are located in brain,
testis, superior cervical ganglion, liver, blood vessels, and renal
medulla [46]. The exact physiologic role of vasopressin in
many of these diverse tissues remains unknown.

Platelets express the V1R, which upon stimulation induces an
increase in intracellular calcium, facilitating thrombosis [47].
However, there appears to be tremendous variability in the
aggregation response of normal human platelets to vaso-
pressin [48]. Based on kinetic studies and the effects of PKC
inhibition on the aggregation response to vasopressin, signifi-
cant heterogeneity in the aggregation response of normal
human platelets to vasopressin has been demonstrated,
which is probably related to a polymorphism of the platelet
V1R [49].

V1Rs are found in the kidney, where they occur in high density
on medullary interstitial cells, vasa recta, and epithelial cells of
the collecting duct. Vasopressin acts on medullary vasculature
through the V1R to reduce blood flow to inner medulla without
affecting blood flow to outer medulla [50]. V1Rs on the luminal
membrane of the collecting duct probably exerted through V1a
receptors located on luminal membrane limit the antidiuretic
effects of vasopressin [50]. Interestingly, cyclosporine A
induces upregulation of V1R mRNA in vascular smooth muscle
[51], increasing the number of V1Rs by twofold [52], which
could be a key mechanism by which cyclosporine A causes
both hypertension and reduced glomerular filtration. Addition-
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Figure 2

Vasopressin docking and transmembrane topology of the human V1
vascular receptor (V1R). A model of arginine vasopressin (AVP), as
bound to the human V1R, is depicted. Vasopressin is shown in ball-
and-stick representation and the receptor is shown in ribbons. The
intracellular loops of the receptor are labeled il1, il2, and il3, and the
extracellular loops are labeled el1, el2, and el3. The transmembrane
segments are labeled H1–H7. Reprinted from Thibonnier M, Coles P,
Thibonnier A, Shoham M: Molecular pharmacology and modeling of
vasopressin receptors. Prog Brain Res 2002, 139:179-196. 
© 2002, with permission from Elsevier [96].
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ally, vasopressin selectively contracts efferent arterioles [53],
probably through the V1R, but not the afferent arteriole. This
selectivity, which is not shared by catecholamine vasopres-
sors, would tend to increase glomerular filtration, probably
accounting for the paradoxic increase in urine output observed
when this antidiuretic hormone is administered to patients in
vasodilatory shock [54,55].

There is considerable interspecies variation in the V1R. For
instance, although rat and human vasopressin are identical,
the human V1R is only 80% homologous with the rat V1R [1].
This must be kept in mind when interpreting animal studies
aimed at interpreting receptor subtypes based on the use of
specific receptor inhibitors.

The V2 receptor
The V2 R differs from the V1R primarily in the number of sites
susceptible to N-linked glycosylation; the V1R has sites at
both the amino-terminus and at the extracellular loop,
whereas the V2R has a single site at the extracellular amino-
terminus [56]. Despite structural similarities, the V2R differs
functionally from the V1R. Mutagenesis experiments involving
the V1R and V2R have confirmed that the short sequence at
the amino-terminus of the cytoplasmic tail confers V2 recep-
tor–Gs coupling selectivity. The efficiency of V2R–Gs cou-
pling can be modulated by the length of the central portion of
the third intracellular loop [57], whereas the second intracel-
lular loop of the V1R is critically involved in selective activation
of Gq/11 [58].

The well known antidiuretic effect of vasopressin occurs via
activation of the V2R. Vasopressin regulates water excretion
from the kidney by increasing the osmotic water permeability
of the renal collecting duct – an effect that is explained by
coupling of the V2R with the Gs signaling pathway, which
activates cAMP [59]. The increased intracellular cAMP in the
kidney [60,61] in turn triggers fusion of aquaporin-2-bearing
vesicles with the apical plasma membrane of the collecting
duct principal cells, increasing water reabsorption [62]. Vaso-
pressin regulates water homeostasis in two ways: regulation
of the fast shuttling of aquaporin 2 to the cell surface and
stimulation of the synthesis of mRNA encoding aquaporin 2
[63]. Most cases of diabetes insipidus can be explained by
mutations in the V2R gene, which is located on chromosome
region 10q28 [64]. For example, an Arg137→His mutation in
the V2R abolishes coupling to the Gs protein, causing a com-
plete phenotype of nephrogenic diabetes insipidus [65].

It has been postulated that the V2R is also expressed in
endothelium because the potent V2R agonist 1-deamino-8-D-
arginine vasopressin (DDAVP) causes both release of von
Willebrand factor and vasodilation [21]. Previous studies of
the localization and distribution of different vasopressin
receptors have been hampered by the use of nonselective
radioligands such as [3H]arginine vasopressin, which binds to
all types of V1R and V2R, certain OTRs, and neurophysins.

When selective V1R and V2R radioligands with in vitro auto-
radiography were used to study V1R and V2R binding sites,
no binding was demonstrated on endothelium or liver, where
DDAVP might influence clotting factor release, or in the brain,
spinal cord, sympathetic ganglia, heart or vascular smooth
muscle – regions where DDAVP might cause vasodilation
[46]. Specific binding was only identified in the kidney, which
is consistent with the known distribution of antidiuretic V2Rs
on renal collecting tubules.

The V3 receptor
The human V3R (previously known as V1bR) is a G-protein-
coupled pituitary receptor that, because of its scarcity, was
only recently characterized. The V3R gene maps to chromo-
some region 1q32 [66]. The 424-amino-acid sequence of the
V3R has homologies of 45%, 39%, and 45% with the V1R,
V2R, and OTR, respectively [67]. However, the V3R has a
pharmacologic profile that distinguishes it from the human
V1R and activates several signaling pathways via different G-
proteins, depending on the level of receptor expression [68].
Interestingly the V3R is also is over-expressed in adrenocorti-
cotropic hormone (ACTH)-hypersecreting tumors.

More than one G-protein appears to participate in signal
transduction pathways linked to V3Rs, depending on the level
of receptor expression and the concentration of vasopressin
[69]. For instance, vasopressin causes secretion of ACTH
from the anterior pituitary cells in a dose-dependent manner
through activation of PKC [70] via the Gq/11 class [68]. Other
cellular responses, including increased synthesis of DNA and
cAMP, which are important in the induction and phenotype
maintenance of ACTH-secreting tumors, are mediated
through recruitment of several pathways, including Gs, Gi,
and Gq/11 [68]. The V3R has been inferred to exist in the pan-
creas [71] on the basis of antagonist studies; however, this
conclusion may be suspect because significant homology
exists between the V3R and the V1R [59].

The oxytocin receptor
The OTR can be considered a ‘nonselective’ vasopressin
receptor. The OTR has equal affinity for vasopressin and oxy-
tocin, whereas the V1R has a 30-fold higher affinity for vaso-
pressin than for oxytocin [72]. OTRs are functionally coupled
to Gq/11 class binding proteins, which stimulate the activity of
phospholipase C [73]. This leads to the generation of inositol
trisphosphate and 1,2-DAG. Inositol trisphosphate triggers
calcium release from intracellular stores, whereas DAG stimu-
lates PKC, which phosphorylates unidentified target proteins
[73]. A variety of cellular events are initiated in response to an
increase in intracellular calcium. For example, the forming
calcium–calmodulin complexes trigger activation of neuronal
and endothelial isoforms of nitric oxide synthase. Nitric oxide
in turn stimulates the soluble guanylate cyclase to produce
cGMP, leading to vasodilation. In smooth muscle cells, the
calcium–calmodulin system triggers the activation of myosin
light chain kinase activity, which initiates smooth muscle con-
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traction (e.g. in myometrial or mammary myoepithelial cells)
[74]. In neurosecretory cells, rising calcium levels control cel-
lular excitability, modulate their firing patterns, and lead to
transmitter release. Further calcium-promoted processes
include gene transcription and protein synthesis.

OTRs have been localized to a variety of reproductive and
nonreproductive tissues [73]. Importantly, OTRs exist in high
density on vascular endothelium, mediating nitric oxide
dependent vasodilation [75]. Recently, the oxytocin/OTR
system has been discovered in the heart. Activation of
cardiac OTR stimulates the release of atrial natriuretic
peptide, which is involved in natriuresis, regulation of blood
pressure, and cell growth [76]. Embryonic stem cells
exposed to oxytocin exhibit increased atrial natriuretic peptide
mRNA and abundant mitochondria, and express sarcomeric
myosin heavy chain, which is consistent with promotion of
cardiomyocyte differentiation [77].

Purinergic receptors
Recently, vasopressin was demonstrated to act on the P2
class of purinoreceptors (P2Rs) [36]. P2Rs also belong to the
seven-transmembrane-domain GPCR superfamily. ATP
released from platelets and damaged cells bind endothelial
P2Rs [78]. ATP can act on either of the two subclasses of
purinoceptors, namely P2γ and P2ν. In both cases, activation
of phospholipase C leads to mobilization of intracellular
calcium stores. This binding stimulates phospholipase A2 and
nitric oxide synthase, resulting in increased synthesis and
release of prostacyclin and nitric oxide, respectively, and
causing vascular smooth muscle vasodilation [78].

Purinoreceptors may also have an important role in cardiac
contractility. ATP released by platelets, endothelial cells, and
damaged myocardium activates the P2R, causing a large
increase in cytosolic calcium and myocyte contractile ampli-
tude [79]. ATP is also released as a cotransmitter with nor-
epinephrine from sympathetic nerve endings and acts in a
synergistic manner with β-adrenergic agents, increasing
myocardial contractility [80]. In contrast to β-adrenergic
agents, inotropy is not accompanied by a positive
chronotropic effect. It is speculated that P2R agonist-stimu-
lated increase in contractility could occur without the
expense of a rate-related increase in myocardial oxygen
demand [79].

Recently, vasopressin was shown to exert cardiac effects
through activation of P2Rs expressed on cardiac endothelium.
Intracoronary infusion of vasopressin-dextran (confines vaso-
pressin to the intravascular space) and vasopressin at
maximal concentration in isolated perfused guinea pig hearts
caused coronary vasoconstriction and negative inotropy –
effects that were blocked with vasopressin antagonists and
P2R antagonist [36]. Caution must be exercised in interpret-
ing this study because activation of P2Rs and increased
levels of ATP normally increase inotropy. Furthermore, the

same experiments performed in isolated perfused rat hearts
demonstrated positive inotropy – an effect that was blocked
by P2R antagonists [36]. Further study is necessary to ascer-
tain the significance of vasopressin P2R activation in the
human heart, but the discovery that vasopressin acts on P2Rs
is intriguing.

A number of pharmacologic observations have suggested the
existence of vasopressin receptor/OTR subtypes beyond the
five described above [72]. These include receptors for the
metabolites of vasopressin and oxytocin (VP4-9 R and
OT4-9 R) [72], and a cAMP-coupled vasopressin receptor
with a V1-like pharmacologic profile termed V2b [81]. A novel
‘vasotocin-like’ receptor subtype has also been proposed
[82].

Vasopressin/oxytocin receptor
downregulation
Upon ligand binding, GPCRs undergo activation followed by
a decrease in receptor responsiveness (desensitization).
Agonist-dependent desensitization of these receptors can
reduce their signaling responsiveness to maximum stimulation
by up to 70–80% [83]. Receptor desensitization occurs
when activated receptors become phosphorylated and bind
to β-arrestin proteins, inhibiting further interaction with G-
proteins [84,85]. Receptor responsiveness is also limited by
the degradation of cAMP by phosphodiesterases. β-Arrestins
coordinate both phosphorylation of receptors and the rate of
cAMP degradation by phosphodiesterases [85].

Exposure to vasopressin leads to desensitization of the V1R,
which occurs quickly and is accompanied by sequestration of
receptors inside the cell [59]. The V1R can also be desensi-
tized by angiotensin II [86]. Compared with V1Rs and
β2-adrenergic receptors, which are known to recycle and
resensitize rapidly, the V2R recycles and resensitizes slowly
[87]. Mutagenesis experiments demonstrate that the interac-
tion of β-arrestin with a specific motif in the GPCR carboxyl-
terminal tail dictates the rate of receptor dephosphorylation,
recycling, and resensitization [87,88]. The clinical importance
of vasopressin desensitization of the vasopressin receptor/
OTR family in human disease states is currently unknown.

Despite the clinical importance of the vasopressin receptors
and OTRs, little is known about the mechanisms by which
they undergo internalization and desensitization. Agonist acti-
vation of all vasopressin receptor/OTR subtypes leads to a
specific physical association of the receptors with GRKs
and/or PKC, following different time courses that are specific
to the receptor subtype [38]. The pattern of interaction with
GRKs and PKC is also unique to each vasopressin receptor
subtype and occurs at the level of their carboxyl-termini [38].

Vasopressin is known to modulate the effect of other vaso-
active agents [89,90] – an interaction that may be explained
by arrestin trafficking. Isoproterenol-dependent internalization
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of β2-adrenergic receptors is specifically blocked (>65% inhi-
bition) by vasopressin-induced activation of V2Rs coex-
pressed at similar levels [42]. β2-Adrenergic receptors
caused no detectable effect on V2R internalization in the
same cells. There is evidence to suggest that this nonrecipro-
cal inhibition of endocytosis is mediated by receptor-specific
intracellular trafficking of β-arrestins [42]. Interestingly, inter-
action of vasopressin with arrestins and resistance of vaso-
pressin receptors to downregulation may explain the reported
ability of vasopressin to bypass desensitized myocardial
adrenergic receptors in an experimental model of congestive
heart failure [91]. The clinical importance of vasopressin
upregulation of adrenergic receptors in critically ill humans is
an important area for further study.

Conclusion
During the past 10 years, considerable progress has been
made in our understanding of vasopressin receptor structure
and function. The physiologic significance of the various
receptors has been elucidated by the development of spe-
cific agonists and antagonists, particularly by Dr Maurice
Manning’s group [92–94]. An understanding of the molecular
basis of receptor function will greatly aid in the development
of new molecules with high selectivity for the different sub-
types of receptors, and will have potential therapeutic signifi-
cance, not only for conditions as diverse as hypertension,
diabetes insipidus and premature labor, but also in vasodila-
tory shock with organ dysfunction. In part 2 of the review, we
discuss the interaction of vasopressin with its various recep-
tors in vascular smooth muscle and the heart, and its poten-
tial utility in vasodilatory shock states.
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