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Abstract: SIRT5 is a member of the Sirtuin family, a class of deacetylating enzymes consisting of seven
isoforms, involved in the regulation of several processes, including gene expression, metabolism,
stress response, and aging. Considering that the anomalous activity of SIRT5 is linked to many
pathological conditions, we present herein an overview of the most interesting modulators, with the
aim of contributing to further development in this field.

Keywords: Sirtuin 5; HDACs; activators; inhibitors; natural compounds; small molecules

1. Introduction

Class III histone deacetylases (HDACs), commonly known as Sirtuins (SIRTs), are
NAD+-dependent enzymes characterized by either histone deacetylase or, more frequently,
ribosyl transferase activity [1]. SIRTs are involved in several processes, including tran-
scription, translation, metabolism, and cellular stress/damage. They catalyze different
types of chemical reactions, such as demalonylation, desuccinylation, depropionylation,
and delipoamidation [2]. Besides their role in gene expression and metabolism, SIRTs are
implicated in delaying cellular aging and controlling the normal cell cycle; moreover, they
are important mediators of apoptosis inhibition and glucose homeostasis. Interestingly,
the downregulation of these enzymes has been associated with metabolic diseases, cancer,
and neurodegeneration.

SIRTs comprise seven isoforms, sharing a conserved catalytic core and differing in their
N- and C-terminal sequences, which contribute to their specific localization and regulation.
SIRT1 has an N-terminal STAC (sirtuin-activating compound) binding domain, SIRT3,
4, and 5 are characterized by a peculiar N-terminal mitochondrial localization sequence
(MLS), while SIRT6 and SIRT7 have N- and C-terminal portions contributing to the binding
of DNA and chromatin [3].

The different SIRT isoforms catalyze the same deacetylation reaction: NAD+ reacts
with the acyclic oxygen of the protein substrate to form a 1′-O-alkylamidate intermediate;
then, subsequent hydrolysis provides the deacylated protein and 2′-O-acyl-ADP-ribose. In
this reaction, Zn2+ plays a fundamental role as an enzymatic cofactor (Scheme 1) [3].

However, despite the structural similarity among all isoforms, only SIRT5 catalyzes
the cleavage of negatively charged acylated substrates. SIRT5 is mainly located in the
mitochondria (together with SIRT3 and SIRT4) and is highly expressed in the brain, heart,
testis, and lymphoblasts. Its unique structure consists of fourteen α helices and nine β
strands, organized in two domains: the Zn2+-binding domain and the Rossmann fold
domain (Figure 1) [4]. Moreover, SIRT5 presents two binding pockets, one for the protein
substrate and the other for the NAD+ cofactor, both located in the interspace between
the Zn2+-binding domain and the Rossmann fold domain. Differently from other sirtuins,
SIRT5 has a peculiar biochemistry and distinctive amino acid residues in the active site,
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namely Ala86, Tyr102, and Arg105. In the catalytic domain, the two non-hydrophobic
residues, Tyr102 and Arg105, form hydrogen bonds and ionic-bond interactions with the
carboxyl group of the succinyl-lysine substrate [5]. Furthermore, the presence of Ala86
makes the SIRT5 acyl-lysine binding pocket larger than that of other SIRTs.

Molecules 2022, 27, x FOR PEER REVIEW 2 of 18 
 

 

O
N

O
NH2

OH
HO

ADP

N

O

NH2

N
H

O
R

O

OH
HO

ADP
O

H3C
NH

R

O

HO

ADP

O

O
CH3

NH
R

O

HO

ADP

O

O
H3C

+ NH3
R

NAD+

Nicotinamide
(NAM)

Acylated protein

1'-O-alkylamidate intermediate Bicyclic intermediate

2'-O-acyl-ADP-ribose Deacylated protein

OH

 
Scheme 1. Mechanism of the deacetylation reaction catalyzed by SIRTs. 
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tide substrate (Thr-Ala-Arg-SLL-Ser-Thr-Gly-Gly, red) and the NAD+ cofactor (green), bound in 
their respective pockets. (C) Magnified view of the two binding pockets, highlighting the ligand 
(red), NAD+ (green), and the surrounding amino acids (light yellow). 
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agy. Furthermore, SIRT5 demalonylates glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) and other enzymes in the glycolytic cascade, leading to increased GAPDH ac-
tivity. It desuccinylates pyruvate kinase M2 (PKM2) at Lys311 to increase pyruvate kinase 
activity, thereby promoting the glycolytic flux [3]. In contrast, Xiangyun and co-workers 
reported that SIRT5 desuccinylates PKM2 at Lys498 to inhibit its activity in tumor cells 
[9]. Additionally, SIRT5 is specifically involved in the pentose phosphate pathway, which 
allows the production of ribose-5-phosphate, a precursor for the synthesis of nucleotides. 
This cycle also promotes the reduction of NADP+ to NADPH, blocking ROS storage in 
cells and playing a role in the regeneration of the reduced form of GSH (an ROS scaven-
ger). In detail, SIRT5 mediates the deglutarylation and consequent activation of glucose-
6-phosphate-1-dehydrogenase (G6PD) in stress conditions to maintain cellular redox ho-
meostasis [8]. Furthermore, SIRT5 regulates 3-hydroxy-3-methylglutaryl-CoA synthase 2 

Figure 1. (A) Ribbon diagram of SIRT5 (PDB code: 3RIY), evidencing the two domains and the
position of the zinc cofactor. α-Helices are colored blue, β-sheets are yellow, while undefined loops
are gray. (B) Surface representation of SIRT5 (PDB code: 3RIY), highlighting the succinyl-lysine
peptide substrate (Thr-Ala-Arg-SLL-Ser-Thr-Gly-Gly, red) and the NAD+ cofactor (green), bound
in their respective pockets. (C) Magnified view of the two binding pockets, highlighting the ligand
(red), NAD+ (green), and the surrounding amino acids (light yellow).
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SIRT5 is highly expressed in the mitochondrial matrix and has a specific mitochondrial
localization sequence (MLS); however, it is also present in the cytosol. Recent studies
have reported that an alternative splicing of the SIRT5 mRNA leads to two dominant
isoforms, SIRT5iso1 and SIRT5iso2, containing the same N-terminal MLS, but differing at
the C-terminal portion. While SIRT5iso1 was found only in the cytosol, SIRT5iso2 was also
detected in the cytoplasm [5]. Moreover, two additional SIRT5 isoforms (SIRT5iso3 and
SIRT5iso4) have been reported in the NCBI database; however, no information is available
regarding their expression, localization, or functional properties [6].

SIRT5 catalyzes the deacetylation, demalonylation, desuccinylation, and deglutaryla-
tion of lysine, modulating many metabolic enzymes by post-translational modifications
(Figure 2). More specifically, it is involved in several cellular metabolic pathways, anti-
inflammatory processes, antitumor mechanisms, and in the regulation of the response to
oxidative stress [7].
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Figure 2. Graphical representation of the main metabolic pathways regulated by SIRT5. The activated
targets are contained in green boxes, whereas inhibited proteins are in red boxes.

The mitochondrial isoform of SIRT5 regulates ammonia metabolism, fatty acid oxi-
dation, glycolysis, the tricarboxylic acid (TCA) cycle, the electron transport chain (ETC),
and apoptosis [8]. Its specific substrates include carbamoyl phosphate synthetase 1 (CPS1)
and glutaminase (GLS), which regulate the balance between the urea cycle and mitophagy.
Furthermore, SIRT5 demalonylates glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
and other enzymes in the glycolytic cascade, leading to increased GAPDH activity. It desuc-
cinylates pyruvate kinase M2 (PKM2) at Lys311 to increase pyruvate kinase activity, thereby
promoting the glycolytic flux [3]. In contrast, Xiangyun and co-workers reported that SIRT5
desuccinylates PKM2 at Lys498 to inhibit its activity in tumor cells [9]. Additionally, SIRT5
is specifically involved in the pentose phosphate pathway, which allows the production of
ribose-5-phosphate, a precursor for the synthesis of nucleotides. This cycle also promotes
the reduction of NADP+ to NADPH, blocking ROS storage in cells and playing a role in the
regeneration of the reduced form of GSH (an ROS scavenger). In detail, SIRT5 mediates
the deglutarylation and consequent activation of glucose-6-phosphate-1-dehydrogenase
(G6PD) in stress conditions to maintain cellular redox homeostasis [8]. Furthermore,
SIRT5 regulates 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), enoyl-CoA hy-
dratase α-subunit (ECHA), and malonyl-CoA decarboxylase (MCD). The latter catalyzes
the conversion of malonyl-CoA to acetyl-CoA and is implicated in the homeostasis of these
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metabolites in mitochondria and peroxisomes [10]. SIRT5 also desuccinylates superoxide
dismutase [Cu-Zn] (SOD1) and isocitrate dehydrogenase 2 (IDH2) [11].

The cytosolic SIRT5 isoform acts as a glycolytic enzyme and interacts with the 40S and
60S ribosomal subunits during gene translation [5].

Most notably, SIRT5 is also involved in several intracellular signaling pathways,
exerting a specific influence in the regulation of protein functions through their post-
translational modification (PTM) in physiological and pathological conditions [12–16].
However, the functional role of SIRT5 in regulating many of its proposed targets has yet to
be investigated.

2. SIRT5 Modulators

Due to the potential role of SIRT5 as a pharmacological target in cancer, diabetes,
cardiovascular diseases, obesity, neurodegenerative disorders, and inflammation, many
studies have been undertaken to identify new molecules acting as SIRT5 activators or
inhibitors.

Here, we report a comprehensive overview of the SIRT5 modulators that have been
described in the literature in the last decade. All selected molecules are classified as
activators or inhibitors based on their effects on SIRT5, and further divided into natural
derivatives and synthetic compounds. The screening process and the subsequent selection
of the relevant literature sources for this review are described in Figure 3 through a PRISMA
flow diagram.
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The first part of the following two sections is dedicated to natural products (NPs),
which represent an invaluable source of structurally unique bioactive compounds, and a
paramount source of new drug candidates [17–21]. Semisynthetic and synthetic derivatives
are described in the second part of both sections. The origin of the compounds, their
biological activities and mode of action, as well as viable opportunities for their future
development will be the focus of this work.

2.1. Activators

SIRT5 can be activated by sirtuin-activating compounds (STACs), which induce cellular
and physiological effects amplified by downstream signaling pathways. These molecules
could be useful in hyperlipidemia and hypercholesterolemia, in the prevention and treat-
ment of type 2 diabetes [22], in the therapeutic approach for Alzheimer’s disease [23], or as
medication for rheumatoid arthritis [24] and various tumors [14,25].
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2.1.1. Natural Compounds

In a 2006 patent application, Howitz et al. assayed a group of compounds, previously
reported as SIRT1 activators, for their ability to activate SIRT5 [22]. Among the detected
STACs, several were natural compounds; the most interesting are discussed in the following
paragraph. Resveratrol (1) and pinosylvin (2) are natural stilbenes obtained from plants: 1
is commonly found in peanuts, grapes, raspberries, and vegetables and it is commonly used
as a dietary supplement, whereas 2 is synthesized in plants during fungal infections, in
response to stress and physical damage [26]. Isoliquiritigenin (3) and butein (4) are bioactive
chalcone derivatives. Compound 3, found in Glycyrrhiza glabra, is known to be capable
of reducing oxidative damage in diabetic patients affected by neuropathy [27], whereas
4, a compound found in several plants, including Toxicodendron vernicifluum, Dahlia spp.,
and Butea spp., was identified as an antioxidant agent involved in the control of oxidative
stress and apoptosis. It was also described as a neuroprotective compound, supporting
the correct cerebral activity via an increase in neuronal cell survival and the prevention of
H2O2-mediated neurotoxicity [28]. Two flavone derivatives were also identified as STACs,
namely fisetin (5), a natural flavonoid found in fruits, vegetables, and nuts, known for
its antioxidant and anti-inflammatory properties [29], and quercetin (6), a polar auxin
transport inhibitor (ATI), widely distributed in nature [30]. Finally, nordihydroguaiaretic
acid (7), a natural antioxidant and anti-inflammatory lignan found in Larrea tridentata,
showed activity on SIRT5 [31,32]. Compounds 1–7 were evaluated for their ability to
activate SIRT5 at 200 µM; the results were expressed as the rate of activation with respect to
the control (1: 4.95 ± 0.48-fold; 2: 2.71 ± 0.092-fold; 3: 3.93 ± 0.30-fold; 4: 2.19 ± 0.10-fold;
5: 2.61 ± 0.19-fold; 6: 2.18 ± 0.10-fold; 7: 1.91 ± 0.02-fold) [22]. The chemical structures of
compounds 1–7 are reported in Figure 4. To summarize, the reported compounds can be
classified into four major groups of polyphenols, namely stilbenes (1, 2), chalcones (3, 4),
flavones (5, 6), and lignans (7).
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Compound 1 was also studied by Gertz et al., who evaluated its effects on SIRT5
and SIRT3 [33]. The biological analyses revealed a 2.5-fold stimulation of the deacetylase
activity of SIRT5 against the fluorophore-modified peptide substrate “Fluor-de-Lys” (FdL)
in response to 0.2 µM resveratrol (1). Compound 1 was also shown to inhibit the human
SIRT3 and stimulate SIRT1. Unfortunately, 1 is characterized by low solubility, which does
not allow full inhibition of SIRT3 and maximum stimulation of SIRT5 to be achieved. The
low bioavailability of resveratrol (1) prompted the hypothesis that its metabolites might
be responsible for the in vivo effects. The biological analysis of piceatannol (8, Figure 4), a
metabolite of 1 showing higher solubility, revealed that the compound stimulates SIRT5
and inhibits SIRT3 (EC50 of 0.07 ± 0.02 mM for SIRT5) [33,34].
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2.1.2. Synthetic Compounds

In addition to the natural molecules reported in the previous section, Howitz et al.
assayed several synthetic compounds, previously known as SIRT1 activators, on SIRT5 [22].
Most of the tested molecules were stilbene derivatives, including BML-217 (9, Figure 5),
which showed the maximum stimulation of SIRT5 (13.6-fold). Interesting results were
also obtained for dipyridamol (10, Figure 5; 8.56 ± 0.30-fold), a nucleoside transport and
PDE3 inhibitor used in the prevention of blood clot formation [35], and for ZM336372 (11,
Figure 5; 0.74 ± 0.05-fold), a c-Raf inhibitor [22,36].
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Figure 5. Chemical structures of the synthetic activators (9–16) of SIRT5.

Sauve et al. synthesized several nicotinamide riboside derivatives and assayed them
on SIRT5 [37]. The most interesting result was found for 12 (Figure 5), which showed 80%
activation at 600 µM [37].

More recently, Hu and co-workers studied the role of SIRT5 in pancreatic ductal
adenocarcinoma (PDAC) and developed a small-molecule SIRT5 activator, MC3138 (13,
Figure 5) [38]. The compound was tested on human PDAC cell lines, organoids, and PDX
tumors. The results of the biochemical enzymatic assays indicated that 13 exhibited the
selective activation of SIRT5 over SIRT1/3. The cell viability experiments showed that 13
reduced PDAC cell viability, with IC50 values ranging from 25.4 mmol/L to 236.9 mmol/L.
The toxicity assays demonstrated that 13 combined with gemcitabine could be a safe and
effective therapeutic option for PDAC characterized by low SIRT5 expression [38].

In a computational study, Schlicker et al. performed docking screening on a library of
small molecules, using the crystal structures of human SIRT2/3/5/6 as models [39]. The
virtual simulations suggested that CSC9 (14), CSC33 (15), and CSC38 (16) (Figure 5) could
act as activators of SIRT5 [39].
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2.2. Inhibitors

SIRT5 inhibitors (sirtuin-inhibiting compounds, STICs) have been studied for their
potential role in the treatment of metabolic disorders [6,40], neurodegenerative patholo-
gies [23,41,42], cardiovascular diseases [42,43], and cancer [3,44].

2.2.1. Natural Compounds

Nicotinamide (NAM, 17, Figure 6) represents one of the major precursors for NAD
biosynthesis. As a product of the reactions catalyzed by SIRTs, it acts as an endogenous
non-competitive inhibitor of these enzymes, with an IC50 = 150 µM against SIRT5 [45].
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In 2015, Huang et al. performed a screening on an NP database, discovering interesting
SIRT5-inhibitory activity for oleanolic acid (18) and echinocystic acid (19) (Figure 6), with
IC50 values of 70 and 40 µM, respectively [46]. Compound 18 is widely distributed in
food (olive oil, garlic, etc.) and plants (Phytolacca americana, Syzygium spp., Rosa woodsi,
etc.), and it exhibits hepatoprotective, antitumor, and antiviral properties. Compound 19
(Figure 6) is a triterpenoid derivative found in several plants, such as Codonopsis lanceolata,
Cucurbita foetidissima, and Eclipta alba, and is known to have anti-inflammatory, antiviral,
and anticancer activities [46].

Guetschow et al. identified several natural SIRT5 inhibitors via a high-throughput
screening of a Prestwick Chemical library, comprising 1280 approved drugs [47]. Eight
of them were selected as promising inhibitors of SIRT5, among which four were natural
compounds: antymicin (20, a commercial piscicide used in catfish production), thyroxine
(21, a thyroid medicine administered in the treatment of goiter and thyroid nodules),
anthralin (22, a topical drug for the treatment of local diseases, such as psoriasis), and
methacycline (23, a derivative of tetracycline used against Gram-positive, Gram-negative,
and L-form bacteria) [47,48]. The IC50 values against SIRT5 were calculated as follows: 20,
IC50 = 90 µM; 21, IC50 = 2.2 µM; 22, IC50 = 0.1 µM; 23, IC50 = 3.6 µM [48]. The structures of
compounds 20–23 are reported in Figure 6.

2.2.2. Synthetic Compounds

Over the years, several research groups have based the design of new SIRT5 inhibitors
on the discovery that this isoform preferentially catalyzes the hydrolysis of succinyl and
malonyl groups, rather than acetyl groups, from lysine residues. Most notably, SIRT5 is
the only SIRT that exhibits this unique preference. Therefore, this characteristic has been
conveniently exploited to develop selective inhibitors of SIRT5 [1].

In 2012, He and co-workers reported for the first time the synthesis of a histone
H3 lysine 9 (H3K9) thiosuccinyl peptide (H3K9Tsu, 24, Figure 7) as a selective SIRT5
inhibitor [49]. They designed the molecule as a mechanism-based inhibitor, potentially
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capable of blocking the deacetylase activity of the enzyme by the formation of a stalled
covalent intermediate. Compound 24 exhibited an IC50 of 5 µM against SIRT5 and was
inactive (IC50 >100 µM) on other isoforms; the selectivity was achieved based on the
inability of other SIRTs to recognize malonyl and succinyl lysine peptides. However, the
compound was not active in whole-cell assays due to its low permeability [49]. Encouraged
by these results, Lin reported the discovery of the first series of thiourea derivatives as
potent inhibitors of SIRT5 [50]. The most interesting compounds, JH-I5-2 alias 25, 26,
and 27, exhibited IC50 values of 0.89, 0.45, and 12 µM, respectively [50]. These peptides
became the starting point for a new class of analogues containing the thiourea moiety. In
this context, Negròn Abril et al. developed cell-permeable SIRT5-selective inhibitors [51].
Among the synthesized derivatives, DK1-04 (28, Figure 7) showed the strongest inhibition,
with an IC50 of 0.34 µM (no SIRT1-3,6 inhibition at 83.3 µM). Because 28 contained a free
carboxylic acid, which could hinder cellular permeability, the function was protected with
either an acetomethoxyl or an ethyl ester, which could be easily hydrolyzed in cells to
release the active form of the compound. The prodrugs were also tested in 2D proliferation
assays on MCF7 and MDA-MB-231 breast cancer cells: DK1-04e (29) showed the strongest
inhibition of cell growth. The researchers also performed in vivo studies using a mouse
model of breast cancer, MMTV-PyMT. The treatment with 29 (50 mg/kg, daily for 3 weeks)
significantly reduced the tumor size and weight. Importantly, 29 did not cause any apparent
toxicity or significant weight loss in mice. These results suggest that SIRT5 inhibitors have
promising potential as innovative treatment options for breast cancer [51].
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Many other research groups investigated thiourea derivatives, albeit with more modest
success. In 2016, Liu and co-workers synthesized peptide 30 (Figure 7) [52], characterized
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by a central Nε-carboxyethyl-thiocarbamoyl-lysine residue. Compound 30 showed an
IC50 of 7.6 ± 1.5 µM against SIRT5 and very weak inhibitory activity against SIRT1/3/6
(IC50 > 1000 µM). Unfortunately, its inhibition of SIRT2 was found to be only around
13-fold weaker than that of SIRT5 (IC50 = 96.4 ± 18.5 µM). The same research group also
synthesized some cyclic derivatives of 30, which are reported in the next section [52].
Recently, Yang et al. prepared a series of 3-thioureidopropanoic acid derivatives mimicking
glutaryl-lysine substrates [53]; among them, 31 (Figure 7) showed promising inhibitory
activity and selectivity for SIRT5 (IC50 = 3.0 µM, SIRT1-3,6 IC50 > 600 µM) [53].

Among a series of compounds bearing the thiourea warhead reported by Rajabi
et al., 32 (Figure 8) exhibited the most potent and selective SIRT5-inhibitory activity
(IC50 = 0.11 µM) [54]. This peptide became the lead compound for a series of optimization
campaigns, carried out by different research groups. In 2022, Rajabi and co-workers investi-
gated isostere and prodrug derivatives of 32, modified at the carboxylic function [55]. In
a BioRxiv preprint, Bolding et al. reported the study of fluorosulfate analogues, with po-
tential activity in vivo [56]. From the same class, Yan and co-workers identified a prodrug,
NRD167 (33, Figure 8), which was able to block the proliferation of the SIRT5-dependent
cell lines SKM-1 and OCI-AML2 (IC50 of 5 and 8 µmol/L, respectively), and to induce >80%
apoptosis (at 5 and 10 µmol/L, respectively) [57]. Zang et al. identified the small peptide
34 (Figure 8), endowed with modest activity on SIRT5 (IC50 = 5 µM) and high selectivity
vs. SIRT1 and 6 [58]. In the same year, He and co-workers discovered weaker activity for
the analogue 35 (Figure 8, IC50 = 92.1 ± 3.5 µM), while studying the mechanism of action
of several pan-SIRT1-3 derivatives bearing an L-2-amino-7-carboxamidoheptanoic acid
(L-ACAH) moiety [59].
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In 2015, Polletta and co-workers investigated the effect of SIRT5 on ammonia detoxi-
fication [60]. Their results showed that ammonia production increases in SIRT5-silenced
and decreases in SIRT5-overexpressing cells. They also obtained the same ammonia in-
crease when using a new specific inhibitor of SIRT5, MC3482 (36, Figure 7). Compound 36
inhibited the desuccinylase activity of SIRT5 (42% inhibition at 50 µM), affecting glutamine
metabolism by interaction with the GLS catalytic domain. Although it was quite selective
and did not inhibit SIRT1/3, it exhibited low in vitro potency [60].

A campaign to design analogues of CPS1, a substrate of SIRT5, was undertaken
by Roessler and co-workers [61]. Among their peptide derivatives, the most promising
was 37 (Figure 8), which showed a Ki value of 4.3 µM against SIRT5 and good results
in the selectivity assays (Ki > 50 µM against SIRT1/2/3) [61]. Moreover, 38 (Figure 8)
exhibited significant inhibition, with a Ki of 38.1 ± 0.63 µM [61]. In a similar effort,
Kalbas et al. developed several compounds related to CPS1, substituted at position 3
of the succinyl moiety; among them, 39 (Figure 8) showed very potent SIRT5 inhibition
(IC50 = 15.4 nM) [62].

Peptide macrocyclization is an efficient approach to confer upon a linear peptide
enhanced metabolic stability and cell permeability. Therefore, the synthesis of cyclic
peptides from linear sequences could be an interesting technique for the development of
innovative SIRT5 inhibitors.

On these premises, Liu et al. synthesized the cyclic derivatives 40 and 41 (Figure 9) of
the linear peptide 30 (Figure 7) [52]. These compounds exhibited comparable inhibitory
potency to that of the parent peptide (40, IC50 = 6.0 ± 3.0 µM; 41, IC50 = 7.5 ± 4.0 µM),
suggesting that the macrocyclic bridging units in 40 and 41 were unable to constrain
the peptide backbone into a bioactive conformation, or interfered with the binding of
the compounds to the SIRT5 active site. Interestingly, the same macrocyclic bridging
units were able to significantly enhance the potency of a similar linear peptide against
SIRT1/2/3/6 [52,63,64].
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Later, Jiang and co-workers prepared several cyclic tripeptides endowed with higher
activity with respect to 40 and 41 [65]. Among them, 42 (Figure 9) exhibited the highest
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activity and selectivity vs. SIRT5 (IC50(SIRT5) = 2.2 ± 0.89 µM; IC50(SIRT1) = 254.2 ± 32.4 µM;
IC50(SIRT2) = 131.3 ± 46.5 µM; IC50(SIRT3) > 450 µM; IC50(SIRT6) > 1000 µM) [65].

Peptide derivatives are usually characterized by low biostability and scarce mem-
brane permeability; therefore, the identification of small molecules is crucial to overcome
these limits.

Liu and co-workers synthesized a library of (E)-2-cyano-N-phenyl-3-(5-phenylfuran-2-
yl)acrylamide derivatives, among which 43 (Figure 10) emerged as the most potent inhibitor
of SIRT5, with an IC50 of 5.59 ± 0.75 µM [66]. Further biochemical studies revealed that 43
likely acts by competing with the succinyl-lysine substrate for the ligand-binding site of
SIRT5. The compound also exhibited promising selectivity for SIRT5 over SIRT2/6 [66].
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Figure 10. Chemical structures of the synthetic derivatives (43–50) with inhibitory activity against SIRT5.

While verifying the cross-reactivity of a series of SIRT inhibitors towards SIRT5,
Suenkel et al. found that GW5074 (44, Figure 10), a known SIRT2 blocker, showed interest-
ing activity against SIRT5 [67]. The effect of 44 on SIRT5 deacetylation was comparable to
that exerted on SIRT2 (more than 40% inhibition at 12.5 µM). However, 44 was also active
against kinases; hence, it was deemed unsuitable for further in vivo studies. Nonetheless,
it remains a promising starting point for the development of specific SIRT5 inhibitors [67].

Suramin (45, Figure 10), a drug approved for the treatment of human sleeping sickness
caused by trypanosomes, was identified by Schuetz A. et al. as an inhibitor of SIRT5,
with an IC50 value of 22 µM [68]. Two crystal structures of SIRT5, one in complex with
ADP-ribose and the other with suramin (45), were reported by the authors. The analysis
of the structures revealed that 45 acts as a linker molecule, resulting in the dimerization
of SIRT5. This finding may lead to the development of a new class of inhibitors that not
only bind specifically to the active site of the enzyme, but also function as linker molecules,
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thus limiting enzyme mobility and accessibility. Unfortunately, the fact that suramin (45)
also targets the NAD+-binding region of SIRT5 makes it non-selective for similar binding
pockets. Indeed, 45 has been reported to inhibit various other NAD+/NADP+-dependent
enzymes, such as the lactate dehydrogenase from Dirofilaria immitis and Onchocerca volvu-
lus, and the glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma brucei. This
highlights that the most efficient strategy to develop selective SIRT inhibitors is to target
the substrate-binding site, and not the NAD+-binding pocket, in order to avoid secondary
effects [68].

Among the compounds identified by Guetschow and co-workers via the high- through-
put screening approach described in the previous section, four synthetic approved drugs
exhibited promising inhibitory activity vs. SIRT5 [47]. Probucol (46), an anti-hyperlipidemic
drug, showed an IC50 of 1.6 µM; fulvestrant (47), an estrogen receptor antagonist used in
hormonal therapy, had an IC50 of 2.6 µM; balsalazide (48), a drug used for the treatment of
inflammatory bowel disease, exhibited an IC50 of 3.9 µM; finally, closantel (49), a veterinary
drug with potent antiparasitic activity, displayed an IC50 of 2.7 µM [47,48]. The chemical
structures of compounds 46–49 are reported in Figure 10. Inspired by this study, Glas
et al. selected balsalazide (48) as the starting point for the development of new synthetic
derivatives [48]. Unfortunately, none of the analogues showed improved inhibitory activity
with respect to the parent compound. In detail, changes to the N-aroyl-β-alanine side chain
disrupted the activity, while the introduction of a truncated salicylic acid moiety minimally
altered the potency. The most interesting derivative was 50 (Figure 10), which showed a
minimal loss of activity, demonstrating that modifications on the salicylic acid portion are
tolerated, to some extent (SIRT5 inhibition = 73% at 50 µM). Interestingly, the biological
assays proved that 48 and its derivatives were selective for SIRT5 over SIRT1/2/3. Unfor-
tunately, 48 cannot be considered as an optimal candidate for the inhibition of SIRT5, due
to its minimal absorption from the gut, poor water solubility, and instability to enzymatic
degradation by the intestinal microflora (reductive cleavage of the azo moiety) [48].

As previously discussed, Schlicker and colleagues performed docking screening on a
library of small molecules [39]. Several potential SIRT ligands were identified, but further
activity tests were conducted only against SIRT2. Docking studies suggested that CSC1 (51),
CSC14 (52), and CSC21 (53) could act as inhibitors of different isoforms of SIRT, including
SIRT5 (Figure 11) [39].

The research group of Maurer and colleagues worked on the identification of small
molecules as SIRT5 inhibitors; the compounds showed good potencies, but very poor
selectivity vs. other SIRT isoforms [69]. In detail, two naphthol derivatives, cambinol
(54) and sirtinol (55), already known for their anti-inflammatory properties [70,71], were
proven to possess non-selective activity against SIRT5 at submicromolar concentrations
(Figure 11) [69]. Moreover, they prepared several potent thiobarbiturate derivatives, which
were also active against SIRT1/2. However, they were shown to be selective over SIRT3,
an isoform that is co-localized with SIRT5. The thiobarbiturate derivative 56 (Figure 11)
exhibited the highest inhibitory activity against SIRT5 (IC50(SIRT1) = 5.3 ± 0.7 µM, IC50(SIRT2)
= 9.7 ± 1.6 µM, SIRT3: 41% inhibition at 50 µM, IC50(SIRT5) = 2.3 ± 0.2 µM) [69]. Other
potent SIRT5 inhibitors lacking the desired selectivity were synthesized by Han et al., based
on the 8-mercapto-3,7-dihydro-1H-purine-2,6-dione scaffold [72]. The structure of one
of the most potent derivatives (57) is reported in Figure 11 (IC50(SIRT1) = 0.12 ± 0.01 µM,
IC50(SIRT2) = 1.19± 0.06 µM, IC50(SIRT3) = 0.54± 0.05 µM, IC50(SIRT5) = 0.39± 0.03, IC50(SIRT6)
= 128.7 ± 16.1 µM) [72].
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Several new 9-substituted norharmane derivatives were studied by Yang and co-
workers as SIRT5 inhibitors; the most active candidate, 58 (Figure 11), showed 35 and
52% inhibition at 30 µM and 100 µM, respectively [73]. This series was subsequently
developed into a library of derivatives characterized by different linker bridges and phenyl
substituents, which exhibited significant activities [74]. During the development of assay
platforms based on fluorogenic substrates to identify SIRT inhibitors, the same group
discovered that TW-37 (59, Figure 11), a Bcl-2 inhibitor, was capable of inhibiting SIRT5 in
the low micromolar range (IC50 = 6 µM) [75].

3. Conclusions

Because SIRTs play essential roles in cell signaling pathways, gene translation, metabolism,
and oxidative stress control, they are involved in several pathological conditions, including
cancer, diabetes, and neurodegenerative and cardiovascular diseases. Specifically, SIRT5
is an attractive enzyme that not only catalyzes deacetylation reactions, but also exhibits
strong demalonylase, desuccinylase, and deglutarylase activities. Consequently, SIRT5 is
considered to be a promising molecular target for the treatment of several human diseases.

To date, the number of SIRT5 inhibitors reported in the literature far exceeds that of
SIRT5 activators. Moreover, several known compounds and drugs have been identified
as SIRT5 modulators by various screening approaches; however, some of them are non-
selective and certain ones are considered pan-SIRT modulators (e.g., compounds 1, 17,
54–56, etc.).

Overall, despite the promising results achieved in SIRT research and the potential of
recent perspectives concerning the role of SIRT5 as a pro-viral factor [76] and as a catalyst
in peptide self-assembly [77], it is necessary to consider the issue of selectivity. This is
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especially crucial because some SIRTs are co-present in the same cellular compartment (for
example, SIRT5 and SIRT3 are both localized in the mitochondrial matrix). Furthermore,
SIRT5 has pleiotropic roles in tumorigenesis, acting as a tumor suppressor or an onco-
gene via post-translational modifications, depending on cell conditions [6,44,78]. Hence,
the balance between its activation and inhibition should be carefully considered in the
development of a SIRT5 modulator.

In conclusion, SIRT5 is an interesting molecular target, and the regulation of its activity
has many potential therapeutic applications for a variety of medical conditions. However,
additional studies are crucial to identify the molecular determinants to achieve a selective
effect, and to verify the feasibility of future pharmaceutical applications.
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