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Abstract: Since artificial intelligence (AI) was introduced into engineering fields, it has made many
breakthroughs. Machine learning (ML) algorithms have been very commonly used in structural
health monitoring (SHM) systems in the last decade. In this study, a vibration-based early stage of
bolt loosening detection and identification technique is proposed using ML algorithms, for a motor
fastened with four bolts (M8 × 1.5) to a stationary support. First, several cases with fastened and
loosened bolts were established, and the motor was operated in three different types of working
condition (800 rpm, 1000 rpm, and 1200 rpm), in order to obtain enough vibration data. Second, for
feature extraction of the dataset, the short-time Fourier transform (STFT) method was performed.
Third, different types of classifier of ML were trained, and a new test dataset was applied to evaluate
the performance of the classifiers. Finally, the classifier with the greatest accuracy was identified. The
test results showed that the capability of the classifier was satisfactory for detecting bolt loosening
and identifying which bolt or bolts started to lose their preload in each working condition. The
identified classifier will be implemented for online monitoring of the early stage of bolt loosening of
a multi-bolt structure in future works.

Keywords: bolt loosening; loosening detection; machine learning; bolt-loosening identification;
vibration; signal processing

1. Introduction

A bolt joint is one of the most important methods for connecting structural compo-
nents in engineering fields and can be assembled and reused. However, one of the main
drawbacks of threaded fasteners is the loosening that occurs under shock or vibration
conditions [1]. The loosening can cause a structure to become damaged seriously, so bolt-
loosening detection and identification before failure of the structure are some of the most
important issues in engineering. Detection and identification of bolt loosening can, not only
keep a structure from experiencing accidents or failure, but also reduce maintenance costs.
Therefore, the detection of bolt loosening in many fields of mechanical, aerospace, and civil
engineering has been an important topic among many researchers in the last decade.

Generally, the detection techniques for bolt loosening can be divided into three groups.
The first is the group of in situ inspection techniques, which include visual inspection
by an experienced inspector or use of mechanical devices such as a torque wrench and
hammer [2]. Despite the advantages of visual inspection by an expert, which is the simplest
and lowest-cost method, it is complicated to detect the early-stages of bolt loosening. In
other words, the visual inspection method is better as a way to detect bolts which are totally
loosened. However, the hammer impact method is more effective to detect early-stage of
bolt loosening than visual inspection, and bolt loosening can be detected easily via the
sound that is made when hitting something with a hammer by an experienced inspector
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or using ML algorithms [3]. Although the group of in situ inspection techniques are quite
simple and low-cost monitoring techniques, they still have challenges [4]. For instance, one
of the main drawbacks of the hummer impact technique is that environmental noise can
reduce the accuracy, and the technique is time consuming in some applications that include
many bolts, such as bridges [2].

The second group includes computer vision-based techniques that detect bolt-loosening
by use of cameras or digital images [5–8]. This group of techniques is unique, with ad-
vantages that can overcome the drawbacks of the in situ inspection techniques such as
environmental noise and being time consuming. Many researchers have contributed to the
development of computer vision-based techniques to detect bolt loosening. For example,
Zang et al. [9] carried out a study on bolt-loosening detection using deep learning for a
multi-bolt connection. Their model solves two problems: (1) a bolt detection with a convolu-
tional neural network (CNN), and (2) a regression problem to predict the amount loosening
of the bolt with a faster region-based convolutional neural network (Faster R-CNN).

Bolt loosening was detected by measuring the rotation angle of a bolt or nut via deep
learning in a study by Zhao et al. [10]. They used a set of images taken with a smartphone
as a dataset for detection of a bolt head and a number that was written on top of the bolt.
The coordinates of the detection boxes of the bolt head and number were used to find the
center points of the boxes, and the rotation angle of the bolt was computed using the center
points. Valuable investigations have been performed by researchers with this technique.
However, there are still some challenging issues. For example, detecting the early stages
of the loosening of a bolted joint is very difficult, and in some real conditions, such as
those in vehicle engines and turbines, fixing a camera to an appropriate place to detect
loosening is complicated. A CNN is also often used as a tool in this technique and has a
high computational cost.

The third group includes sensor-based techniques, which include the vibration-based
method [11,12], acoustoelastic effect-based method [13,14], piezoelectric sensor-based meth-
ods [15,16], and impedance-based method [17,18]. Sensor-based techniques have some
unique advantages that can overcome the drawbacks of in situ inspection and computer
vision-based techniques such as environmental noise impact, being time consuming, as
well as the detection of early-stage bolt loosening. However, sensor-based techniques
require fixed sensors and a high-cost system, while the accuracy of the techniques is signifi-
cantly greater than that of the other techniques that have been described above, and they
are reliable [2]. Computer vision-based techniques for bolt loosening detection of multi-
bolt connections have been proposed by several researchers, while a few studies based
on vibration-based methods, with use of ML algorithms, for early stage bolt loosening
detection and identification have been carried out [19].

Therefore, one of the most popular sensor-based techniques, a vibration-based method,
was chosen in this study. This paper proposes the classification and identification of early
stages of bolt loosening in a multi-bolt structure using ML classifiers. The application
is an AC Motor. For this, 16 cases (healthy and unhealthy conditions) were established,
and vibration data were gathered in three operating conditions of the motor (800 rpm,
1000 rpm, and 1200 rpm). A short-time Fourier transformation was conducted to obtain
features of the row vibration data. Finally, ML classifiers were evaluated to determine the
best classifier, and the classifier that had the greatest accuracy was identified.

The results prove that the determined classifier can detect, not only the early-stages of
loosening, but can also identify which bolt or bolts have started to loosen. The theoretical
background of signal processing, feature extraction of vibration data for ML classifiers, and
ML algorithms are described in Section 2. Section 3 explains the experimental setup in
detail. The results and contributions of the study are discussed in Section 4. The conclusions
are presented in Section 5.
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2. Theoretical Background and Signal Processing

A flowchart of the method proposed in this study is shown in Figure 1. Initially,
data acquisition is performed on a motor that has four M8 bolts. Then, short-time Fourier
transform (STFT) is applied to extract features of the acquired vibration data. Following
this, the extracted dataset is divided into a training dataset for training a model of classifiers
and a test dataset for evaluating the accuracy of the models. Finally, ML classifiers are
evaluated to determine the best classifier, and the classifier that has the best performance
is identified.
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2.1. Feature Extraction (STFT)

Feature extraction can play a key role in obtaining a reliable result in the ML field.
Feature extraction of a row vibration signal can be done in several ways. For example, the
fast Fourier transform (FFT) method computes the discrete Fourier transform (DFT) of a
data sequence. Fourier analysis transforms a signal from its original domain (typically
time or space) to a frequency domain representation, or conversely [20]. Chen et al. [21]
used a FFT method in their study for identification and classification of a gearbox fault.
S. Ma et al. [22] also used FFT in their study for fault diagnosis of a rotor and bearing.
However, performing the FFT on a time-domain signal can give the overall frequency
components for the entire time-domain signal. Therefore, it cannot provide information
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about how the frequency is changing over time. To understand, for example, where the
high and low pitches are in a vibration signal, the STFT can be applied. It can give a
FFT that changes with time. This is not readily apparent from only applying the FFT
to the entire time-domain signal, as this gives one set of components that are not time
dependent [23,24]. Hence, the STFT method is commonly used in feature extraction of a
vibration signal [25–27]. A time-domain signal is converted into a time-frequency-domain
signal in the STFT method. It splits up the long time-domain signal into several segments
by use of the same size of window function, and FFT coefficients are calculated for the
segments. The calculated values, corresponding to the segments, are stored as a matrix.
One of the advantages of STFT is that the output of the STFT can be directly used for the
training of classifiers. The number of windows are used as training examples, and FFT
coefficients for a window are used as features. Therefore, STFT is used for feature extraction
of vibration data in this study.

The mathematical function of STFT can be expressed as:

STFT(τ, w) =

∞∫
−∞

s(t)w(t − τ)e−jωtdt (1)

where s(t) is the original vibration signal, w(t) is a windowing function, t is time, and τ is
time index. There are several windowing functions for STFT, such as rectangular, triangular,
Hamm, Kaiser, Blackman, Gaussian, and Hann functions. The Hann windowing function
is usually a good choice and is frequently employed with random data because, when
compared to the impacts of other windows, it has a moderate impact on the frequency
resolution and amplitude accuracy of the resulting frequency spectrum [28]. Therefore, the
Hann windowing function was used in this study and can be expressed as follows:

h(t) =
{

0.5
[
1 − cos

( 2πn
M−1

)]
, 0 ≤ n ≤ M − 1

0, otherwise
(2)

where n is time index and M is the number of samples.
STFT is performed for the vibration signal using the librosa open-source library in

Python. The output is an nn_ f f t × ms matrix, which contains complex numbers, and
absolute values of the output are used. Here, n_ f f t is the number of FFT coefficients
for each window (n_ f f t = 1024), and ms is the number of windows. nn_ f f t is calculated
as follows:

nn_ f f t =
n_ f f t

2
+ 1 (3)

The hop size is 512. After feature extraction, the data were divided into 80% training
data for training the model of classifiers and 20% test data for evaluating the models. Each
experiment was carried out 20 times, and average values were used for the analysis.

2.2. Machine Learning

Since humans evolved, numerous types of tools have been used to fulfill different
kinds of task in the easiest way. Different machines have been invented by humans for
various tasks in human life, such as industry, computing, and so on. ML is one of them.

ML algorithms are implemented to teach machines how to handle data more fruitfully.
Sometimes, by looking at the data, it is difficult to interpret the information. ML can help
in this case. ML algorithms learn key features and the pattern of data, and based on this,
they predict a new value. ML can be divided into several groups, such as supervised
learning, unsupervised learning, semi-supervised learning, reinforcement learning, multi-
task learning, ensemble learning, neural networks, and instance-based learning [29]. This
study belongs to supervised learning. Some popular ML classifiers used in this study are
briefly described below.
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The Decision Tree Algorithm is part of the supervised machine learning family of
algorithms. It is applicable to both classification and regression problems. The purpose
of this algorithm is to develop a model that predicts the value of a target variable, and
the decision tree solves the problem by using the tree representation, where the leaf node
corresponds to a class label and characteristics are represented on the internal node of
the tree [29]. The Support Vector Machine (SVM) is a part of the supervised machine
learning models with accompanying learning algorithms that examine the data used for
classification and regression analysis. SVM can perform non-linear classification, as well as
linear classification, by implicitly mapping inputs into high-dimensional feature spaces,
which is known as the kernel trick. Basically, this is used to draw lines between classes.
The margins are drawn so that the space between the margin and the classes is as small as
possible, reducing the classification error [30]. The K-Nearest Neighbor (KNN) algorithm is
a simple supervised machine learning technique that can be used to handle classification
and regression problems. It is simple to set up and comprehend, but it has the problem
of being noticeably slower, as the amount of data in use grows [30]. The Random Forest
algorithm is an assembled approach that generates trees using a CART (classification and
regression trees) methodology to a maximum size and without pruning [31]. Bagging
or Bootstrap aggregating is used when the accuracy and stability of a machine learning
algorithm need to be improved. It can be used for both classification and regression.
Bagging also reduces variation and aids in the management of overfitting of a decision
tree [30]. XGBoost is a scalable machine learning system for tree boosting that was proposed
by Chen and Guestrin in 2016 [32]. XGBoost is a well-known machine learning method
that consistently outperforms other machine learning algorithms. Indeed, it has evolved
into the ‘state-of-the-art’ machine learning technique for dealing with structured data since
its debut. [33]. The Linear Discriminant Analysis (LDA) algorithm is a frequently used
classification technique. The LDA method works by calculating the variance values within
and between classes [34].

3. Experimental Setup

This study proposes a vibration-based method of early-stage bolt loosening detection
and identification combined with an ML classifier for a multi-bolt structure. The exper-
imental setup is shown in Figure 2a. The application in this study is an AC Motor, and
the specification of the motor is highlighted in Table 1. The motor was fastened with four
M8 × 1.5 steel bolts (property class 8.8). The position of the bolts is shown in Figure 2b.
According to the property class of the bolt, the maximum torque load for the M8 × 1.5
bolt is 27.5 N·m. Therefore, a 25 N·m torque load was considered a tightened (healthy)
condition, and the torque of 19 N·m was used as a loosened (unhealthy) condition. When
the decrement of a torque load is less than 6 N·m (for example, 4 or 5 N·m), ML classifiers
cannot detect bolt loosening; therefore, a 6 N·m torque load decrement was considered the
beginning of the early stages of bolt loosening in this investigation.

The motor was fastened by four bolts with 25 N·m torque values that were applied
with a torque wrench (Manufacturer: Tohnichi, Model: 450QL3 accuracy: ±3%, Figure 2c),
and the motor was operated at a speed of 800 rpm using a motor driver. For generating
vibration in the structure, an unbalanced mass (0.25 kg) was fixed to the rotor of the motor.
Following this, two accelerometer sensors (Manufacturer: Brüel & Kjær, DK-2830 Virum,
Denmark. Type: 4507B004) acquired the vibration signal of the structure for around 30 s and
saved the signal on a laptop using an NI cDAQ-9174. The sampling rate of the acquisition
system was fixed at 10,000 per second in the experiment, and LabVIEW software was used
for recording the data.

Two one-axis accelerometers were used to determine the difference in prediction and
detection of the early stages of bolt loosening of the multi-bolt connection system. For the
first accelerometer, the axes of the sensor were mounted parallel to the axes of the rotor on
the top of the motor, while the second sensor was attached to the back side of the motor,
and the axes of the sensor were perpendicular to the axes of the rotor, as shown in Figure 2b.
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According to supervised learning, the various cases listed in Table 2 were established, and
the experiment was performed for all cases, in order to collect enough vibration signals for
early stage bolt-loosening detection. In addition, to improve the reliability of the proposed
method, vibration signals were also acquired for motor speeds of 1000 rpm and 1200 rpm.
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Table 1. The specification of AC Servo Motor.

Iteam Specifications

Name HIGEN AC Servo Motor
Type FMATN20-AB00

Capacity 1.8 kW
Torque 11.5 N·m

Max. Speed 1500 rpm
Serial No. 02003001 (ID:74)
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Table 2. Established necessary cases for bolt-loosening detection and identification.

Case No. Bolt 1 Bolt 2 Bolt 3 Bolt 4

#1 • • • •
#2 # • • •
#3 • # • •
#4 • • # #
#5 • • • #
#6 # # • •
#7 • # # •
#8 • • # #
#9 # • # •
#10 # • • #
#11 • # • #
#12 # # # #
#13 • # # #
#14 # • # #
#15 # # • #
#16 # # # •

• is tightened and # is loosened.

4. Results and Discussion

As mentioned above, the main goal of this study was to detect the early stages of bolt
loosening of the motor and to find the best ML classification algorithm for future work on
online monitoring of the motor. Therefore, the various classification algorithms listed in
Table 3 were tested in the Python programming language with use of the sklearn package.
Figure 3 shows the similarity of the row vibration signal between all cases. The figure shows
a row of vibration signals measured by acceleration sensor 2 when the motor operating
condition was 800 rpm. All signals were plotted during the timeframe of 30 s. From the
figure, it is too complicated to identify or classify which bolt is loosened or not for a human
or even an experienced worker. In order to identify key features of the vibration data, STFT
was performed, and spectrogram of STFT results are shown in Figure 4. The Y-axis of the
spectrogram describes 513 FFT coefficients (features), which came from function (3), and
the number of segments (windows) lays on the X-axis. However, classification of the data,
such as finding which spectrogram belongs to which case is still complex, even for experts.
However, ML classification algorithms can help to overcome this issue.

Table 3. List of classifiers for bolt-loosening detection.

Number Classifiers

1 Random Forest
2 Bagged Trees
3 Decision Tree
4 KNeighbor
5 Linear Discriminant Analysis
6 Support Vector Machine
7 XGBoost

As already introduced, in order to verify the effect of the accelerometer sensors’
position on the accuracy of the ML classifiers for identification and classification of the early
stage of bolt loosening in a multi-bolt connection structure, two sensors were used. Figure 5
shows the accuracy of the ML classifiers, which were used for all features (513 features) for
both sensors. All classifiers had a greater accuracy for sensor 2 than sensor 1, except for
the SVM classifier. According to the graph, the position of the sensor significantly affected
to the accuracy of the classifiers, and the position of sensor 2 was considered the better
place for identification and classification of loosening of the multi-bolt connected structure.
Therefore, the rest of the results that will be discussed below are for the acceleration signal
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acquired by sensor 2. It should be noted here that the random forest (RF), bugged trees
(BT), and XGBoost classifiers showed an accuracy greater than 90 percent, while the rest of
the classifiers performed with lower accuracy.
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The training times of the classifiers are shown in Figure 6. According to the figure,
KNeighbors (KNN) and linear discriminant analysis (LDA) classifiers required the least
time for training, which is suitable for online monitoring conditions, but their accuracy
was not satisfactory. The RF, BT, and XGBoost classifiers spent too much time for training,
despite having the best accuracy. Hence, it was necessary to reduce the training time of the
classifiers, while maintaining the accuracy.
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To tackle this issue, feature reduction for the dataset was conducted. If the initial
spectrogram of STFT results of the vibration signal was zoomed out, the key features of all
the data were located between 0 and 5 Hz frequency, as shown in Figure 7. Therefore, the
frequencies between 0 and 5 Hz were selected as features. Following that, the classifiers
were implemented, but the accuracy of the classifiers decreased significantly. Therefore,
the frequency was increased by 5 Hz, and the classifiers were tested. This condition was
repeated until satisfactory results were obtained. Consequently, when the frequency was
between 0 and 25 Hz, the classifiers had the best accuracy. Following that, in order to
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represent the differences between all cases more clearly, the spectrograms were plotted for
the very beginning window (segment) of all cases.
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Once the feature extraction was performed, all ML classifiers were tested, and the
accuracy of the classifiers with 25 features is highlighted in Figure 8. It should be mentioned
here that there was a slight increase of around 1.5% in the accuracy of the RF classifier
(95.8%), while a slight decrease of approximately 1.5% was observed in the XGBoost
classifier accuracy (96.1%). Significant growth was observed in the accuracy of DT and
KNN, while there was a dramatic downward trend for LDA and SVM. However, after
feature extraction, the BT classifier maintained a stable accuracy (about 92.2%).
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Figure 8. Accuracy of classifiers with 25 features (sensor 2).

Figure 9 shows the training time of the ML classifiers when the features of the data
were reduced from 513 features to 25 features. From the graph, it is clear that there
was a large reduction in the training times of the classifiers after feature reduction. As
mentioned before, RF and XGboost classifiers had the highest accuracy, of approximately
96%, and their training times were around 16 and 54 s, respectively. According to the
results, the RF classifier was selected, with an accuracy around 95.8% and training time of
about 16 s, for a future study on the online monitoring of the early stage of loosening of a
multi-bolt structure.
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The accuracy of a classification is a synthetic variable that can only be used to assess
the algorithm’s overall performance, without highlighting any serious concerns about data
classification. A confusion matrix can be used to analyze these concerns. A confusion
matrix is also known as an error matrix, and it is a representation of statistical classification
accuracy. True labels are presented in each row of the confusion matrix, while predicted
labels are presented in each column [35].

Figure 10 shows the confusion matrix of the RF classifier that was selected as the
classifier for a future study. The graph shows detailed information about which labels were
predicted correctly and which labels failed in the prediction. In general, case 15 was the
hardest label to detect, with 87.1% success, while the simplest case to classify was case 1,
with about 98.3% success. Case 5, case 10, and case 16 were also relatively hard to classify
for the classifier, with success just above 90%, compared to the rest of the cases.
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Figure 10. Confusion matrix of RF classifier.

5. Conclusions

In this paper, early stage bolt-loosening detection using ML classifiers for a multi-bolt
structure was proposed using a vibration-based method. Then, with the help of STFT,
feature extraction was performed on a row of a vibration dataset. Following this, several
ML classifiers were trained and evaluated with use of the extracted dataset, to identify the
best classifiers for bolt loosening detection on multi-bolt structures.

To reduce computation costs for online monitoring conditions, feature reduction was
carried out. The frequencies between 0 and 25 Hz were selected as a feature to obtain a
satisfactory accuracy for the ML classifiers. The experimental results showed that the sensor
position can affect the accuracy of classifiers for early stage bolt-loosening detection of a
multi-bolt structure. From the test results, the RF classifier was selected, with an accuracy
around 95.8% and training time of about 16 s, for a future study of online monitoring of
loosening of a multi-bolt structure. In addition, the results of the experiments showed that
it is not only possible to detect bolt loosening, but also to identify which bolt or bolts start
to lose their preload.

This investigation will be broadened by conducting optimization of the sensor position
to find the best place for early stage bolt loosening detection and to further develop a RF
model to increase the accuracy. The investigation will be applied to online monitoring of a
motor in a real condition.
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