
R E S E A R CH AR T I C L E

GGAssembler: Precise and economical design and synthesis
of combinatorial mutation libraries

Shlomo Yakir Hoch | Ravit Netzer | Jonathan Yaacov Weinstein |

Lucas Krauss | Karen Hakeny | Sarel Jacob Fleishman

Department of Biomolecular Sciences,
Weizmann Institute of Science,
Rehovot, Israel

Correspondence
Shlomo Yakir Hoch and Sarel Jacob
Fleishman, Department of Biomolecular
Sciences, Weizmann Institute of Science,
Rehovot 7600001, Israel.
Email: hochshi@gmail.com and sarel@
weizmann.ac.il

Present addresses
Ravit Netzer and Jonathan
Yaacov Weinstein, Scala Biodesign LTD,
50 Dizengoff, Tel Aviv, 6433222, Israel.

Funding information
Dr. Barry Sherman Institute for Medicinal
Chemistry; Donation in memory of Sam
Switzer; Israel Science Foundation (1844);
European Research Council through a
Consolidator Award (815379);
Volkswagen Foundation (94747)

Review Editor: Nir Ben-Tal

Abstract

Golden Gate assembly (GGA) can seamlessly generate full-length genes from

DNA fragments. In principle, GGA could be used to design combinatorial

mutation libraries for protein engineering, but creating accurate, complex, and

cost-effective libraries has been challenging. We present GGAssembler, a

graph-theoretical method for economical design of DNA fragments that assem-

ble a combinatorial library that encodes any desired diversity. We used GGAs-

sembler for one-pot in vitro assembly of camelid antibody libraries comprising

>105 variants with DNA costs <0.007$ per variant and dropping significantly

with increased library complexity. >93% of the desired variants were present

in the assembly product and >99% were represented within the expected order

of magnitude as verified by deep sequencing. The GGAssembler workflow is,

therefore, an accurate approach for generating complex variant libraries that

may drastically reduce costs and accelerate discovery and optimization of anti-

bodies, enzymes and other proteins. The workflow is accessible through a

Google Colab notebook at https://github.com/Fleishman-Lab/GGAssembler.

KEYWORD S

biotechnology, combinatorial mutation libraries, DNA library synthesis, Golden Gate
assembly

1 | INTRODUCTION

Over the past decade, high-throughput screening of pro-
tein variant libraries and deep sequencing have revolu-
tionized protein characterization, engineering, and
design (Fowler et al., 2010; Markel et al., 2020; W�ojcik
et al., 2015). Common library-synthesis approaches intro-
duce random or systematic single-point mutations
(Alejaldre et al., 2021). However, significant gains in pro-
tein activity and stability often require multiple simulta-
neous mutations (Goldenzweig et al., 2016; Khersonsky

et al., 2018; Listov et al., 2024; Whitehead et al., 2012),
calling for gene-synthesis approaches that introduce com-
binatorial mutations. Such multipoint combinatorial
libraries can be designed based on previous experimental
screens (Fowler et al., 2010; Whitehead et al., 2012;
Whitehead et al., 2013) and increasingly based on compu-
tational design calculations (Guntas et al., 2010; R. Lipsh-
Sokolik et al., 2023; Listov et al., 2024; Treynor et al.,
2007; Weinstein et al., 2023). However, synthesizing com-
binatorial libraries accurately and economically is chal-
lenging due to the large size of a typical binding or

Received: 6 March 2024 Revised: 21 August 2024 Accepted: 26 August 2024

DOI: 10.1002/pro.5169

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2024 The Author(s). Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.

Protein Science. 2024;33:e5169. wileyonlinelibrary.com/journal/pro 1 of 12

https://doi.org/10.1002/pro.5169

https://orcid.org/0000-0003-3991-1533
https://orcid.org/0000-0003-3177-7560
mailto:hochshi@gmail.com
mailto:sarel@weizmann.ac.il
mailto:sarel@weizmann.ac.il
https://github.com/Fleishman-Lab/GGAssembler/blob/master/example/colab_oligos_design.ipynb
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/pro
https://doi.org/10.1002/pro.5169

enzyme active site and the distribution of active-site posi-
tions across multiple noncontiguous epitopes. An illustra-
tion of the potential complexity of effective variant
libraries is provided by our recent computational active-
site library design studies from which thousands of
diverse and functional variants were isolated in a single
experiment (R. Lipsh-Sokolik et al., 2023; Weinstein
et al., 2023). In these studies, atomistic design calcula-
tions defined the desired diversity across dozens of posi-
tions, including, in one case, through combinatorial
insertions and deletions at an enzyme active site
(R. Lipsh-Sokolik et al., 2023). To synthesize such com-
plex yet completely defined variant libraries, we consid-
ered different cloning strategies that would be general
and economical, enable a high level of control over the
location and identity of mutations and the ratio of muta-
tions to the wild-type parental identities, and exhibit low
representation bias among the variants.

Given these demands, we focused on Golden Gate
Assembly (GGA) (Engler et al., 2008; Engler et al., 2009).
GGA employs Type IIs restriction enzymes, such as BsaI,
that cleave outside their DNA recognition sequence.
After processing by the Type IIs restriction enzyme, the
recognition site is eliminated, leaving terminal overhangs
that can be programmed to encode immutable (nondiver-
sified) amino acid positions that link subsequent gene
fragments. Ligation of the processed fragments then
seamlessly combines them into full-length genes (Engler
et al., 2008; Engler et al., 2009). In principle, GGA
enables scarless gene construction of any size from
small fragments (Andreou & Nakayama, 2018;
Püllmann et al., 2019; Sarrion-Perdigones et al., 2011,
2013; Vazquez-Vilar et al., 2017; Weber et al., 2011).
High-fidelity GGA, however, is governed by several fac-
tors that limit the number and identity of overhangs:
the nonspecific (star) activity of the restriction enzyme
(Mayer, 1978), the sensitivity of the DNA ligase to mis-
matches (Lohman et al., 2016), and the relative propen-
sity of DNA overhangs to anneal under different
reaction conditions. These limitations forced previous
GGA applications to use iterative DNA assembly
methods with a restricted set of overhangs (Andreou &
Nakayama, 2018; Püllmann et al., 2019; Sarrion-
Perdigones et al., 2011, 2013; Vazquez-Vilar et al., 2017;
Weber et al., 2011). As a step to address these limita-
tions, recent studies have examined the results of GGA
under different experimental conditions and expanded
the set of allowed overhangs (Potapov, Ong, Kucera,
et al., 2018; Potapov, Ong, Langhorst, et al., 2018; Pryor
et al., 2020). In principle, these developments allow the
assembly of dozens of fragments for combinatorial gene
synthesis (Potapov, Ong, Kucera, et al., 2018; Pryor
et al., 2020). Despite much progress (Daffern et al., 2023;

Kirby et al., 2021; Pryor et al., 2020; Püllmann
et al., 2019), however, methods for economical and
accurate construction of variant libraries from dozens of
fragments have not yet been demonstrated.

We present a new method, called GGAssembler, for
the economical design of DNA fragments that assemble
into a gene library which encodes any specified diversity
with minimal representation bias. We recently used
GGAssembler to synthesize two complex libraries both
encoding millions of combinatorial mutants at 14
positions in the green fluorescent protein (GFP)
chromophore-binding pocket with a total DNA cost of
$455, translating to 4.2 x 10�3 ¢ per variant (Weinstein
et al., 2023). We now demonstrate that this approach
can accurately, efficiently, and economically encode
complex multipoint mutation libraries of camelid
single-domain (vHH) antibodies comprising hundreds
of thousands of variants. GGAssembler can be applied,
in principle, to genes of all sizes, but the relatively
small size of the vHH gene allows us to rigorously
demonstrate completeness, high accuracy, and low rep-
resentation bias in the final assembly product. GGAs-
sembler is freely available at https://github.com/
Fleishman-Lab/GGAssembler and can be accessed
through an online notebook at https://github.com/
Fleishman-Lab/GGAssembler/blob/master/example/colab_
oligos_design.ipynb.

2 | RESULTS

2.1 | A general method to design
combinatorial diversity

We developed GGAssembler to provide an economical
approach to combinatorial library assembly while allow-
ing nearly complete freedom to decide the mutation
types, positions, and library size. Critically, GGAssembler
guarantees a lower bound on the fidelity of the GGA
reaction. To estimate the probability that a given set of
overhangs assembles with high fidelity and accuracy, we
leverage empirically derived overhang ligation fidelity
(Equation 1) and efficiency (Equation 2) estimates
(Potapov, Ong, Kucera, et al., 2018; Potapov, Ong,
Langhorst, et al., 2018; Pryor et al., 2020). The cost associ-
ated with each DNA fragment is the number of nucleo-
tides required to produce all the diversity encoded in that
fragment. For example, the cost associated with a
20 nucleotides DNA fragment that encodes a single
mutated amino acid position that requires two codons
would be 40 nucleotides (the length of the fragment
times the encoded variability). Adding an extra codon at
the mutated position would increase the cost to 60 nt,

2 of 12 HOCH ET AL.

https://github.com/Fleishman-Lab/GGAssembler
https://github.com/Fleishman-Lab/GGAssembler
https://github.com/Fleishman-Lab/GGAssembler/blob/master/example/colab_oligos_design.ipynb
https://github.com/Fleishman-Lab/GGAssembler/blob/master/example/colab_oligos_design.ipynb
https://github.com/Fleishman-Lab/GGAssembler/blob/master/example/colab_oligos_design.ipynb

whereas adding another mutated position would multiply
the cost by the number of codons in that position. GGAs-
sembler uses degenerate codons to encode as much
desired diversity as possible at a minimal DNA cost while
completely excluding undesired amino acid identities
and stop codons.

The GGAssembler workflow comprises three steps as
schematically represented in Figures 1 and 2 and
Figure S1. We start by defining the amino acids that
encode the desired diversity with an optional codon-
compression step that uses degenerate codons (Methods).
This step excludes all unspecified amino acids and stop
codons. In the next step, we employ a graph-theoretical
cost-optimization algorithm to compute alternative solu-
tions that vary in cost and number of overhangs. To
accomplish this, we build a graph in which nodes repre-
sent restriction enzyme cleavage sites, and edges connect
all pairs of sites that a single DNA oligo can traverse. To
construct this graph, we start with a user-defined DNA
sequence of the target gene before amino acid diversifica-
tion, a list of desired amino acid mutations, the Type IIs
restriction enzyme, the minimum required level of liga-
tion efficiency, and criteria that define acceptable DNA
fragments, such as minimal and maximal oligo lengths.
We then search for potential cleavage sites given the size
of the overhang generated by the restriction enzyme. To
serve as a cleavage site, the DNA region encompassing
the nucleotide and the overhang generated by the restric-
tion enzyme must be immutable (it cannot encode
diversity), and the overhang must exhibit at least the
desired ligation efficiency according to empirical mea-
surements (Potapov, Ong, Kucera, et al., 2018; Potapov,

Ong, Langhorst, et al., 2018; Pryor et al., 2020). We add
sites that fulfill these requirements as nodes to the graph
with their associated overhangs. An edge connects each
pair of nodes if the two overhangs do not ligate to one
another. We assign each edge a weight based on the
number of nucleotides (proportional to the cost) required
to generate the variability in the DNA fragment it
represents.

A critical confounding factor in combinatorial assem-
bly of multiple fragments that is not addressed by the
scheme above is that nonadjacent overhangs might inad-
vertently exhibit high ligation efficiency resulting in
undesired assembly products (see Figure 3 for examples).
Some misassembled products may be shorter than the
desired one and would therefore be preferentially ampli-
fied in downstream polymerase chain reactions (PCRs).
Furthermore, some cases may result in loops of misas-
sembled concatemers. To ensure strict assembly only of
the desired product, we must ensure fidelity above the
user-defined threshold. Providing the most economical
solution while maintaining fidelity above the provided
threshold is formally known as the constrained shortest-
path problem, a recognized nonpolynomial (NP)-hard
problem (Lozano & Medaglia, 2013). To overcome the
hardness barrier we employ randomized color-coding
(Alon et al., 1995) in which nodes that represent over-
hangs that are predicted to ligate at high efficiency are
colored identically. We then apply a vertex rainbow
shortest-path algorithm that ensures that valid paths
include each color at most once, resulting in vertex rain-
bow paths (Figure 3). Selecting rainbow shortest-path
solutions guarantees the assembly of an economical

ALA

LYS

GLN

SER

ILE

LEU

PRO

THR

VAL

GLU

PHE

TRP

TYR

MA A TT GGT TTG

M

M

C AK TTT

A T G

C G

5ʹ 3ʹ

M

M

A AM

C AK

TT GGT

TTT

A T G

TT

C G

G

5ʹ 3ʹ

Step II (optional): Compress
codons

Step III: Search for the location
of Golden Gate overhangs and
segment the gene into
Constant and Variable
segments

Constant Variable Constant Variable Constant Variable Constant

DNA codes
M: C & A
K: T & G

FIGURE 1 Key steps in the GGAssembler computational workflow. Step I: Provide wild-type DNA sequence and the required diversity

in each position. Optional Step II: Apply codon compression for the required diversity in each position. Step III: Apply a shortest-path and

rainbow shortest-path search to find an economical segmentation of the DNA that maintains GGA reaction fidelity above a given threshold.

HOCH ET AL. 3 of 12

M

K

M A A

C A

TT

RERE

GGT

TTT

A T G

RERE

M

TT

C G

G

RE RE

Step IV: Variable Oligo synthesis

RE

RE

RE

RE

RE

RE

Step VI: Constant Primer design

GGT

TTT

A T G

RERE

M

TT

C G

G

RE RE

RE

M

K

M A A

C A

TT

RERE

universal primer

RERE

RERE

RE RE

Variable Fragments

Template
Gene

RE

RE

RE

RE

RE

RE

Primers

RE

RE RE

RE RE

RE

Constant Fragments

Step VIII: Golden Gate assembly of
fragments

Assembled Library

FIGURE 2 Key steps in the GGAssembler experimental workflow. Step IV: Order the variable segments as single-stranded DNA

(ssDNA). Step V: Amplify variable segments ssDNA to generate double-stranded DNA. Step VI: Manually design and order primers for

constant segments based on the output EMBL sequence file. Step VII: Amplify and purify constant segments from the input gene template.

Step VIII: Execute GGA following one of several established protocols (Potapov, Ong, Langhorst, et al., 2018; Pryor et al., 2020, 2022;

Sikkema et al., 2023).

4 of 12 HOCH ET AL.

solution that excludes undesired products; however, this
solution may not be the global optimum in terms of cost.

GGAssembler segments the target gene sequence into
variable fragments that encode diversity and constant
ones devoid of diversity. The algorithm generates an out-
put table that specifies the variable fragments and the
sequences of the constant fragments that can be custom-
synthesized or amplified from a preexisting gene.

2.2 | Lab protocol for synthesizing a
GGAssembler library

We next introduce a streamlined wet-lab protocol
(Figure 2) for assembling a library generated by
GGAssembler (Hoch et al., 2023). To maintain cost-

effectiveness, we amplify constant fragments with
primers flanked by the appropriate restriction-enzyme
recognition site and all variable DNA oligos with a single
30 primer, to allow filling the reverse strand by a polymer-
ase. By adjusting the concentration of each DNA frag-
ment in the assembly reaction the user can bias the
resulting library toward or away from specific variants or
mutations providing high operational freedom.

2.3 | Accurate assembly of vHH
combinatorial libraries

We verify the accuracy of GGAssembler by constructing
two complex camelid antibody (vHH) libraries, each
comprising nine DNA segments. Unlike GFP, vHHs are

FIGURE 3 Graph coloring in GGAssembler eliminates undesired assemblies. A subset of the path common to all shortest paths in a

previously designed GFP library that encodes >107 active-site variants (Weinstein et al., 2023). (Top) Nodes marked by cleavage-site location

and overhang are colored identically if the overhangs ligate. Two nodes with the same overhang (CAAG, positions 317 and 494) are marked

yellow, and nodes that are not Watson–Crick pairs but are predicted to exhibit high-efficiency ligation (Potapov, Ong, Kucera, et al., 2018;

Potapov, Ong, Langhorst, et al., 2018; Pryor et al., 2020) are in purple. All shortest-path solutions would result in misassembled products. In

this case, segments 1 and 4 are complementary as are 2 and 5, leading to specific undesired products shown in the figure. In addition, the

end of segment 3 can ligate to the beginning of segment 2 leading to an infinite number of different undesired products (not shown).

(Bottom) A rainbow shortest-path search excludes undesired solutions, forcing the search to find alternative paths that do not misassemble.

HOCH ET AL. 5 of 12

small (<130 amino acids), allowing us to analyze the
accuracy and representation bias of the library through
deep sequencing.

Using the htFuncLib protein design approach that
generated the GFP libraries (Weinstein et al., 2023), we
designed two camelid antibody (vHH) libraries, vHH1
and vHH2, that encoded diversity in the three
complementarity-determining regions (CDRs) of each
antibody. Briefly, htFuncLib uses the FuncLib design
method (Khersonsky et al., 2018) and a machine-learning
method called EpiNNet (R. Lipsh-Sokolik et al., 2023) to
select mutations that are predicted to combine freely
to generate low-energy multipoint mutation libraries.
This approach circumvents experimental mutation scan-
ning and nominates mutations for combinatorial variant
libraries that are predicted to be tolerated both individu-
ally and in combination with one another, thus addres-
sing the problem that many combinatorial mutations in
protein active sites exhibit negative epistasis (Rosalie
Lipsh-Sokolik & Fleishman, 2024). We demonstrated that
such designed variant libraries are enriched in stable,
well-folded, and potentially functional protein variants
that exhibited vast changes in their functional profile
(R. Lipsh-Sokolik et al., 2023; Weinstein et al., 2023).
Applied to the vHHs, htFuncLib results in 55,296 and
233,280 designs, in 11 and 13 positions across the three
CDRs for vHH1 and vHH2, respectively. Following

protein design calculations, we applied GGAssembler,
including codon compression.

We transformed the libraries into bacterial cells and
sequenced 12 and 14 colonies for vHH1 and vHH2,
respectively. 75% and 93% of the resulting sequences were
in frame and matched desired designs for vHH1 and
vHH2, respectively, on par with the current state of the
art (Choi et al., 2022; Daffern et al., 2023). In both errors
observed in vHH1, a pair of overhangs misligated, result-
ing in a short product (Table S1). Retrospectively, the
overhangs used to generate vHH1 were designed based
on data from an early study on fidelity in GGA (Potapov,
Ong, Kucera, et al., 2018), but a subsequent study
(Potapov, Ong, Langhorst, et al., 2018) showed that the
selected overhangs exhibit low ligation fidelity (60%)
matching the fidelity we observed in Sanger sequencing
(Figure 4a). Using the updated fidelity data (Potapov,
Ong, Langhorst, et al., 2018; Pryor et al., 2020) in GGAs-
sembler, the overhangs in vHH1 would not have been
selected.

Next, we subjected the assembled libraries (before
transforming into bacteria so as not to introduce biologi-
cal bias) to deep sequencing analysis. To assess biases in
the library we started with stringent quality control, dis-
carding any read that was not completely identical to a
desired variant in any part of the variable segments (mis-
matches and deletions were allowed in the constant

FIGURE 4 Sequencing read classification. (a, b) Reads were classified based on their alignment to each of the fragments. We classified

reads containing both flanking constant segments based on the type of error we found “incorrect assembly,” “correct assembly,” and
“unknown error.” We have omitted class fractions below 1%.

6 of 12 HOCH ET AL.

segments). 96% and 93% of designed variants were
uniquely identified in vHH1 and vHH2, respectively,
resulting in nearly complete coverage of the designed
libraries. The distribution of variants is expected to be
multimodal, and the observed distribution of variants
reflects the expected mixed Poisson distribution very
closely (Figure 5a,b). Only two variants exhibited more
than a tenfold count difference in vHH1 (out of >55,000
variants) and approximately 1300 of vHH2 (out of
>230,000 variants; 0.6%), and in both libraries, the dis-
crepancy was at most 22 fold (Figure 5a,b, insets).

We also assessed the observed frequencies of variable
segments relative to the expectation. The fold-change dif-
ferences ranged between 0.58–1.76 and 0.47–2.67 in
vHH1 and vHH2, respectively (Figure 6a,b). Mutation
frequencies exhibited an even narrower range, with fold-
change ranging 0.67–1.26 and 0.72–1.32 in vHH1 and
vHH2, respectively (Figure 6c,d); this range is considered
to be near-uniform (Daffern et al., 2023).

Finally, we analyzed misligations to understand the
reasons for failures in assembly (see Methods)
(Figure 4a,b; Table S2). Incorrect assemblies (40% and 3%
for vHH1 and vHH2, respectively) were all shorter than
the desired assembly. Additionally, <3% of the sequenc-
ing reads were assigned as misassembled for unknown
reasons. The distribution of correctly and incorrectly
assembled products is similar in Sanger and deep
sequencing (Figure 4a,b; Table S2), highlighting again
the high accuracy of the method and the importance of
using the more recent and reliable GGA empirical

ligation data (Potapov, Ong, Langhorst, et al., 2018; Pryor
et al., 2020) as implemented in vHH2. We conclude that
GGAssembler produces a nearly complete representation
and low bias of the designed variants and correct assem-
bly of the vast majority of the product. Thus, the GGAs-
sembler method and the experimental assembly protocol
generate highly complex variant libraries reliably, accu-
rately, and economically.

The total reaction costs for vHH1 and vHH2, respec-
tively, are $392.16 and $439.08 of which $365.85 and
$425.70 (93% and 97%) are DNA-associated costs, trans-
lating to 0.7¢ and 0.2¢ per variant (Table S3). We further
note that in many variant screening workflows, one may
wish to generate alternative libraries that focus diversity
on different regions of the protein. In such cases, parts of
the assembly reaction can be reused to generate differen-
tially biased products at no additional DNA cost.

3 | DISCUSSION

New approaches to probe the mutational tolerance of
proteins experimentally and computationally fuel interest
in methods for efficient synthesis of combinatorial muta-
tion libraries (Alejaldre et al., 2021; Daffern et al., 2023;
Jacobs et al., 2015; Kirby et al., 2021; Lund et al., 2024;
Öling et al., 2022; Plesa et al., 2018; Püllmann et al., 2019;
Shimko et al., 2020; Sidore et al., 2020; Tretyachenko
et al., 2020; Wrenbeck et al., 2016; Yamamoto
et al., 2020). GGAssembler exploits the fact that desired

FIGURE 5 Low bias in GGAssembler libraries. Deep sequencing analysis of libraries (a) vHH1 and (b) vHH2. The observed distribution

of variant reads compared with the expected mixed Poisson distribution. (Insets) Log fold differences between expected and observed read

counts.

HOCH ET AL. 7 of 12

diversity in active sites is typically clustered in several
contiguous epitopes (e.g., antibody CDRs or enzyme
active-site loops) that are separated by immutable
regions. This clustering lends itself to breaking the
assembly reaction into constant fragments that can be
synthesized or amplified from a preexisting gene and var-
iable regions that can be economically encoded by
custom-synthesized short oligos or oligo pools. GGAs-
sembler uses codon compression and chooses a set of
empirically determined high-fidelity overhangs to reduce
costs and ensure accurate assembly even in complex
libraries with more than a dozen mutated positions
across several noncontiguous epitopes. In the two

camelid antibody examples provided here and our previ-
ous application to the GFP chromophore-binding pocket
(Weinstein et al., 2023), correct assemblies were made
from 9 and 20 parts, respectively, demonstrating that
even large, multiepitope active sites can be effectively
generated with a simple experimental workflow that can
be accomplished in a one-pot in vitro reaction. Critically,
our variant libraries were designed strictly according to
atomistic considerations without attempting to reduce
the complexity of the assembly reaction like previous vari-
ant library studies (Jacobs et al., 2015; Shimko et al.,
2020), yet the GGAssembler approach successfully pro-
duced economical, high-fidelity libraries. Thus,

FIGURE 6 Low-bias in the representation of assembled segments and mutations. (a, b) Observed versus expected distribution of

segments in the assembled product. The vHH1 and vHH2 libraries were encoded with 5 and 4 variable segments, respectively (for cost-

effective representation of all diversity in complementarity-determining regions [CDR] H3). Comparison of the theoretical frequency of each

variable segment compared to the observed frequency seen in deep sequencing. (c, d) Observed versus expected distribution of mutated

positions. In all plots, box bounds signify the first, median and third quartiles. Whiskers represent 1.5 times the interquartile range and

outliers are shown as diamonds.

8 of 12 HOCH ET AL.

GGAssembler opens the way to encoding user-defined
diversity in large and complex functional epitopes.

While we strove for generality in developing GGAs-
sembler, we note that it only applies to constructing com-
binatorial assembly libraries. With the current active
research pushing the boundary of what is possible with
GGA, we hope to extend GGAssembler capabilities further
to allow the assembly of multiple homologous proteins in
the future. Our results show the importance of inferring
overhang fidelity from experiments under settings used in
the assembly reaction (Potapov, Ong, Kucera, et al., 2018;
Pryor et al., 2020), with notable improvement in predictive
ability for library vHH2 relative to the previously assem-
bled vHH1 library. Future research into the fidelity of mul-
tiple restriction enzymes and ligases in the same reaction
pot could enable executing complex multistep reactions in
a single step. We envision that GGAssembler will enable
efficient and economical study of the mutational tolerance
of antibodies, enzymes, pathogenic antigens and other
functional proteins and an effective approach to screen for
new or improved functions (R. Lipsh-Sokolik et al., 2023;
Weinstein et al., 2023).

4 | METHODS

4.1 | GGA optimization

The fidelity F of a given overhang O is defined as the propor-
tion of the number of times overhang O ligates to its
Watson–Crick pair and vice versa (Ncorrect) divided by the
number of times overhang O ligates to any overhang (Ntotal).

F Oð Þ¼Ncorrect

N total
: ð1Þ

The efficiency of a given overhang O is relative to
overhang with the most number of ligation events Omax

and defined as the proportion of times overhang O ligates
to any overhang (Ntotal) divided by the number of times
overhang Omax ligates to any overhang (Nmax).

E Oð Þ¼N total

Nmax
: ð2Þ

4.2 | Computational library design

4.2.1 | Codon compression

For each diversified amino acid position, we applied
codon compression by generating all ambiguous codons
that encode a portion of the required diversity using

CodonGenie (Swainston et al., 2017) and formulating the
compression as the set cover problem, where the desired
amino acid diversity in each position is the set to be cov-
ered, and each ambiguous codon provided by Codon-
Genie is a subset of that required diversity. We have
implemented Dancing Links (DLX) (Knuth, 2000) to
solve the exact cover problem, which results in every
amino acid identity appearing exactly once.

4.2.2 | DNA segmentation

We model all possible segmentations as a directed graph
with each node representing a cleavage site and over-
hang, and edges representing DNA segments between a
pair of cleavage sites. Edges are weighted by the number
of nucleotides required to produce that segment to repre-
sent relative DNA costs. As stated in the results, finding
economical segmentations with fidelity above a given
threshold is a known NP-hard problem (Lozano &
Medaglia, 2013). To overcome the hardness barrier, we
developed a randomized algorithm employing color-
coding (Alon et al., 1995), drawing random colorings that
color nodes identically if empirical ligation preferences
(Potapov, Ong, Kucera, et al., 2018; Potapov, Ong,
Langhorst, et al., 2018; Pryor et al., 2020) indicate the
overhangs would ligate. Next, for each random coloring
drawn, we run a rainbow version of the Dijkstra shortest-
path algorithm (Dijkstra, 1959), which considers extend-
ing a rainbow path only if the added node color does not
already appear in the path. The result is a DNA segmen-
tation and set of overhangs that ensure high-fidelity
assembly. Selecting rainbow shortest-path solutions guar-
antees the assembly of an economical solution that
excludes undesired products.

4.2.3 | Algorithm, time complexity, and
correctness

Our proposed solution is a randomized algorithm that
searches for the rainbow shortest path covering the entire
wild-type DNA sequence. We employ randomness
because given graph G of n vertices, vertices colored by
k colors and vertices s,t (start, terminus), the s-t rainbow
vertex connection problem has been shown to be
NP-Complete with runtime complexity of O(2knO(1))
(Chen et al., 2011). Because the number of colors used
when coloring nodes by their empirical ligation prefer-
ences considerably exceeds the number of fragments in
most cases, drawing a random coloring results in shorter
runtimes. To illustrate that the number of colors typically
far exceeds the number of fragments, consider the vHH
designs shown in the Results. Using BsaI as the Golden

HOCH ET AL. 9 of 12

Gate restriction enzyme results in 4 bp overhangs trans-
lating to at least 128 overhang sequences and colors (for
each overhang and its reverse complement) whereas the
number of fragments in the vHH libraries is merely nine.
Pseudo-code and proofs of correctness and run-time com-
plexity are presented in Supporting Information File 2.

We found that while running the algorithm for
(2e)#fragments iterations ensures finding the lowest-cost
solution with high probability if such a solution exists; in
many cases, the difference in cost between the nonrain-
bow lowest-cost solutions (using Dijkstra's algorithm;
Dijkstra, 1959) and the rainbow solutions is negligible
(e.g., on the order of tens of bps for the entire reaction).
With such a slight difference in cost, we prefer solutions
with fewer fragments or higher fidelity. We have also
observed that even when running the randomized algo-
rithm for 100–1000 [(2e)2.72 � (2e)4.08] iterations, the
rainbow solutions obtained are similar in cost to the non-
rainbow lowest-cost solutions found, resulting in run
time of several minutes from start to finish.

4.3 | Experimental library assembly

The full protocol is described in Hoch et al., 2023 and in
Supporting Information 1.

The primers used for the reactions are described in
Tables S4 and S5.

4.4 | Library cloning

The assembled library after Golden Gate was cloned into
pNACP plasmid (Ucha�nski et al., 2019) (kindly provided
by Jan Steyaert, Vrije Universiteit Brussels) using homol-
ogous recombination in yeast (Gietz & Schiestl, 2007).
Then, 100 μL yeast cells after recombination were plated
on SDCAA plates. Colonies were collected with 1.5 mL
sterile DDW and extracted using Zymoprep Yeast Plas-
mid Miniprep II (Zymo Research, CAT #D2004).

4.4.1 | Colony PCR and Sanger sequencing

The cloned libraries after recombination to pNACP were
transformed into E. Cloni 10G cells (Lucigen). Next, col-
ony PCR and Sanger sequencing were performed using
standard protocols.

4.5 | Deep sequencing

Amplicon libraries were prepared as previously described
(Blecher-Gonen et al., 2013). The libraries after GGA

were sequenced using a paired-end V3 600 cycles Illu-
mina kit (Illumina MS-102-3003) on an Illumina Miseq.
We preprocessed Fastq sequences using the BBTools soft-
ware suite Bushnell et al., 2017, and pairwise aligned the
results to constant and variable DNA segments using
Parasail (Daily, 2016). We further analyzed alignment
results using Python (Cock et al., 2009; Granger &
Pérez, 2021; Harris et al., 2020; McKinney, 2010; van der
Walt et al., 2011), by assigning each read bp its corre-
sponding segments. This allows us to quickly identify cor-
rectly assembled sequences and assign each incorrectly
assembled sequence the reasons it was assembled as
such. We then extracted variable segments and filtered
out sequences that did not exactly match variable DNA
segments for the bias analysis.

AUTHOR CONTRIBUTIONS
Shlomo Yakir Hoch: Conceptualization; investigation;
writing – original draft; methodology; validation; visuali-
zation; writing – review and editing; software; formal
analysis. Ravit Netzer: Investigation; resources; data
curation; methodology. Jonathan Yaacov Weinstein:
Investigation; software; data curation; resources; method-
ology. Lucas Krauss: Data curation; resources;
methodology. Karen Hakeny: Data curation; resources.
Sarel Jacob Fleishman: Resources; supervision; project
administration; funding acquisition.

ACKNOWLEDGMENTS
We thank David Peleg for helpful discussions and com-
ments on the algorithm and Olga Khersonsky and Ariel
Tennenhouse for critical reading. Figures 1–3 were cre-
ated with BioRender.com. The research was supported by
the Volkswagen Foundation (94747), the Israel Science
Foundation (1844), the European Research Council
through a Consolidator Award (815379), the Dr. Barry
Sherman Institute for Medicinal Chemistry, and a dona-
tion in memory of Sam Switzer.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

ORCID
Shlomo Yakir Hoch https://orcid.org/0000-0003-3991-
1533
Sarel Jacob Fleishman https://orcid.org/0000-0003-
3177-7560

REFERENCES
Alejaldre L, Pelletier JN, Quaglia D. Methods for enzyme library

creation: which one will you choose? BioEssays. 2021;43(8):
2100052.

Alon N, Yuster R, Zwick U. Color-coding. J ACM. 1995;42(4):
844–56.

10 of 12 HOCH ET AL.

http://biorender.com
https://orcid.org/0000-0003-3991-1533
https://orcid.org/0000-0003-3991-1533
https://orcid.org/0000-0003-3991-1533
https://orcid.org/0000-0003-3177-7560
https://orcid.org/0000-0003-3177-7560
https://orcid.org/0000-0003-3177-7560

Andreou AI, Nakayama N. Mobius assembly: a versatile Golden-
Gate framework towards universal DNA assembly. PLoS One.
2018;13(1):e0189892.

Blecher-Gonen R, Barnett-Itzhaki Z, Jaitin D, Amann-
Zalcenstein D, Lara-Astiaso D, Amit I. High-throughput chro-
matin immunoprecipitation for genome-wide mapping of
in vivo protein-DNA interactions and epigenomic states. Nat
Protoc. 2013;8(3):539–54.

Bushnell B, Rood J, Singer E. BBMerge—accurate paired shotgun
read merging via overlap. PLoS One. 2017;12(10):e0185056.

Chen L, Li X, Shi Y. The complexity of determining the rainbow
vertex-connection of a graph. Theor Comput Sci. 2011;412(35):
4531–5.

Choi H, Choi Y, Choi J, Lee AC, Yeom H, Hyun J, et al. Purification
of multiplex oligonucleotide libraries by synthesis and selec-
tion. Nat Biotechnol. 2022;40(1):47–53.

Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A,
et al. Biopython: freely available python tools for computational
molecular biology and bioinformatics. Bioinformatics. 2009;
25(11):1422–3.

Daffern N, Francino-Urdaniz IM, Baumer ZT, Whitehead TA. Stan-
dardizing cassette-based deep mutagenesis by Golden Gate
assembly. Biotechnol Bioeng. 2023;121:281–90. https://doi.org/
10.1002/bit.28564

Daily J. Parasail: SIMD C library for global, semi-global, and local
pairwise sequence alignments. BMC Bioinformatics. 2016;17-
(February):81.

Dijkstra EW. A note on two problems in Connexion with graphs.
Numer Math. 1959;1(1):269–71.

Engler C, Gruetzner R, Kandzia R, Marillonnet S. Golden Gate
shuffling: a one-pot DNA shuffling method based on type IIs
restriction enzymes. PLoS One. 2009;4(5):e5553.

Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision
cloning method with high throughput capability. PLoS One.
2008;3(11):e3647.

Fowler DM, Araya CL, Fleishman SJ, Kellogg EH, Stephany JJ,
Baker D, et al. High-resolution mapping of protein sequence-
function relationships. Nat Methods. 2010;7(9):741–6.

Gietz RD, Schiestl RH. Large-scale high-efficiency yeast transforma-
tion using the LiAc/SS carrier DNA/PEG method. Nat Protoc.
2007;2(1):38–41.

Goldenzweig A, Goldsmith M, Hill SE, Gertman O, Laurino P,
Ashani Y, et al. Automated structure- and sequence-based
design of proteins for high bacterial expression and stability.
Mol Cell. 2016;63(2):337–46.

Granger BE, Pérez F. Jupyter: thinking and storytelling with code
and data. Comput Sci Eng. 2021;23(2):7–14.

Guntas G, Purbeck C, Kuhlman B. Engineering a protein–protein
interface using a computationally designed library. Proc Natl
Acad Sci U S A. 2010;107(45):19296–301.

Harris CR, Jarrod Millman K, van der Walt SJ, Gommers R,
Virtanen P, Cournapeau D, et al. Array programming with
NumPy. Nature. 2020;585(7825):357–62.

Hoch SY, Netzer R, Hakeny K, Fleishman SJ. GGAssembler library
construction. 2023 https://doi.org/10.17504/protocols.io.81
wgbxqkolpk/v3

Jacobs TM, Yumerefendi H, Kuhlman B, Leaver-Fay A. SwiftLib:
rapid degenerate-codon-library optimization through dynamic
programming. Nucleic Acids Res. 2015;43(5):e34.

Khersonsky O, Lipsh R, Avizemer Z, Ashani Y, Goldsmith M,
Leader H, et al. Automated design of efficient and functionally
diverse enzyme repertoires. Mol Cell. 2018;72(1):178.e5–186.e5.

Kirby MB, Medina-Cucurella AV, Baumer ZT, Whitehead TA. Opti-
mization of multi-site nicking mutagenesis for generation of
large, user-defined combinatorial libraries. Protein Eng Des Sel.
2021;34:gzab017.

Knuth DE. Dancing links. arXiv. 2000 https://doi.org/10.48550/
arXiv.cs/0011047

Lipsh-Sokolik R, Khersonsky O, Schröder SP, de Boer C, Hoch S-Y,
Davies GJ, et al. Combinatorial assembly and Design of
Enzymes. Science. 2023;379(6628):195–201.

Lipsh-Sokolik R, Fleishman SJ. Addressing epistasis in the design
of protein function. Proc Natl Acad Sci U S A. 2024;121(34):
e2314999121. https://doi.org/10.1073/pnas.2314999121

Listov D, Goverde CA, Correia BE, Fleishman SJ. Opportunities
and challenges in design and optimization of protein function.
Nat Rev Mol Cell Biol. 2024;25(8):639–53.

Lohman GJS, Bauer RJ, Nichols NM, Mazzola L, Bybee J,
Rivizzigno D, et al. A high-throughput assay for the compre-
hensive profiling of DNA ligase Fidelity. Nucleic Acids Res.
2016;44(2):e14.

Lozano L, Medaglia AL. On an exact method for the constrained
shortest path problem. Comput Oper Res. 2013;40(1):378–84.

Lund S, Potapov V, Johnson SR, Buss J, Tanner NA. Highly paralle-
lized construction of DNA from low-cost oligonucleotide mix-
tures using data-optimized assembly design and Golden Gate.
ACS Synth Biol. 2024;13(3):745–51.

Markel U, Essani KD, Besirlioglu V, Schiffels J, Streit WR,
Schwaneberg U. Advances in ultrahigh-throughput screening
for directed enzyme evolution. Chem Soc Rev. 2020;49(1):
233–62.

Mayer H. Optimization of the EcoRI*-activity of EcoRI endonucle-
ase. FEBS Lett. 1978;90(2):341–4.

McKinney W. (2010). Data structures for statistical computing in
Python. Proceedings of the 9th Python in Science Conference,
56–61. https://doi.org/10.25080/majora-92bf1922-00a

Öling D, Lan-Chow-Wing O, Martella A, Gilberto S, Chi J,
Cooper E, et al. FRAGLER: a fragment recycler application
enabling rapid and scalable modular DNA assembly. ACS
Synth Biol. 2022;11(7):2229–37.

Plesa C, Sidore AM, Lubock NB, Zhang D, Kosuri S. Multiplexed
gene synthesis in emulsions for exploring protein functional
landscapes. Science. 2018;359(6373):343–7.

Potapov V, Ong JL, Kucera RB, Langhorst BW, Bilotti K, Pryor JM,
et al. Comprehensive profiling of four base overhang ligation
Fidelity by T4 DNA ligase and application to DNA assembly.
ACS Synth Biol. 2018;7(11):2665–74.

Potapov V, Ong JL, Langhorst BW, Bilotti K, Cahoon D, Canton B,
et al. A single-molecule sequencing assay for the comprehen-
sive profiling of T4 DNA ligase fidelity and bias during DNA
end-joining. Nucleic Acids Res. 2018;46(13):e79.

Pryor JM, Potapov V, Bilotti K, Pokhrel N, Lohman GJS. Rapid 40 kb
genome construction from 52 parts through data-optimized
assembly design. ACS Synth Biol. 2022;11(6):2036–42.

Pryor JM, Potapov V, Kucera RB, Bilotti K, Cantor EJ,
Lohman GJS. Enabling one-pot Golden Gate assemblies of
unprecedented complexity using data-optimized assembly
design. PLoS One. 2020;15(9):e0238592.

HOCH ET AL. 11 of 12

https://doi.org/10.1002/bit.28564
https://doi.org/10.1002/bit.28564
https://doi.org/10.17504/protocols.io.81wgbxqkolpk/v3
https://doi.org/10.17504/protocols.io.81wgbxqkolpk/v3
https://doi.org/10.48550/arXiv.cs/0011047
https://doi.org/10.48550/arXiv.cs/0011047
https://doi.org/10.1073/pnas.2314999121
https://doi.org/10.25080/majora-92bf1922-00a

Püllmann P, Ulpinnis C, Marillonnet S, Gruetzner R, Neumann S,
Weissenborn MJ. Golden mutagenesis: an efficient multi-
site-saturation mutagenesis approach by Golden Gate cloning
with automated primer design. Sci Rep. 2019;9(1):10932.

Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Ju�arez P,
Fern�andez-del-Carmen A, Granell A, et al. GoldenBraid: an
iterative cloning system for standardized assembly of reusable
genetic modules. PLoS One. 2011;6(7):e21622.

Sarrion-Perdigones A, Vazquez-Vilar M, Palací J, Castelijns B,
Forment J, Ziarsolo P, et al. GoldenBraid 2.0: a comprehensive
DNA assembly framework for plant synthetic biology. Plant
Physiol. 2013;162(3):1618–31.

Shimko TC, Fordyce PM, Orenstein Y. DeCoDe: degenerate codon
design for complete protein-coding DNA libraries. Bioinformat-
ics. 2020;36(11):3357–64.

Sidore AM, Plesa C, Samson JA, Lubock NB, Kosuri S. DropSynth
2.0: high-fidelity multiplexed gene synthesis in emulsions.
Nucleic Acids Res. 2020;48(16):e95.

Sikkema AP, Kasra Tabatabaei S, Lee Y-J, Lund S, Lohman GJS.
High-complexity one-pot Golden Gate assembly. Curr Protoc.
2023;3(9):e882.

Swainston N, Currin A, Green L, Breitling R, Day PJ, Kell DB.
CodonGenie: optimised ambiguous codon design tools. PeerJ
Comput Sci. 2017;3(July):e120.

Tretyachenko V, Vor�aček V, Souček R, Fujishima K, Hlouchov�a K.
CoLiDe: combinatorial library design tool for probing protein
sequence space. Bioinformatics. 2020;37(4):482–9. https://doi.
org/10.1093/bioinformatics/btaa804

Treynor TP, Vizcarra CL, Nedelcu D, Mayo SL. Computationally
designed libraries of fluorescent proteins evaluated by preserva-
tion and diversity of function. Proc Natl Acad Sci U S A. 2007;
104(1):48–53.

Ucha�nski T, Zögg T, Yin J, Yuan D, Wohlkönig A, Fischer B, et al.
An improved yeast surface display platform for the screening of
Nanobody immune libraries. Sci Rep. 2019;9(1):382.

van der Walt S, Colbert SC, Varoquaux G. The NumPy Array: a
structure for efficient numerical computation. Comput Sci Eng.
2011;13(2):22–30.

Vazquez-Vilar M, Quijano-Rubio A, Fernandez-Del-Carmen A,
Sarrion-Perdigones A, Ochoa-Fernandez R, Ziarsolo P, et al.
GB3.0: a platform for plant bio-design that connects functional

DNA elements with associated biological data. Nucleic Acids
Res. 2017;45(4):2196–209.

Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S. A modu-
lar cloning system for standardized assembly of multigene con-
structs. PLoS One. 2011;6(2):e16765.

Weinstein JY, Martí-G�omez C, Lipsh-Sokolik R, Hoch SY, Liebermann
D, Nevo R, et al. Designed active-site library reveals thousands of
functional GFP variants. Nat Commun. 2023;14(1):2890.

Whitehead TA, Baker D, Fleishman SJ. Computational design of
novel protein binders and experimental affinity maturation.
Methods Enzymol. 2013;523:1–19.

Whitehead TA, Chevalier A, Song Y, Dreyfus C, Fleishman SJ, De
Mattos C, et al. Optimization of affinity, specificity and function
of designed influenza inhibitors using deep sequencing. Nat
Biotechnol. 2012;30(6):543–8.

W�ojcik M, Telzerow A, Quax WJ, Boersma YL. High-throughput
screening in protein engineering: recent advances and future
perspectives. Int J Mol Sci. 2015;16(10):24918–45.

Wrenbeck EE, Klesmith JR, Stapleton JA, Adeniran A, Tyo KEJ,
Whitehead TA. Plasmid-based one-pot saturation mutagenesis.
Nat Methods. 2016;13(11):928–30.

Yamamoto Y, Terai T, Kumachi S, Nemoto N. In vitro construction
of large-scale DNA libraries from fragments containing random
regions using Deoxyinosine-containing oligonucleotides and
endonuclease V. ACS Comb Sci. 2020;22(4):165–71.

SUPPORTING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Hoch SY, Netzer R,
Weinstein JY, Krauss L, Hakeny K, Fleishman SJ.
GGAssembler: Precise and economical design and
synthesis of combinatorial mutation libraries.
Protein Science. 2024;33(10):e5169. https://doi.org/
10.1002/pro.5169

12 of 12 HOCH ET AL.

https://doi.org/10.1093/bioinformatics/btaa804
https://doi.org/10.1093/bioinformatics/btaa804
https://doi.org/10.1002/pro.5169
https://doi.org/10.1002/pro.5169

	GGAssembler: Precise and economical design and synthesis of combinatorial mutation libraries
	1 INTRODUCTION
	2 RESULTS
	2.1 A general method to design combinatorial diversity
	2.2 Lab protocol for synthesizing a GGAssembler library
	2.3 Accurate assembly of vHH combinatorial libraries

	3 DISCUSSION
	4 METHODS
	4.1 GGA optimization
	4.2 Computational library design
	4.2.1 Codon compression
	4.2.2 DNA segmentation
	4.2.3 Algorithm, time complexity, and correctness

	4.3 Experimental library assembly
	4.4 Library cloning
	4.4.1 Colony PCR and Sanger sequencing

	4.5 Deep sequencing

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	ORCID
	REFERENCES
	SUPPORTING INFORMATION

