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Genome-wide human brain eQtLs: 
in-depth analysis and insights using 
the UKBec dataset
Letitia M. f. Sng1, peter c. thomson  1 & Daniah trabzuni  2,3*

Understanding the complexity of the human brain transcriptome architecture is one of the most 
important human genetics study areas. previous studies have applied expression quantitative trait 
loci (eQtL) analysis at the genome-wide level of the brain to understand the underlying mechanisms 
relating to neurodegenerative diseases, primarily at the transcript level. to increase the resolution of 
our understanding, the current study investigates multi/single-region, transcript/exon-level and cis 
versus trans-acting eQTL, across 10 regions of the human brain. Some of the key findings of this study 
are: (i) only a relatively small proportion of eQTLs will be detected, where the sensitivity is under 5%; 
(ii) when an eQTL is acting in multiple regions (MR-eQTL), it tends to have very similar effects on gene 
expression in each of these regions, as well as being cis-acting; (iii) trans-acting eQtLs tend to have 
larger effects on expression compared to cis-acting eQTLs and tend to be specific to a single region (SR-
eQTL) of the brain; (iv) the cerebellum has a very large number of eQTLs that function exclusively in 
this region, compared with other regions of the brain; (v) importantly, an interactive visualisation tool 
(Shiny app) was developed to visualise the MR/SR-eQtL at transcript and exon levels.

The difficulty and complexity of studying the brain transcriptome architecture arises from the nature of the 
human brain as a heterogeneous structure containing different cell types at different ratios in different anatom-
ical regions1. It has been reported that the variability in the transcription profiles of the human CNS can lead to 
different functional features2. Furthermore, different mRNA isoforms have different structures and opposing 
functions which can promote the progression of human diseases3. Importantly, the vulnerability of different brain 
anatomical regions and severity of pathology from different diseases can add to these complexities. Therefore, it is 
important to have a comprehensive profiling of the expression and splicing patterns that provide more informa-
tion for different human CNS regions with different cell types in relation to neurological diseases.

Previous studies have added to the understanding of the transcriptomic architecture and patterns of the differ-
ent regions and cell types of the CNS4–7. Region-specific changes were also apparent in a study which also revealed 
differences at the cellular level4. Although these studies added important insights into understanding connectivity 
and functional regulation in the human CNS, they are limited by the alternative splicing detection technology 
that was employed and limited sample size.

Further understanding of the human brain can be obtained by integrating genomic and transcriptomic data in 
the form of expression quantitative trait loci (eQTL) analyses. Past eQTL studies have been successful in explor-
ing the effect of genetic control on transcriptional and splicing regulations in the human CNS and thereby gain-
ing more insights into the underlying molecular mechanisms in the brain for different diseases pathways6,8–11. 
Tissue-specific eQTL signals at the transcript and exons levels were also reported and tissue-unique expression 
and splicing patterns were revealed8,11,12.

One known challenge eQTL studies face is insufficient sample size which is known to inaccurately estimate 
association strength13 leading to statistically invalid or nonsignificant results. Large sample sizes (n > 1000) have 
been used to decrease the likelihood of false positives14–16, however such large sample sizes are not feasible for 
studies using precious tissues such as human brains. Furthermore, large sample sizes can be very costly and 
computationally time-consuming17. Secondly, there are no comprehensive investigations of cis-acting eQTLs and 
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trans-acting eQTLs patterns across different brain regions, and chromosomes at both the exon and transcript 
levels from the same individual.

In this study we used the United Kingdom Brain Expression Consortium (UKBEC) dataset, adding to the 
findings published previously by Trabzuni, et al.18 and Ramasamy, et al.11. In particular, we first evaluated the 
sufficiency of our sample size followed by an in-depth exploration of eQTL patterns. Specifically, we investigated 
characteristics of eQTLs found in single regions compared to multiple regions and how regions and chromosomes 
impact the number and effect sizes of cis-eQTL compared to trans-eQTL, at both transcript- and exon-levels.

The UKBEC dataset consists of 134 individuals in ten CNS regions including the cerebellum (CRBL), n = 130; 
frontal cortex (FCTX), n = 127; hippocampus (HIPP), n = 122; medulla (MEDU), n = 119; occipital cor-
tex (OCTX), n = 129; putamen (PUTM), n = 129; substantia nigra (SNIG), n = 101; temporal cortex (TCTX), 
n = 119; thalamus (THAL), n = 124; and white matter (WHMT), n = 131; at both transcript and exon levels.

By using a set of simulations, the impact of sample size on the sensitivity and specificity to detect eQTL effect 
sizes (β) at a false discovery rate (FDR) threshold of 0.01 was evaluated for the following scenarios: single nucle-
otide polymorphisms (SNPs) in linkage equilibrium (LE), and in linkage disequilibrium (LD), genotyping errors 
(GE), lower expression level variance compared with residual variance (LV) and dominance (Dom). These five 
scenarios were chosen to represent situations likely to be encountered with real eQTL data. The results were used 
to ensure that the sample size of the UKBEC was sufficient.

Following this, genome-wide eQTL mapping was completed at transcript and exon levels and further classified 
as transcript-only, exon-only and “both”. We also investigated the patterns and effect sizes of eQTLs specific to one 
region (SR-eQTL) and those affect multiple regions (MR-eQTLs). A Shiny App was created to visualise these pat-
terns at transcript and exon levels. We also add detailed information to our current understanding of trans-acting 
eQTLs, specifically how their effect sizes and numbers compare to those of cis-acting eQTLs in different  
chromosomes and brain regions.

Results
Sample size evaluation. Sample size evaluation using real UKBEC cerebellum (CRBL) data. The total 
number of significant eQTLs detected with 130 CRBL samples was 1,956 before redundant eQTLs were removed 
because of SNPs in linkage disequilibrium (LD). The number of eQTLs detected when the sample size was 100 
was comparable when the sample size was 130 (Table 1). However, when the sample size was reduced to 50 and 
lower, the number of detected eQTLs became extremely variable. For example, when n = 25, one run detected 
229,813 eQTLs. These results indicated that sample sizes lower than 100 can produce many false positives associ-
ations. Following the results outlined in Table 1, a more detailed evaluation was undertaken with simulated data. 
Figure 1a shows a plot of the simulated eQTLs in CRBL with a clear diagonal band representing the presence of 
cis-acting eQTLs and with some SNPs having a large number of trans-acting eQTLs compared to other SNPs 
indicated by the vertical bands. This pattern of detected eQTLs has been seen in previous empirical studies19 as 
well as in the genome-wide distribution of detected eQTLs in the real CRBL data (see Fig. 1b).

Moreover, in Fig. 2a, we compared the distribution of the effect sizes of the eQTLs that were detected by 
MatrixEQTL to the distribution of the effect sizes of all simulated eQTLs. It is clear from this figure that many 
eQTLs are not being detected, for example, across all simulations, 97.8% of eQTLs were not detected. This is 
particularly true for eQTLs with smaller effect sizes, |β| ≤ 1. However, when they are detected, their estimates are 
generally accurate (see Fig. 2b). Although these plots are from a single scenario (n = 150, FDR = 0.01, SNPs under 
linkage equilibrium (LE), this pattern was seen across all scenarios.

Investigating sensitivity and specificity using simulated data for various genetic models. To investigate the ade-
quacy of the UKBEC dataset sample size, the sensitivity and specificity to detect eQTLs of a specified effect size 
threshold were evaluated. More specifically, simulated eQTLs were explored where the absolute value of the true 
effect sizes of the eQTLs were greater than or equal to a threshold (i.e. if |β| ≥ k, where k is the threshold value). As 
expected, an increase in sample size led to an increase in sensitivity to detect eQTLs across a range of thresholds, 
0 ≤ k ≤ 3 (see Fig. 3a). However, the sensitivity to detect eQTLs was generally low with only 2–14% of eQTLs 
being detected across the range of eQTL effect sizes and sample sizes. Figure 3a also shows that when sample size 

No. of 
Brains All Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Rep. 6 Rep. 7 Rep. 8 Rep. 9 Rep. 10 Median

130 1956

100 1058 1075 1082 1088 1103 1116 1174 1178 1279 1341 1110

50 858 1561 2088 2470 2621 3661 4510 4773 4937 6574 3141

25 1535 2319 5594 6991 7418 28381 36834 89053 199909 229813 17900

13 0 0 0 0 0 3618 3791 3822 3852 7383 1809

Table 1. Number of eQTLs detected from 10 replications (Rep.) of 100, 50, 25 and 13 brains in cerebellum 
(CRBL) region. Ten replications of n = 100, 50, 25, 13 were randomly selected from the 130 available CRBL 
samples and used to detect eQTLs at the transcript-level. The number of eQTLs detected are sorted from 
smallest to largest from replications 1 to 10. When n = 100, the number of eQTLs detected per sample was 
comparable to the 1,956 eQTLs detected with the total number of available CRBL samples (n = 130) given 
the decrease in sample size. However, when n ≤ 50, the number of eQTLs detected became extremely variable 
across samples with implausibly high numbers of eQTLs (e.g. sample 10, n = 25, the number of eQTLs 
detected = 229,813).
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increased from 50 to 100, there was a large increase in sensitivity with an additional 1.1%–2.7% of eQTLs detected 
for smaller thresholds (0 ≤ k ≤ 1.3), but less of an improvement for larger effect size thresholds (k ≥ 1.4). However, 
there was a considerable improvement in sensitivity of 1% (from 0.012 when k = 2 to 0.022 when k = 3) when n 
increased from 150 to 200. These observations were drawn from the scenario with FDR = 0.01 and LE, however, 
similar patterns were seen in the other scenarios (Supplementary Figs. S1–4).

In general, specificity was extremely high with relatively few false positives. For example, for the LE scenario 
at n ranging from 50 to 150, specificity was very close to 1, indicating that nearly 100% of true non-eQTLs (i.e. 
SNP-transcript pairs with no real association) were correctly classified. There was a marginal decrease in spec-
ificity with increasing sample size, with the maximum difference being 2.47 × 10−4 between n = 250 and n = 50 

Figure 1. Genome-wide distribution of transcript-level eQTLs in CRBL. (a) Simulated eQTL data in linkage 
equilibrium for a single simulation and (b) observed eQTL data. Each point in both plots represents an eQTL 
between (the SNP on different chromosomes on the x-axis) and (the transcript on different chromosomes on 
the y-axis). The clear diagonal band represents cis-acting eQTLs while the off-diagonal points represent trans-
acting eQTLs (defined as eQTL with a difference between the SNP and transcript site of at least 3.16 Mb). There 
are many more points in the simulated data plot (a) as these are the simulated “true” eQTLs, many of which are 
not detected in the subsequent eQTL mapping analysis. As an example, 2.19% of “true” eQTLs were detected 
across all simulations.

Figure 2. Distribution of simulated eQTL effect sizes. (a) The distribution of effect sizes of all eQTLs (in blue) 
compared to the distribution of effect sizes of detected eQTLs (in red). These effect sizes are based on the 
simulations of the scenario with SNPs in linkage equilibrium (LE) with a false discovery rate (FDR) threshold 
of 0.01 and nsample = 150. At larger eQTL effect sizes (|β| ≥ 1), eQTLs are more likely to be detected but it is clear 
that many eQTLs are not being detected (97.8% in across all simulations). There is a dip in the distribution of 
detected eQTL effect sizes around β = 0 due to the stringency of the FDR threshold (≤0.01). (b) A smoothed 
scatter plot of estimated versus actual eQTL effect sizes, for those that were detected. Like (a), these effect sizes 
are from the simulations of the LE scenario with a FDR threshold of 0.01 and n = 150. Overall, the estimated 
effect sizes of eQTLs when they are detected are accurate, though there are a few outliers.
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(see Fig. 3b). Unexpectedly, the largest sample size evaluated, n = 300 showed slightly larger specificity than for 
n = 250 across all k (see Fig. 3b). This non-monotonic change in specificity with increasing sample size was not 
due to an insufficient number of simulations (100), as the maximum standard errors of specificity were 1.3 × 10−6 
for n = 250 and 9.9 × 10−7 for n = 300. Interestingly, this pattern was found in all scenarios except for LD where 
specificity was higher when n = 250 than when n = 200 or n = 300 (Supplementary Figs. S5–8). Both the mean 
sensitivity and specificity curve was relatively smooth over the range of k, indicating that 100 simulations were 
enough (Supplementary Fig. S9).

The sensitivity and specificity from the simplest, “base” scenario (LE) was then used to draw comparisons 
between the other scenarios (LD, GE, LV, Dom as defined earlier) at n = 150 (see Fig. 4). The sample size of 150 
was chosen for these comparisons as it is the closest to the sample size of the UKBEC.

For the GE and Dom scenarios, the sensitivity to detect eQTLs was only slightly lower than LE at high thresh-
old values. For example, at k = 3, the sensitivity for GE was 2.74 × 10−3 lower. The LD scenario had lower sen-
sitivity than LE at the lower threshold until k ≥ 2.1, where it increased and stayed stable. With the LV scenario, 
sensitivity at the lower thresholds (0 ≤ k ≤ 1) was noticeably smaller than LE but continued to increase and was 
discernibly greater when k ≥ 1.5 with the largest difference of 2.51% greater when k = 3.0.

The specificity of the LD scenario had a discernibly lower specificity than the LE scenario by 5.5 × 10−6, 
whereas the LV scenario was noticeably higher by 9.3 × 10−6. Scenarios GE and Dom had comparable specificity 
to the LE scenario. However, it needs to be noted that the specificity for all scenarios was close to 1 for all k.

FDR thresholds evaluation. To illustrate the effect of different FDR thresholds on the sensitivity and specificity; 
the sample size of n = 150 when k = 2 for the scenario with SNPs in LE was evaluated. The average number of 
false negative (FN) and false positive (FP) associations for 100 simulations were calculated along with the sen-
sitivity and specificity for three thresholds of FDR = 0.01, 0.05 and 0.10 (Table 2). Results indicated that as the 
FDR threshold was made less stringent (0.01 to 0.10), sensitivity increased by 0.5% while specificity decreased 
by 0.002%. More importantly, the numbers of FP eQTLs showed a marked increase as FDR became less strin-
gent (from 6314 to 13734). More importantly, a less stringent FDR threshold (0.01 to 0.10) resulted in a modest 

Figure 3. The sensitivity (a) and specificity (b) to detect eQTLs at a range of effect size thresholds for the 
scenario with linkage equilibrium (LE). (a) The plot shows the average sensitivity from 100 simulations in 
each sample size (n = 50, 100, 150, 200, 250, 300) to detect a range of eQTL effect size thresholds, k (0–3 in 0.1 
increments). As both sample size and effect size threshold increase, the sensitivity to detect eQTLs increases. 
However, sensitivity is very low across all sample sizes and effect size thresholds, with the greatest level of 
sensitivity (i.e. when n = 300, k = 3) being less than 0.14. At lower effect size thresholds, sensitivity to detect 
eQTLs across sample sizes (except n = 50) is comparable. (b) The plot shows the average specificity from 100 
simulations in each sample size (n = 50, 100, 150, 200, 250, 300) to detect a range of eQTL effect size thresholds, 
k (0–3 in 0.1 increments). As sample size increases, the specificity to detect eQTLs decreases across k with 
largest decrease of 2.5 × 10−4 at k = 3 when n increases from 50 to 250. However, specificity is very high across 
all sample sizes and effect size thresholds with the lowest level of specificity (i.e. when n = 250, k = 3) being 
greater than 0.9997. For each sample size, there is virtually no discernible decrease in specificity as the effect size 
threshold increase
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increase in the number of eQTL detected (+6) but an overwhelmingly large increase in the number of the FP 
eQTLs (+7420).

Genome-wide eQtLs. An eQTL is defined as an association between transcript or exon expression level 
and a SNP. However, due to LD, redundant SNPs were removed and haplotype blocks were used to represent 
SNPs in LD, R2 > 0.5. We have systematically defined several classifications of eQTLs. We defined an eQTL as 
being a multi-region eQTL (MR-eQTL) if the eQTL was present in more than one region, and a single-region 
eQTL (SR-eQTL) when an eQTL was found in one region only. For example, if an eQTL was found in CRBL 
and FCTX, it represents two eQTLs but only one MR-eQTL. In addition, we investigated transcript-level and 
exon-level eQTLs, i.e. associations between an exon and a haplotype, or a transcript and a haplotype, respectively. 
An exon-level eQTL was classified as exon-only eQTL when one or more of the exons within a transcript cluster 
were significantly associated with a haplotype, but without a corresponding association at the transcript-level (to 
that same haplotype). While, the transcript-level eQTL was classified as transcript-only when none of the exons 
within the same transcript cluster occurred as eQTLs with the same haplotype at the exon-level. For eQTLs found 
at the transcript-level and at the exon-level (for exons within the transcript cluster) to the same haplotype, these 
eQTLs were classified as “both”. For example, an MR-eQTL can be classified as “both” but can be a transcript-only 
SR-eQTL. This is important to consider when interpreting results, as the ambiguity of classifying eQTLs as “both” 

Figure 4. Average sensitivity (a) and specificity (b) of 100 simulations to detect eQTL at a range of effect size 
thresholds (k) for five scenarios. The five scenarios were: SNPs in linkage equilibrium (LE) and disequilibrium 
(LD), genotyping errors (GE), lower expression level variance compared with residual variance (LV) and 
dominance (Dom) when n = 150. The sensitivity of each scenario increased with increasing effect size 
thresholds, however remained low overall with the highest level of sensitivity (LV scenario, k = 3) being lower 
than 0.12. Four scenarios (LE, LD, GE, and Dom) show comparable sensitivity levels across the effect size 
thresholds while LV showed a deviation from a threshold of 1.5 ≤ k ≤ 3. Specificity slightly decreases with 
increasing effect size thresholds for all scenarios, with LV showing the highest specificity and LD the lowest. 
However, specificity is high for all scenarios in the range of 0.9999875 to 0.999995.

FDR Sensitivity Specificity FN FP

0.01 0.0808 0.9999842 1275 6314

0.05 0.0841 0.9999737 1271 10530

0.10 0.0859 0.9999657 1269 13734

Table 2. Sensitivity and specificity of eQTL detection with different false discovery rates (FDR) threshold. 
This table shows the number of False Negative (FN) and False Positive (FP) eQTL associations at different FDR 
thresholds when n = 150 and k = 2. There is a huge increase of the FP eQTLs as the FDR cut-off is made less 
stringent, but only a modest decrease for the FN associations (+6).
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(which includes transcript-level and exon-level eQTLs) limits our understanding of whether genomic regulations 
happen through transcript or exon level mechanisms.

Region-by-region eQTLs. Genome-wide eQTL mapping across the ten regions resulted in a total of 1,096 
transcript-level eQTLs and 7,009 exon-level eQTLs (only the most significant eQTL association in each haplotype 
was retained). Table 3 summarises these eQTLs detected for the different classifications described above, as well as 
cis- or trans-acting. It is worth noting that CRBL has more trans-acting eQTLs compared with other regions (132 
out of 209 total). There were two main issues that prevented us from continuing the analyses using these three 
classifications: transcript-only, exon-only, both. Firstly, the number of transcript-only eQTLs available for analysis 
was greatly reduced (47.5% of total transcript-level eQTLs). Secondly, there was ambiguity with the eQTLs clas-
sified as “both”. For example, there were some transcript clusters where all the exons were found to be associated 
with eQTLs but was not an eQTL at the transcript-level. In Table 3, we considered these exon-level eQTLs as 
“exon-only”, but it is also reasonable for the corresponding transcript to be regarded as an eQTL. Currently, there 
is no consensus on such issues. Therefore, for the remainder of the paper, all analyses were undertaken either at 
the transcript-level eQTLs (i.e. includes transcript-only and a subset of “both”) or at the exon-level eQTLs (i.e. 
includes exon-only and a subset of “both”).

From Fig. 1 which shows map locations for CRBL transcript-level eQTLs, cis-acting eQTLs clustered along 
the diagonal whilst the off-diagonal points represent trans-acting eQTLs. Vertical lines of eQTLs are particularly 
evident at the exon-level for TCTX and CRBL (see Fig. 5 and Supplementary Figs. S10–18 for the other nine 
regions). Table 4 demonstrates the frequency distribution for eQTLs per gene bin (1 gene, 2–5 genes, 6–10 genes, 
>10 genes) to highlight how one haplotype can be associated with multiple transcripts/exons. In particular, there 
is one haplotype associated with 187 exons in the PUTM, namely rs13045538 on Chr 20 (bolded in Table 4).

What is not so apparent from Figs. 1 and 5 is that expression traits at both transcript- and exon-levels may be 
associated with multiple haplotypes, i.e. horizontal lines in figures. Table 5 shows the frequency distributions of 
eQTLs for the association of transcript/exon per haplotype block bin (1 haplotype, 2–5 haplotypes, 6–10 haplo-
types, >10 haplotypes). In particular, there are 337 haplotypes in the CRBL associated with one exon (bolded).

Single-region eQTLs. Table 6 shows the numbers of SR-eQTLs across the ten regions at transcript and exon levels 
and also cis- versus trans-acting. It is evident that CRBL has the most transcript-level SR-eQTLs with 347 followed 
by the WHMT with 116. In general, the vast majority of transcript-level SR-eQTLs were trans-acting.

Multi-region eQTLs. The results from the region-by-region and single-region viewpoints suggested that there 
are different patterns of the eQTLs across the ten regions at transcript and exon levels. This led us to study eQTLs 
that were detected to have an effect across multiple regions of the brain, i.e. MR-eQTLs.

Looking at eQTL patterns, there were four transcript-level eQTLs and eleven exon-level eQTLs that were 
mapped in all ten brain regions (Table 7). It is also evident that eQTLs tended to cluster in certain regions, as 
shown in Table 8 (transcript level) and Table 9 (exon level). Generally, the FCTX showed the greatest sharing of 
eQTLs at the transcript-level (66%) (Table 8) while the MEDU had the greatest at the exon-level (62%) (Table 9). 
The three cortical regions (FCTX, OCTX, and TCTX) have many eQTLs in common where for each of these 
regions, the highest number shared were with the other two cortical regions. This reflects the clustering seen in 
the Principal component analysis (PCA) that was used to explore the different patterns of gene expression across 
the ten brain regions (see Fig. 6b) where the cortical regions had similar expression profiles. Interestingly, there 
was a slight separation of OCTX from the other two cortex regions in the PCA. Furthermore, it is clear from 
Fig. 6a, that CRBL clustered separately from the other regions suggesting a distinctive expression pattern. As 

Region

Transcript-only Exon-only Both

cis trans total cis trans Total cis trans total

CRBL 77 132 209 1479 578 2057 390 64 454

FCTX 50 12 62 519 441 960 126 26 152

HIPP 46 30 76 522 518 1040 94 28 122

MEDU 36 24 60 424 161 585 84 14 98

OCTX 37 32 69 377 267 644 100 10 110

PUTM 29 26 55 166 353 519 42 20 62

SNIG 27 36 63 88 110 198 22 20 42

TCTX 71 47 118 530 398 928 136 14 150

THAL 31 36 67 280 188 468 62 20 82

WHMT 42 28 70 1091 262 1353 234 18 252

Total 446 403 849 5476 3276 8752 1290 234 1524

Table 3. Number of eQTLs detected in a genome-wide scan. The number of eQTLs are grouped into transcript-
only, exon-only and both and further classified by cis-acting and trans-acting. “Transcript-only” are eQTLs 
found only at the transcript-level. “Exon-only” are eQTLs found only at the exon-level. “Both” are eQTLs found 
at both the transcript-level and at the exon-level within the transcript. Due to these definitions, the numbers 
under the “Both” column include both transcript-level and exon-level eQTLs. There may also be overlapping 
numbers of eQTLs between the regions as some eQTLs may have been detected in several regions.
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alluded to in Table 6 and Fig. 6a, eQTLs found in CRBL showed high region specificity (transcript: 20% shared, 
exon: 21% shared).

3D MR-eQTLs visualisation (Shiny app). To visualise these MR-eQTLs across all regions, a ‘Shiny app’ has been 
created for the transcript-level and exon-level (see Fig. 7). Using this dynamic app (https://lmf-sng.shinyapps.io/
Multi-Regional_eQTL/), regions can be specified and the number of the shared eQTLs between these different 
regions are displayed for both cis- and trans-acting eQTLs. A table summary including the numbers of SR-eQTLs 
at transcript and exon levels is also incorporated.

Effect sizes of multi-region eQTLs. The effect sizes of MR-eQTLs at both transcript and exon-level across regions 
were mapped (see Fig. 8). Results suggested that when an eQTL is active in multiple regions, it affects expression 
levels in a similar way. It is also worth noting that some MR-eQTLs clustered in different regions between the 
transcript-level and exon-level. For example, at the transcript-level, the eQTLs associated with FLYWCH-type 
zinc finger 1 (FLYWCH1) were significant in the CRBL, MEDU and WHMT while at the exon-level they were 
mapped in the CRBL, TCTX and WHMT. Figure 8 also highlights the relatively small number of trans-acting 
MR-eQTLs: 1.9% (4) at the transcript level and 10.6% (115) at the exon level.

Figure 9 shows the estimated eQTL effect sizes for the four transcript-level eQTLs which were detected in 
all 10 brain regions. This further highlights the observation that MR-eQTLs have similar effect sizes in regions 

Figure 5. Genome-wide distribution of exon-level eQTLs for the (a) TCTX and (b) CRBL. Each point in both 
plots represents an exon-level eQTL with the SNP chromosomes on the x-axis and the transcript chromosome 
on the y-axis. Note that these are the eQTLs after redundant SNPs were removed (i.e. these eQTLs are associated 
with haplotypes representing a block of SNPs in linkage disequilibrium). The clear diagonal line represents 
cis-acting eQTLs while the off-diagonal points represent trans-acting eQTLs. There are vertical lines of eQTLs 
points indicating that there are haplotypes or adjacent haplotypes that are associated with multiple exons. 
Less evident are horizontal lines of eQTL points, though more apparent in the temporal cortex (a) than the 
cerebellum (b). The eQTL points along these horizontal lines suggest that there are exons associated with many 
haplotypes.
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they are present in. Also, in the two cases where the MR-eQTLs (i.e. for genes Ef-hand domain family member 
B (EFHB) and LOC253039) had an effect size that deviates from the rest, they were detected in the CRBL. This 
points to CRBL having a separate eQTL pattern as aforementioned.

Regional and chromosomal differences between cis- and trans-acting eQtLs. Observations 
from Table 6 motivate us to explore patterns of cis- and trans-acting eQTLs more systematically. Specifically, there 
were differing ratios of cis-acting versus trans-acting SR-eQTLs across different regions (e.g. CRBL, FCTX, and 
WHMT showed less trans-acting SR-eQTLs compared to cis-acting, but the other regions showed the opposite). 
Furthermore, as part of the genome-wide mapping approach, we were interested to assess if some chromosomes 
had relatively different patterns compared with other chromosomes (e.g. more or less cis- versus trans-eQTL 
between chromosomes).

Percentage of cis- versus trans-acting eQTLs. Firstly, we looked at the numbers of cis-acting versus 
trans-acting eQTL and how they differed across regions and chromosomes using a logistic regression anal-
ysis. Results showed that regions had a significant effect (P = 1.5 × 10−10) on the percentage of trans-acting 
eQTLs at the transcript-level: WHMT has the lowest percentage of trans-acting eQTLs (20.1% ± 3.0%) 
and SNIG the highest (62.4% ± 5.8%) (see Fig. 10a). This variation between regions was also found at the 
exon-level where WHMT has the lowest percentage of trans-eQTLs at 18.9% ± 1.3% while PUTM has the 
highest at 69.4% ± 2.7% (see Fig. 10b). Interestingly, the percentage of cis-acting versus trans-acting differed 

Gene bins

Transcript level Exon level

1 2-5 6–10 >10 Max 1 2–5 6–10 >10 Max

CRBL 297 34 6 1 11 658 217 68 20 60

FCTX 119 4 0 1 11 313 103 9 8 129

HIPP 100 7 1 1 14 295 108 17 7 115

MEDU 92 8 0 0 3 269 76 12 3 37

OCTX 104 3 1 0 8 297 81 12 5 41

PUTM 61 2 0 1 20 180 31 2 3 187

SNIG 55 8 1 0 7 93 23 2 2 26

TCTX 156 15 0 0 5 358 117 18 11 34

THAL 96 6 0 0 2 261 62 5 2 25

WHMT 161 8 2 0 9 428 196 36 12 42

Table 4. Frequency distribution of eQTLs associated with one or more transcripts/exons. This table shows 
the association of a haplotype with one or more transcripts/exons as specified by bin categories. Genes were 
grouped into four bins: 1, 2–5, 6–10, >10 and grouped into transcript-level and exon-level for each region of 
the brain. For example, CRBL at transcript level, on one hand has one haplotype associated with 11 transcripts, 
i.e. we have 11 eQTLs. On the other hand, there are 34 haplotypes, each associated with between two and five 
transcripts i.e. between two and five eQTLs per haplotype. The “Max” gene bin is the maximum number of 
genes (transcript/exon) associated with a single haplotype.

Haplo bins

Transcript level Exon level

1 2–5 6–10 >10 Max 1 2–5 6–10 >10 Max

CRBL 206 56 5 4 18 534 160 31 33 337

FCTX 65 22 2 0 9 403 128 15 8 53

HIPP 75 14 1 1 11 460 113 8 14 48

MEDU 57 20 0 0 5 188 53 19 7 67

OCTX 76 14 1 0 7 293 74 12 7 32

PUTM 54 9 1 0 7 234 91 8 1 13

SNIG 62 9 0 0 3 128 25 1 1 16

TCTX 103 22 4 0 9 432 106 19 6 33

THAL 73 13 1 0 8 248 63 8 2 14

WHMT 103 23 4 0 10 296 97 24 24 136

Table 5. Frequency distributions of eQTLs associated with one or more haplotypes. This table shows the 
association of a transcript/exon with one or more haplotypes as specified by bin categories. Haplotypes were 
grouped into four bins: 1, 2–5, 6–10, >10 and grouped into transcript-level and exon-level for each region of 
the brain. The “Max” haplotype bin is the maximum number of haplotypes associated with a single transcript/
exon. For example, at the transcript-level, there is only one eQTL detected in the putamen (PUTM) associated 
with between six to 10 haplotypes, the “Max” column would indicate that the exact number would be seven 
haplotypes. At the exon-level, there are 33 exons in the cerebellum (CRBL) that are associated with >10 
haplotypes, where one of these 33 exons is associated with 337 haplotypes (from the “Max” column).
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significantly between chromosomes at the transcript-level (P = 3.68 × 10−21), from Chr 17: 12.4% ± 2.8% 
trans-acting, up to Chr X: 85.7% ± 7.3% trans-acting (see Fig. 11a). Similarly, at the exon-level, there was a 
variation between chromosomes: Chr 21 had the lowest percentage of trans-eQTLs at 7.1% while Chr X had 
the highest at 79.6% ± 4.1% (see Fig. 11b).

Intriguingly, there was a highly significant region × chromosome interaction (P = 2.35 × 10−49) effect 
at the exon-level but not at the transcript-level (P = 1.00). Figure 12 illustrates this significant exon-level 
interaction for Chr 19, 21, 22 and X across the ten regions (see Supplementary Fig. S19 for the interactions 
between all 23 chromosomes and 10 regions). SNIG had high percentages of trans-acting eQTLs in Chr 19 
and Chr X but none in Chr 20 and 21. MEDU showed a similar pattern with high percentages of trans-acting 
eQTLs in Chr 19 and Chr X but none Chr 21. On the other hand, WHMT showed a contrary pattern where it 
had higher percentages of trans-acting in Chr 20 and 21 but lower percentages in Chr 19 and X (when com-
pared to SNIG and MEDU). These observations suggest that at the exon-level, the percentage of trans-acting 
eQTLs across the 10 regions are variable between different chromosomes; while at the transcript-level, the 
effect of the interaction of region and chromosome is uniform (e.g. if a region has a high percentage of 
trans-acting eQTL, it is held true for all chromosomes). This suggests that different combinations of chro-
mosomes carrying specific set of genes may affect targeted biological processes affecting the underlying 
mechanism of certain diseases. Further functional biological studies using these observations are required 
to validate the concept.

Region

Transcript-level Exon-level

cis trans Total cis trans total

CRBL 185 162 347 1237 574 1811

FCTX 25 22 47 176 422 598

HIPP 10 41 51 158 471 629

MEDU 17 29 46 127 114 241

OCTX 9 35 44 88 228 316

PUTM 10 35 45 34 347 381

SNIG 6 46 52 7 98 105

TCTX 26 53 79 182 370 552

THAL 15 45 60 67 160 227

WHMT 80 36 116 849 216 1065

Total 383 504 887 2925 3000 5925

Table 6. Number of eQTLs detected in a single-region only (SR-eQTLs). This table shows the number of 
single-region eQTL (SR-eQTL) mapped in each of the ten regions. At the transcript and exon levels, as well as 
cis versus trans. It is worth noting that the largest number of SR-eQTLs is in CRBL and it is clear that that the 
majority of single-region eQTLs are trans-acting (e.g. 504/887 = 56.82% trans-acting eQTLs at the transcript-
level).

No. 
Regions

Transcript level Exon level

Frequency 
(MR-eQTLs)

Cumulative 
Frequency (eQTLs)

Frequency 
(MR-eQTLs)

Cumulative 
Frequency (eQTLs)

1 *887 887 *5925 5925

2 87 174 523 1046

3 50 150 216 648

4 29 116 130 520

5 15 75 77 385

6 12 72 59 354

7 4 28 30 210

8 3 24 26 208

9 5 45 12 108

10 4 40 11 110

Total 1096 1611 7009 9514

Table 7. Frequency distributions of eQTLs and multi-region eQTLs (MR-eQTLs) for the number of regions. 
This table includes the number of eQTLs (i.e. frequency for single-region, SR-eQTL) and the number of multi-
region eQTLs (MR-eQTLs) (i.e. frequency for more than one brain region) grouped by transcript-level and 
exon-level. For example, at the transcript-level, there are four MR-eQTLs detected in all ten brain regions which 
adds to a total of 40 eQTLs (i.e. the cumulative frequency). At the exon-level, there are 77 MR-eQTLs detected 
in five brain regions, adding to 385 eQTLs. In total, there are 1,096 SR/MR-eQTLs and 1,611 eQTLs at the 
transcript-level. Furthermore, there were 7,009 SR/MR-eQTLs and 9,514 eQTLs at the exon-level. *The 887 and 
5925 are the SR-eQTLs from the transcript and exon level respectively.
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Effect sizes in cis- versus trans-eQTLs. Given that most MR-eQTLs were cis-acting with similar effect sizes across 
regions, we used a linear model to see if this pattern applied to eQTLs in general, in particular to see how eQTL 
effect size varied between brain regions, between chromosomes and between cis- versus trans-eQTLs. Overall, we 
found that the (absolute values of) effect sizes (|β|) of trans-eQTLs were on average larger than those of cis-eQTLs 
(effect sizes are taken as the allele substitution effect). Specifically, there was a significant cis/trans × region 
interaction for eQTL effect size at both the transcript-level (P = 1.07 × 10−14) and exon-level (P = 7.35 × 10−48). 
From Fig. 13a, the greatest difference at the transcript-level was observed for PUTM: trans = 2.08 ± 0.09, 
cis = 1.42 ± 0.05, while the smallest difference was observed for CRBL: trans = 1.63 ± 0.03, cis = 1.61 ± 0.03. 
Noticeably, there was no observed difference for WHMT. In addition, at the exon-level PUTM showed the 

CRBL FCTX HIPP MEDU OCTX PUTM SNIG TCTX THAL WHMT

CRBL

FCTX 37

HIPP 34 41

MEDU 25 20 36

OCTX 46 45 30 20

PUTM 15 26 28 14 21

SNIG 14 17 18 17 16 13

TCTX 49 62 54 27 53 28 17

THAL 19 27 32 21 26 20 18 34

WHMT 28 30 36 34 18 18 14 34 29

MR 89 91 86 63 80 41 32 114 48 80

Total 436 138 137 109 124 86 84 193 108 196

Percent 20 66 63 58 65 48 38 59 44 41

Table 8. Regional distribution of transcript-level multi-region eQTLs (MR-eQTLs). The MR-eQTLs used in 
this table are all the eQTLs found at the transcript-level (i.e. includes transcript-only and subset of “both”). The 
entries below the diagonal are the number of MR-eQTLs in common between those two regions. ‘Total’ is the 
total number of eQTLs detected in that brain region while ‘MR’ is the number of MR-eQTLs in that region that 
are also detected in other brain regions. For example, in the cerebellum (CRBL), 436 eQTLs were found at the 
transcript-level, of these, 89 were also detected in another region (i.e. 20%). Note that the number of MR-eQTLs 
shared between a region and another do not add up to the total number of MR-eQTLs for that particular region 
as there are MR-eQTLs that were detected in more than two regions. For example, there are 45 MR-eQTLs 
shared between the frontal (FCTX) and occipital (OCTX) cortices and some of these are also shared with the 
temporal cortex (TCTX) as well (i.e. entries can overlap).

CRBL FCTX HIPP MEDU OCTX PUTM SNIG TCTX THAL WHMT

CRBL

FCTX 227

HIPP 188 202

MEDU 112 111 226

OCTX 180 201 192 137

PUTM 76 95 97 67 107

SNIG 34 51 77 85 58 38

TCTX 197 223 202 143 208 101 55

THAL 99 124 154 138 139 78 68 156

WHMT 167 131 168 192 139 91 51 167 139

MR 473 438 472 393 383 169 114 451 282 414

Total 2284 1036 1101 634 699 550 219 1003 509 1479

Percent 21 42 43 62 55 31 52 45 55 28

Table 9. Regional distribution of exon-level multi-region eQTLs (MR-eQTLs). The MR-eQTLs used in this 
table are all the eQTLs found at the exon-level (i.e. includes exon-only and subset of “both”). The entries below 
the diagonal are the number of MR-eQTLs in common between those two regions. ‘Total’ is the total number of 
eQTLs detected in that brain region while ‘MR’ is the number of MR-eQTLs in that region that are also detected 
in other brain regions. For example, in the cerebellum (CRBL), 2284 eQTLs were found at the exon-level, of 
these, 473 were also detected in another region (i.e. 21%). Note that the number of MR-eQTLs shared between 
a region and another do not add up to the total number of MR-eQTLs for that particular region as there are 
MR-eQTLs that were detected in more than two regions. For example, there are 201 MR-eQTLs shared between 
the frontal (FCTX) and occipital (OCTX) cortices and some of these are also shared with the temporal cortex 
(TCTX) as well (i.e. entries can overlap).
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greatest difference: trans = 2.91 ± 0.05, cis = 1.90 ± 0.04, whereas the smallest difference at the exon-level was 
observed for MEDU: trans = 1.93 ± 0.05, cis = 1.94 ± 0.03 (see Fig. 13b). It is also worth noting, at the exon-level, 
there were four regions (CRBL, MEDU, OCTX and WHMT) where the average (absolute) cis-eQTL effect sizes 
were greater than trans-eQTL effect sizes. The largest in that direction was found to be CRBL: trans = 1.96 ± 0.03, 
cis = 2.01 ± 0.02. Similarly, there was a significant cis/trans × chromosome interaction at the transcript-level 
(P = 8.36 × 10−16) and exon-level (P = 3.60 × 10−81). From Fig. 14a, Chr 7 showed the greatest difference between 
effect sizes with trans: 2.32 ± 0.10 and cis: 1.44 ± 0.07. However, on three chromosomes (Chr 6, 17 and 22), the 
average (absolute) effect sizes of cis-eQTLs were greater than that of trans-eQTLs. The largest difference in that 
direction was found in Chr 17 where trans = 1.67 ± 0.10 against cis = 1.91 ± 0.05. At the exon-level, Chr X showed 
the greatest difference where the absolute value of trans-eQTL effect sizes were greater than that of cis-eQTLs: 

Figure 6. First three principal component scores of (a) all CNS-regions and (b) three cortex regions. These are 
3D scatterplots of the first three PCs from a PCA on the expression data of (a) 12 brain regions (cerebellum, 
frontal cortex, hippocampus, hypothalamus, medulla, occipital cortex, putamen, substantia nigra, spinal cord, 
temporal cortex, thalamus, and white matter) and (b) the three cortices (frontal, occipital and temporal). 
Each point represents a single brain sample from a specific region with regions colour coded to demonstrate 
regional differences in expression values. Looking at all regions, the first three components explain 41.9% of 
the variability in expression values across all transcripts. The cerebellum region (CRBL; red spheres) cluster 
separately from the other 11 regions indicating that the expression pattern in this region is unique. In addition, 
white matter (WHMT; purple spheres) also shows a separate cluster demonstrating different expression patterns 
than other regions. Looking at the cortex regions, the first three components explain 32.8% of the variability 
in expression values across all transcripts. The occipital cortex region (OCTX; light blue spheres) is clustering 
separately from the frontal cortex (FCTX; dark blue spheres) and the temporal cortex regions (TCTX; light 
green spheres), indicating that the expression pattern is more distinct in this region.
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Figure 7. A screen capture of the Shiny App. In this app, users can visualise the MR-eQTL patterns between 
specific regions of interest. The diameter of each sphere is proportional to the number of eQTLs associated 
with the region of the brain. The width of the line connecting a pair of regions is proportional to the number of 
eQTLs in common between those two regions with the actual number presented for the cis/trans-acting eQTLs. 
There are two pages, one for transcript-level and another for exon-level. The app can be found at https://lmf-sng.
shinyapps.io/Multi-Regional_eQTL/.

Figure 8. Estimated effects sizes of (a) transcript-level and (b) exon-level multi-region eQTLs. These are the 
regression coefficients of the MR-eQTLs found at the transcript-level and at the exon-level. Each line is an 
MR-eQTL with the points representing the effect size for a brain region. These are sorted from the lowest to the 
highest mean eQTL effect size with cis-acting MR-eQTLs in black and trans-acting MR-eQTLs in red. The plots 
also highlight the much smaller proportion of trans-acting MR-eQTLs in both transcript- and exon-levels.
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trans = 2.386 ± 0.061, cis = 1.796 ± 0.079 (see Fig. 14b). On the other hand, there were seven chromosomes (Chr 
1, 2, 9, 15, 16 and 22) where the average (absolute) effect sizes were greater in cis-eQTLs than trans-eQTLs. The 
chromosome with the greatest difference in this direction was Chr 16: trans = 1.824 ± 0.046, cis = 2.658 ± 0.043. 
This was also the greatest difference in any direction. Surprisingly, at the transcript-level, Chr 16 showed the 
smallest difference: trans = 1.788 ± 0.07, cis = 1.787 ± 0.168.

Discussion
In this study, in-depth analyses were performed to obtain more insights from the public UKBEC dataset. This 
commenced with evaluating the UKBEC sample size through subsampling and simulation studies to address 
the sensitivity and specificity to detect eQTLs. This was followed by the genome-wide mapping of eQTLs in ten 
brain regions which were then used to study their patterns, particularly in terms of multi/single-region eQTLs, 
exon-level eQTLs and trans-acting eQTLs. In this study, a decision was made to only use genotyped SNPs. While 
a common practice is to use imputation for missing SNP genotypes, it was considered that including additional 
SNPs was not essential, given the number of SNPs that are in tight linkage disequilibrium. Indeed, after the 

Figure 9. Estimated effect sizes for transcript-level eQTLs detected in all 10 brain regions. Each point 
represents the estimated effect size (regression coefficient) of the transcript-level eQTLs detected in a specific 
brain region. Regions are colour coded. These are the only four transcript-level eQTLs detected in all ten brain 
regions. From these plots, MR-eQTLs in general have similar effect sizes across the brain regions. The effect 
sizes for the MR-eQTLs corresponding to genes EFHB and LOC253039 in the cerebellum (CRBL) seems to 
diverge from the effect sizes in the other nine regions.
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initial eQTL mapping, there were redundant SNPs in LD associated with eQTLs that needed to be removed. A 
web-based visualisation interactive tool (Shiny app) was also developed to visualise and interrogate different 
patterns of eQTLs at multiple levels, making it a valuable tool in this area.

An important finding from the simulation part of this study was that only a small fraction of eQTLs were 
detected, given that sensitivity was generally under 5%. This suggests that only the ‘tip of the iceberg’ is being 
discovered. This finding was repeated across a range of model assumptions as in practice, we do not know the 
particular conditions in which the eQTL mapping data were generated. It is of course possible to discover more 
eQTL, but this would be at the expense of decreased specificity resulting in an excess of “false positives”. This 
underpins the need to maintain a stringent FDR threshold (≤0.01 as used in this study). Considering that only a 
partial set of genome-wide eQTLs is being detected, an important concern is how robust and reliable subsequent 
downstream analyses might be. For example, functional genomic network analysis is one of the main analyses 
used following this type of study and results should be looked at carefully. Nonetheless, these simulations did 
support that the number of samples used in this study which ranged from nSNIG = 101 to nWHMT = 131, is sufficient 
and as a result we recommend a bare minimum of 100 samples for eQTL mapping.

A key area investigated in this paper is the existence of MR-eQTLs, where one eQTL was mapped to more 
than one region, with extreme examples being mapped to all 10 regions. It was found that these MR-eQTLs have 
similar effect sizes within each region that they were acting in. Also, most of these MR-eQTL were cis-acting in 
contrast to many trans-acting eQTLs which tend to be unique to specific regions. Of particular note, there are 
four cis-acting MR-eQTLs that were present in all ten regions at the transcript-level with comparable effect sizes, 

Figure 10. Percentage of eQTLs that are trans-acting at (a) transcript-level and (b) exon-level by brain regions. 
Note that these numbers are corresponding to eQTLs that were found at the transcript-level (i.e. includes 
transcript-only and a subset of “both”) and at the exon-level (i.e. includes exon-only and a subset of “both”). 
Error bars of both plots are model-based standard errors. At the transcript-level (a), the percentage varies across 
the brain regions with the frontal cortex (FCTX) and white matter (WHMT) showing a low percentage (~20%) 
of trans-acting eQTLs while the substantia nigra (SNIG) and putamen (PUTM) show a higher percentage 
(≥50%). At the exon-level (b), it is important to consider the significant interaction of region and chromosome. 
The error bar for SNIG is not included and the error bar for the medulla (MEDU) is relatively large because 
for these regions, there are chromosomes with no trans-acting eQTLs (e.g. there are no exon-level trans-acting 
eQTLs on transcript Chr 21 in SNIG and MEDU).
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indicating that these MR-eQTLs are more likely to have an impact on gene functions which are important for the 
brain as a whole. One example of this is SNP rs5760176 associated with the gene GSTT1 (glutathione S-transferase 
theta 1). Interestingly, SNP rs5760176 (which is located within the deleted fragment of GSTT1) has been related 
to the null genotype (a homozygous deletion of part of GSTT1)20. There have been multiple studies of the GSTT1 
null genotype including an increased risk of brain tumours in UK European individuals21. In this study, the 
minor allele (A) of this SNP is associated with an increase of the transcript expression level (Supplementary 
Fig. S20). The encoded protein is part of the theta class of the GST superfamily that has been shown to play a 
critical role in the protection against oxidative stress and toxic chemicals within the cell22. This suggests that in 
the normal human brains, the increased expression levels of GSTT1 may play a protective role in the oxidative 
stress mechanism.

Another MR-eQTL (SNP rs1133328, minor allele G) is associated with a decreased in the expression of pro-
tein coding gene EFHB (EF-hand domain family member B) across all ten regions (Supplementary Fig. S21). 
EFHB is still understudied but a recent study has shown that it may play a role in cellular Ca2+ mechanisms23. 
Furthermore, unlike the previous MR-eQTL example, the effect size of this MR-eQTL in CRBL was smaller com-
pared to the other regions, highlighting the distinctive pattern of eQTLs in CRBL.

This leads us to highlight an interesting point: the uniqueness of CRBL compared to the other brain regions. 
Remarkably, CRBL has six times more SR-eQTLs compared with other regions and the lowest number of shared 
MR-eQTLs. The most significant cis-acting SR-eQTL (rs10886711) in the CRBL affects the expression of the 
PLPP4 (phosphatidic acid phosphatase type 2 domain containing 1 A) transcript where the ‘G’ allele is associ-
ated with a decrease in transcript expression level (Supplementary Fig. S22). This association is confirmed by 
another eQTL brain study9. In a previous GWAS, the PPLP4 gene is one of the top genes associated with cognitive 
decline in Alzheimer’s disease24. However, the nominated SNP in the GWAS study is not in the same LD block 
as our significant SNP. Therefore, PLPP4 needs to be studied further to understand its relation to some brain 

Figure 11. Percentage of eQTLs that are trans-acting at (a) transcript-level and (b) exon-level by chromosomes. 
Note that these numbers are corresponding to eQTLs that were found at the transcript-level (i.e. includes 
transcript-only and subset of “both”) and at the exon-level (i.e. includes exon-only and a subset of “both”). Error 
bars of both plots are model-based standard errors. At the transcript-level (a), the percentage of trans-acting 
eQTLs clearly varies between chromosomes with some chromosomes having less than 20% of eQTLs being 
trans-acting (i.e. Chr 5, 9, 13, 16, 17 and 22) while other chromosomes having more than 50% of eQTLs being 
trans- (i.e. Chr 7, 10, 14, 18, 19 and X). At exon-level (b), the significant interaction of region and chromosome 
needs to be considered. The error bars are missing for chromosomes 10, 13, 20 and 21 because one or more 
regions may not have any trans-acting eQTLs (e.g. there are no exon-level trans-acting eQTLs on transcript Chr 
20 in the substantia nigra (SNIG).
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mechanisms. Another SR-eQTL (rs4688690) associated with the ZCCHC13 (Zinc Finger CCHC-Type containing 
13) gene in the CRBL is trans-acting. The ‘A’ allele is associated with a decrease in ZZCHC13 transcript expression 
(Supplementary Fig. S23). Further investigation into the gene needs to be done as there is a limitation of informa-
tion about how this gene may link to brain diseases.

Major findings were obtained in this study are related to trans-eQTL in comparison to cis-eQTL: no other 
studies have made a systematic comparison of the number of cis- versus trans-eQTL, nor cis versus trans effect 
sizes using human brain, that we are aware of. There were differences in the ratio of cis-eQTL versus trans-eQTL 
between regions of the brain, and chromosomes. Another important finding was larger effect sizes of trans-acting 
eQTLs compared to cis-acting eQTLs in some chromosomes and brain regions. This was the case for both 
transcript-level and exon-level eQTLs. This contrasts with previous eQTL studies9,14 which suggested that the 
effect sizes of cis-acting eQTL are larger than trans-acting eQTL. A possible explanation for the differences in 
results from Gibbs, et al.9 were that they were investigating all four brain regions as a whole rather than at a 
regional level and without formal statistical testing as we have done. Furthermore, Grundberg, et al.14 was looking 
at different tissue types (adipose and LCLs) which may show different eQTL patterns to brain tissue. Interestingly, 
trans-acting eQTLs were more likely to be a SR-eQTL which suggests that there is a complex and unique system 

Figure 12. Percentage of exon-level eQTLs that are trans-acting for all regions on selected chromosomes. 
Transcript Chr 19, 20, 21 and X were chosen to demonstrate the significant interaction between region and 
chromosome on the percentage of exon-level trans-acting eQTLs. For example, across the four chromosomes, 
the putamen (PUTM) shows a constantly high percentage of trans-acting eQTLs (also seen in (b) while the 
substantia nigra (SNIG) has more variability, high on transcript Chr 19 and X but none on transcript Chr 20 
and 21. Transcript Chr X shows a high percentage of trans-acting eQTLs for all regions, highlighting what was 
shown in (a).
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of interaction between genes that regulate activity within a particular brain region. In addition, there were some 
haplotypes that were singularly associated with many expression traits in trans. This reinforces the idea that 
these trans-acting eQTLs have a complex pattern in multiple brain regions. However, these findings in relation 
to trans-eQTL need to be confirmed using a larger cohort size in various tissues and cell types in addition to 
functional biological studies.

Through the in-depth analyses undertaken in this study, more insights into the patterns of genome-wide 
eQTLs in the human brain were gained, especially in terms of trans-eQTLs and multi-region patterns. Future 
investigations using advanced platforms and tools, for example long RNA-sequencing analysis, are required to 
study the contrast of eQTLs across different brain regions and different human tissues/cell types in more depth.

Methods
collection of biological data. The brain tissue samples, DNA extraction and genotyping, together with 
the generation of the gene expression array data, are as described by Trabzuni, et al.18 and Ramasamy, et al.11. 
However, a brief summary of the collection procedure is provided here. In total, 134 human brain samples of 
European descent were obtained; all were classified as neurologically normal, and ages at death ranged from 16 to 
102 years old (median 59 years old). From each brain, tissue was extracted from ten regions of the brain, namely 
cerebellum (CRBL, from n = 130 brains), frontal cortex (FCTX, n = 127), hippocampus (HIPP, n = 122), medulla 
(specifically inferior olivary nucleus, MEDU, n = 119), occipital cortex (specifically primary visual cortex, OCTX, 
n = 129), putamen (PUTM, n = 129), substania nigra (SNIG, n = 101), temporal cortex (TCTX, n = 119), thal-
amus (THAL, n = 124), and intralobular white matter (WHMT, n = 131). Variation in the number of regions 
sampled per brain was due to the practicality of extracting sufficient tissue form each region.

RNA was extracted from each region of each sample and processed using Affymetrix Human Exon 
1.0 ST arrays. Only probe sets with at least three uniquely hybridising probes that were free of the 
polymorphism-in-probe problem were used. Expression levels were extracted from the remaining 291,705 
exon-level probe sets, and transcript-level expression was calculated for 26,493 transcripts by calculating the 

Figure 13. eQTL effect sizes for cis- versus trans-acting by brain regions at (a) transcript-level and (b) exon-
level. These are the absolute values of effect sizes for cis- and trans-acting eQTLs by ten brain regions. On 
average, the absolute values of trans-acting eQTL effect sizes are larger than that of cis-acting eQTLs. This can be 
seen more clearly at the transcript-level (a) than at the exon-level (b). At the transcript-level, the frontal cortex 
(FCTX), putamen (PUTM) and substantia nigra (SNIG) show the largest difference in effect sizes between cis- 
and trans-acting eQTLs. At the exon-level, the cerebellum (CRBL), medulla (MEDU), occipital cortex (OCTX) 
and white matter (WHMT) show slightly larger cis-acting eQTL effect sizes than trans-acting.
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Winsorised mean expression of all probe sets corresponding to each gene, as identified by using Netaffx annota-
tion file Release 31 (HuEx-1_0-st-v2 Probeset Annotations). Finally, the expression data were residual-adjusted 
for brain bank, gender and batch effects.

Samples were genotyped on the Illumina Infinium Omni1-Quad BeadChip array. Overall, 1 million SNPs 
were genotyped, but only 788,474 of these SNPs were used in the analysis. A filter of the major allele frequency 
(MAF) > 5% was then applied, reducing the SNP set to 787,220 (i.e. 99.8% of SNPs had MAF > 5%). Next, any 
SNP that was missing in any of the 134 samples was omitted, reducing the number of SNPs available to 720,851, 
i.e. 91.6% of these SNPs had a complete set of genotypes. The advantages of this filter is that each SNP has equal 
power for detection of eQTLs a priori, i.e. no bias is introduced by some SNPs having fewer replicates, with con-
sequent loss of power. Further details about SNP selection are shown in Supplementary Materials (S1).

expression QtL mapping. Due to the computational burden of assessing a large number of poten-
tial expression-SNP associations, a simple linear regression approach was used to map eQTLs. The R package 
MatrixEQTL17 was used as a computationally-efficient method of eQTL detection, with the eQTL effect size 
being the estimated regression coefficient (i.e. allele substitution effect for the minor allele on the expression 
phenotype). The Benjamini-Hochberg procedure was used for false discovery rate (FDR) control25, as part of 
MatrixEQTL, and a threshold of FDR < 0.01 was used to identify significant eQTLs. Note that the same procedure 
was used for the analysis of real and simulated data (see below). For the real data, a separate eQTL analysis was 
performed for each of the 10 brain regions, and separately for transcript-level and exon-level (region-by-region 
eQTL section).

For the real data, eQTLs with the same transcript (or the same exon, for exon-level eQTLs) with adjacent SNPs 
having an R2 over 0.5 were identified: these SNPs were considered as being in sufficient linkage disequilibrium, 
to represent a single block of SNPs, and hence a single eQTL. The eQTL with the highest significance in the block 
was identified, and the other redundant eQTLs in that block were discarded. This procedure was repeated sepa-
rately for each brain region. Following this, a list of eQTLs across all 10 regions was complied.

Figure 14. eQTL effect sizes for cis- versus trans-acting by transcript chromosome at (a) transcript-level and 
(b) exon-level. These are the absolute values of effect sizes for cis- and trans-acting eQTLs by chromosomes. On 
average, the absolute values of trans-acting eQTL effect sizes are larger than that of cis-acting eQTLs. This can be 
seen more clearly at the transcript-level (a) than at the exon-level (b). Note that the eQTLs used for these plots 
are all the eQTLs found at the transcript-level and exon-level respectively. There are some chromosomes where 
the absolute effect sizes of cis-acting eQTLs are larger than that of the trans-acting: transcript Chr 6, 17 and 22 
at the transcript-level and transcript Chr 1, 2, 9, 16 and 22 at the exon-level. Transcript Chr 16 showed a large 
increase in cis-acting effect sizes going from the transcript-level to the exon-level.
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Sample size evaluation: analysis of transcript-level expression from cerebellum (cRBL) (real data).  
As a first step towards evaluating the adequacy of the number of brain samples available for this study, eQTLs 
from the cerebellum were used as a model for other regions (before redundant SNPs were removed). Four sample 
sizes were evaluated (n = 100, 50, 25, and 13) against the original n = 130 brains. Each sample size was replicated 
ten times (randomly selected without replacements). MatrixEQTL was used to identify the number of eQTLs for 
each generated data set, and those in common with the original full analysis (n = 130 brains) was determined.

Sample size evaluation: Simulations data and different Scenarios. Following the random selection 
of CRBL real data, R v 3.4.226 was used to simulate data. For simplicity, the number of genetic markers (nSNP) and 
gene transcripts (ntrs) were both set at 20,000 for all simulations and scenarios. Based off the sample sizes available 
from the UKBEC, six sample sizes were chosen (nsample = 50, 100, 150, 200, 250, 300) and for every sample size, 
100 simulations were run. These simulation parameters were kept constant for all five scenarios tested: 1: SNP 
genotypes in linkage equilibrium (LE); 2: SNP genotypes in linkage disequilibrium (LD); 3: SNP genotypes with 
genotyping error (GE); 4: lower expression level variance compared with residual variance (LV) and 5: dominance 
effect (Dom); (i.e. for each scenario, there were 100 simulations for the six sample sizes. So, a total of 600 simula-
tions were run for each scenario, resulting in a grand total of 3,000 simulations for the study.

The method of each scenario is based on the simplest scenario, LE and parameters are kept constant unless 
otherwise described.

Scenario 1: SNP genotypes in linkage equilibrium (LE). Allele frequencies of SNPs were randomly generated from 
a beta distribution with shape parameters a = b = 0.7, producing a set of SNPs which tend to have either high 
or low allele frequencies as observed in human SNP data. Only simulated SNPs with allele frequencies greater 
than 0.05 and less than 0.95 were kept and was used as the genotype probability to generate a matrix of genotype 
data using a binomial sampling distribution (0, 1 or 2 copies of the allele, at each SNP with genotype frequencies 
(1 − pi) 2, 2(1 − pi)pi, pi

2)), assuming Hardy-Weinberg equilibrium.
Expression QTL effects, as allele substitution (additive) effects, were simulated in two steps, first simulating 

the occurrence of trans- and cis-eQTLs, followed by simulating the effect sizes, i.e. β values. The probability of 
a SNP having trans-acting eQTLs was simulated from a beta distribution with shape parameters a = 0.0004 and 
b = 10. The resulting probabilities were used as the probability of success for a binomial distribution to simulate 
trans-eQTLs. Cis-eQTLs were generated based on a binomial distribution with a 0.05 probability. For both cis- 
and trans-eQTLs, 1 corresponds with a simulated eQTL and 0 to the absence of a simulated eQTL. This matrix 
of 0 s and 1 s was multiplied by a matrix of eQTL effects generated from a normal distribution, N(0, σ2

β) where 
σβ = 1.15, resulting in a matrix of eQTL effects. Note that no minimum effect size was imposed on these eQTL 
effect sizes.

An additional matrix of random errors was simulated from a normal distribution, N(0, σ2
ε) where σε = 1. 

Transcript expression values were simulated using the sum of these two matrices (genotype data × eQTL effects, 
random errors).

Scenario 2: SNP genotypes in linkage disequilibrium (LD). In the LD scenario, correlated SNPs were simulated at 
the genotype data simulation step instead of independent SNPs. For more details, see Supplementary Materials 
(S2).

Scenario 3: SNP genotypes with genotyping error (GE). In this scenario, another SNP genotype matrix with gen-
otyping errors was generated in the genotype simulation step. Genotyping error parameters were calculated from 
the cross-classification of SNPs from microarrays and sequencing reported by Rogers, et al.27 where the sequenc-
ing data were assumed to be more accurate and thus considered the “true genotype”27 (Supplementary Materials 
(S3)). This table (Supplementary Table S1) was used to create an “error” SNP genotype matrix that was used as the 
genotyping data for the R package MatrixEQTL17 as opposed to the “true” SNP genotype (as in the LE scenario).

Scenario 4: Lower expression level variance (LV). In this scenario, eQTL effects were generated from a normal 
distribution, N(0, σ2

β) where σβ = 0.85, as opposed to σβ = 1.15 (as in the LE scenario).

Scenario 5: Dominance Effect (Dom). In addition to the additive effects simulated (as in LE scenario), domi-
nance effects were simulated randomly from a normal distribution, N(0, σ2

D) where σD = 0.25. From a matrix of 
SNP genotyped (as in LE scenario), another matrix where the homozygous genotypes were recoded as 0 and the 
heterozygous genotypes recoded as 1 was produced. Similar to the LE scenario, transcript expression values were 
calculated based on a linear model but with the dominance effects added.

With all scenarios, the R package MatrixEQTL17 was used to identify eQTLs followed by a filtering step where 
the false discovery rate (FDR) threshold (0.01) was set. These “detected eQTLs” and simulated “true” eQTLs were 
used to calculate the false positive (FP), false negative (FN), true positive (TP) and true negative (TN) eQTLs for 
a range of eQTL effect size thresholds, k (0 ≤ k ≤ 3). eQTLs were included in the calculations if the absolute values 
of their effect sizes (|β|) were equal to or above the threshold (i.e. |β| ≥ k). Following this, the sensitivity (Se) and 
specificity (Sp) were calculated where the sensitivity is the proportion of simulated eQTLs of a certain effect size 
or greater being correctly identified as eQTLs and the specificity is the proportion of non-existent eQTLs, i.e. 
background noise, being identified as such, i.e. Se = TP/(TP + FN), and Sp = TN/(TN + FP). The average sensi-
tivity and specificity for the 100 simulations of each sample size for each scenario were then calculated.

In addition, three FDR thresholds (0.10, 0.05 and 0.01) were used to filter “detected eQTLs” for the LE sce-
nario when n = 150 and k = 2.
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combining lists of transcript-level and exon-level eQtLs. To combine the lists of eQTLs detected 
at transcript-level and exon-level, exon-level eQTLs corresponding to a transcript were identified. Where 
a transcript-level eQTL was identified, and none of its corresponding exons were eQTLs, it was considered 
“transcript-only”. Similarly, if the exon-level eQTL identified within a transcript cluster had no transcript-level 
eQTL identified, it was considered “exon-only”. For eQTLs with some exon-level eQTLs within a transcript which 
also had a transcript-level eQTL, these were considered “both”. Please note that the both eQTLs category depend 
on the length (number of exons) of the corresponding transcript.

Cis- and trans-acting eQtLs. Based on exploratory plots of distances between the transcript (or exon) 
and the SNP on the same chromosome, undertaken on a log scale, a cut-off distance of 106.5 bp = 3.16 Mb was 
used, i.e. if the distance was under 3.16 Mb it was classified cis-acting, otherwise is was classified trans-acting 
(Supplementary Materials (S4)). To assess patterns of cis- versus trans-acting eQTLs, logistic regression was used 
(with trans coded as ‘1’, cis as ‘0’), with explanatory variables of brain region, chromosome, as well as their interac-
tion. In addition, effect sizes of eQTLs (absolute value of regression coefficient from MatrixEQTL) were analysed 
using a linear model, with explanatory variables of cis versus trans, region, and chromosome, as well as their 
interactions. Both these analyses were undertaken using ASReml-R28.

Single-region (SR-eQtLs) and Multi-region (MR-eQtLs). To investigate the existence of SR/
MR-eQTLs, i.e. an eQTL expressed in one region only or more than one brain region respectively, eQTLs of 
the same transcript ID (or same probe-level ID) and with nearby SNP positions (R2 > 0.5) were identified, and 
considered the same eQTLs, operating in all these regions. The numbers of SR/MR-eQTLs are summarised in 
Tables 3 and 6 in detail for all categories (transcript/exon-only, both, cis and trans as outlined previously). The 
different patterns of multi-region eQTLs in terms of frequency distributions were explored. Effect sizes of eQTLs 
were also compared across regions for transcript-level and exon-level eQTLs.

3D visualisation web tool “Shiny app”. As a means of visualising MR-eQTLs and SR-eQTLs, an interac-
tive 3D app was constructed, with the size of the node (sphere) representing the number of eQTLs detected in that 
region, and the width of the line connecting the nodes indicating the number of eQTLs in common between that 
pair of regions. This has been undertaken for all eQTLs detected for transcript or exon levels, as well as subsets of 
eQTLs (i.e. cis-acting and trans-acting). This visualisation was created using the rgl package29 and the networkd3 
package in R30. To make it accessible outside of the R environment, these visualisations were published using 
shiny31.

Data availability
UKBEC dataset analysed in the current study is a public dataset and have been previously published (PMID: 
24264146, PMID: 25174004, PMID: 24519379) and available on Gene Expression Omnibus (GEO) using the 
accession code GSE30483 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30483) and accession code 
GSE46706 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46706) as well as on the following websites: 
(https://omictools.com/braineac-tool) and (http://www.braineac.org/). In addition, R code used and described in 
the study is available on the University of Sydney’s GitHub Repository at (https://github.sydney.edu.au/lsng7727/
Genome-wide-human-brain-eQTL).
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