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Cardioembolic stroke (CS) is the most common type of ischemic stroke in the clinic, leading to high morbidity and mortality
worldwide. Although many studies have been conducted, the molecular mechanism underlying CS has not been fully grasped.
This study was aimed at exploring the molecular mechanism of CS using comprehensive bioinformatics analysis and providing
new insights into the pathophysiology of CS. We downloaded the public datasets GSE58294 and GSE16561. Differentially
expressed genes (DEGs) were screened via the limma package using R software. CIBERSORT was used to estimate the
proportions of 22 immune cells based on the gene expression profiling of CS patients. Using weighted gene correlation
network analysis (WGCNA) to cluster the genes into different modules and detect relationships between modules and immune
cell types, hub genes were identified based on the intersection of the protein-protein interaction (PPI) network analysis and
WGCNA, and their clinical significance was then verified using another independent dataset GSE16561. Totally, 319 genes
were identified as DEGs and 5413 genes were clustered into nine modules using WGCNA. The blue module, with the highest
correlation coefficient, was identified as the key module associated with stroke, neutrophils, and B cells naïve. Based on the PPI
analysis and WGCNA, five genes (MCEMP1, CLEC4D, GPR97, TSPAN14, and FPR2) were identified as hub genes. Correlation
analysis indicated that hub genes had general association with infiltration-related immune cells. ROC analysis also showed they
had potential clinical significance. The results were verified using another dataset, which were consistent with our analysis. Five
crucial genes determined using integrative bioinformatics analysis might play significant roles in the pathophysiological
mechanism in CS and be potential targets for pharmaceutic therapies.

1. Introduction

Stroke is a devastating cerebrovascular disease, containing
two types: ischemic stroke (IS) and hemorrhagic stroke
(HS). Accounting for approximately 80% of all cases, ische-
mic stroke is the most common subtype, which is triggered
by arterial embolization or thromboembolism in the cere-
brum [1]. A wide range of clinical manifestations of IS

includes physical disability, impaired cognitive and emo-
tional abilities [2].

Constituting about 20% of ischemic stroke, cardioem-
bolic stroke (CS) was mainly caused by nonvalvular atrial
fibrillation, myocardial infarction, and rheumatic heart
disease [3, 4]. Atrial fibrillation is not only the most com-
mon sustained cardiac arrhythmia but also one of the most
frequent risk factors that contribute to CS. Moreover, along
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with fast economic development, social urbanization, aging
of population, and changes of lifestyle, the prevalence of
CS has increased dramatically, imposing a tremendous
medical and social-economic burden on patients. Preventive
strategies are generally recommended for all cardioembolic
stroke patients, including universal elements of cardiovascu-
lar risk factor management such as treatment of diabetes
mellitus, blood pressure control, alcohol and tobacco reduc-
tion, and antiplatelet medication [5]. Diagnosis of stroke was
restricted to history, physical examination, and radiological
imaging, which were with limited availability and higher
cost. Furthermore, due to the lack of specific early diagnostic
markers at the early onset of CS, missed diagnosis and
misdiagnosis forces remain relatively common in patients.
Thrombolytic therapies are currently the most effective
treatment available after CS, regrettably, due to the main
method for the treatment of cerebral infarction which is
limited by a time window (about 3 h), which results in only
around one-third of patients with diagnosed CS which are
suitable for receiving these curative therapies [6]. Hence,
identification of specific biomarkers for patients at the early
onset of CS will prove beneficial. The mechanism of cardio-
embolic stroke (CS) is complex and involves a myriad of
distinct pathogenic factors, consisting of inflammation,
oxidative stress, excitotoxicity, apoptosis, excitotoxicity, ion
imbalance, and neuroprotection [7]. Nevertheless, the
detailed communicative regulatory mechanisms leading to
CS remain incompletely understood. Increasing evidence
indicates that immune cells play a considerable role in the
pathogenesis of CS. Immune-mediated inflammatory
markers such as CRP and IL-6 have been reported to be
associated with CS [8]. However, the specific molecular
mechanism underlying immune or inflammatory marker-
mediated CS still needs further investigation.

Weighted gene correlation network analysis (WGCNA)
is used to build a coexpression network, detect gene
modules, and assess the relationships between gene modules
and the biological phenotypes in order to screen the candi-
date diagnostic biomarkers or potential therapeutic targets.

In our study, we aimed to explore the association between
immune cells and CS using integrated bioinformatics
methods. CIBERSORT was applied to estimate the propor-
tions of 22 immune cells based on the gene expression profil-
ing of CS patients, and WGCNA was then used to identify
the key module associated with CS and immune infiltration.
Candidate hub genes were then identified within the key
modules. Based on the protein-protein interaction (PPI) net-
work, hub genes were identified. Potential clinical signifi-
cance of the genes was then determined by using the
receiver operating characteristic curve analysis. We hope that
this research can offer new insights into significant diagnostic
biomarker and potential therapeutic targets for treating CS.

2. Methods

2.1. Medical Ethics. The raw datasets were available from the
NCBI Gene Expression Omnibus repository under accession
number (GEO https://www.ncbi.nlm.nih.gov/geo/info/

linking.html; GSE58294 and GSE16561). In our study,
neither human trials nor animal experiments were applied.

2.2. Data Acquisition. We downloaded the corresponding
datasets (GSE58294, GSE16561) available from the GEO
database for further analysis. In the dataset of GSE58294
(GPL570), the expression matrix of a total of 92 individuals
was acquired from the blood samples, including 69 cardio-
embolic stroke patients and 23 controls. Cardioembolic
stroke subjects were analyzed at three time points: less than
3 hours, 5 hours, and 24 hours following the event. The
GSE16561 dataset (GPL6883) contains 39 diagnosed with
ischemic stroke, and 24 healthy control subjects. All samples
were obtained from the blood of patients.

2.3. Data Preprocessing and Differentially Expressed Gene
(DEG) Screening. The origin microarray data preprocessing,
including normalization and background correction, was
performed by using the “Affy” package in R; then, the gene
expression profile was generated [9]. Principal component
analysis was performed to distinguish the cardioembolic
stroke and control samples. Differentially expressed genes
(DEGs) between two groups were identified using the Biocon-
ductor package Limma (linear models for microarray analy-
sis) [10]. Genes with ∣log 2 fold‐change ðFCÞ ∣ >1 and adjust
p value < 0.05 were regarded as statistically significant DEGs.

2.4. GO and KEGG Analyses. Gene Ontology (GO) analysis
and a Kyoto Encyclopedia of Genes and Genomes (KEGG)
term enrichment analysis were performed using Cluster-
Profiler software in R language, which showed the biolog-
ical processes (BPs), cellular components (CCs), molecular
functions (MFs), and pathways related to DEGs and genes
in the key modules identified in the following. The enrich-
ment significance threshold was set to an adjusted p value
below 0.05 [11].

2.5. GSEA Analysis. Using the median expression level of
Mast Cell Expressed Membrane Protein 1(MCEMP1) as cut-
off, cardioembolic stroke samples were divided into low and
high expression groups. Gene set enrichment analysis
(GSEA) was conducted by the “gseaplot2” package to iden-
tify the differentially activated signaling pathways in the high
MCEMP1 expression group. An ∣NES∣ > 1 and FDR < 0:25
were considered as statistically significant (NES: normalized
enrichment score; FDR: false discovery rate) [10].

2.6. Immune Cell Infiltration Analysis. Normalized gene
expression matrixes were utilized to estimate the relative
proportions of 22 types of infiltrating immune cells using
the CIBERSORT algorithm [12]. The correlation between
immune cells was determined by Spearman’s correlation
and visualized by heatmap. Next, significant immune cells
between cardioembolic stroke and control samples were
screened with the threshold Wilcoxon test at p value < 0.05.

2.7. Weighted Gene Coexpression Network Analysis

2.7.1. Construction of Coexpression Network. The genes
ranking in the top 25% of the median absolute deviation in
the corresponding expression matrix were selected for
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Figure 1: Continued.
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Weighted Gene Coexpression Network Analysis (WGCNA)
by the “WGCNA” package in R [13]. Briefly, WGCNA was
applied to construct a coexpression network based on the
matrix of pairwise Pearson correlation coefficients. To satisfy
the scale-free topology, an appropriate soft thresholding
power β should be determined. Then, the genes can be clus-
tered into different functional modules with different colors,
which were clustered and classified by the dynamic tree cut
algorithm with min. Module size was 50, and the minimum
height for merging modules was 0.25. The grey module
represented the genes that cannot be merged.

2.7.2. Correlation Analysis and Identification of Key Modules.
Module eigengenes (MEs) were considered to be a represen-
tation of the corresponding gene expression profile in differ-
ent modules. Stroke and immune cell infiltration levels were
selected as the main clinical traits. The module membership
(MM) was defined as the correlation of MEs with gene
expression. Gene significance (GS) was defined as the corre-
lation coefficient in the Spearman correlation between gene
expression and clinical traits. Modules with the highest GS
levels were regarded as key modules and selected for further
analysis. Furthermore, genes with MM> 0:8 and GS > 0:5
were defined as hub genes [14].

2.8. Construction of PPI (Protein-Protein Interaction)
Network. DEGs were imported to the search tool of the
STRING database to generate the PPI network identifying
the interactions between the hub genes with the threshold
of interaction score > 0:9. The hub genes’ expression pattern
and biological function in the PPI network were visualized
by “igraph” (version 1.2.6) and “ggraph” (version 1.0.1)
packages in “R” [15, 16]. PPI networks of MCEMP1 were
calculated using the GeneMANIA algorithm [17].

2.9. Identification of Key Genes. To screen out the key genes
in the development of cardioembolic stroke, we made inter-
section of hub genes in the WGCNA and PPI as candidate
hub genes. Heatmaps of the candidate hub gene expression
patterns were generated with the R package “ComplexHeat-
map” (version 2.0.0) [18]. In order to ensure the accuracy and
robustness of identification of key genes, CytoHubba, a plug-in
Cytoscape software (version 3.6.7), was applied to screen the
top 10 key genes in candidate hub genes’ PPI networks via
the degree methods [19]. The intersection of five algorithms
in CytoHubba was employed to generate real key genes.

2.10. Correlation Analysis of Immune Cells and Key Genes.
We investigated the relationship between key gene’s expres-
sion and relative percentages of immune cells in
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Figure 1: Data preprocessing and identification of DEGs. (a) Box plots after normalization of the raw data between cardioembolic stroke
and healthy control samples. (b) PCA for cardioembolic stroke and healthy control samples. (c) UMAP analysis. (d) The volcano plot of
DEGs. (e) The heatmap of top 40 DEGs. DEGs: differentially expressed genes; PCA: principal component analysis; UMAP: uniform
manifold approximation and projection.
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cardioembolic stroke samples by using Spearman correlation
test analysis. The results were visualized using the R package
ggplot2 in R software [10]. p < 0:05 was considered statisti-
cally significant.

2.11. Receiver Operating Characteristic (ROC) Analysis. To
identify the potential clinical significance of key genes, the
diagnostic values of the key genes in GSE58294 were evalu-

ated by applying “pROC” packages [20]. Another dataset
(GSE16561) was used for independent verification.

2.12. Validation of the Key Gene Expression.We downloaded
the validation datasets GSE58294 and GSE16561 from the
GEO database (http://www.ncbi.nlm.nih.gov/geo/). All
expression values of genes were normalized. A Wilcoxon
rank-sum test was performed by comparing the key gene
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Figure 2: Functional enrichment analysis of DEGs. (a) GOCircle plot showing the top 10 of significantly changed functional terms of DEGs.
The height of bars in the inner ring represented the -log 10 adjust P values of GO terms, with higher bars indicating higher significance of
the GO category, and color corresponded to the z-score. The scatter plots in the out ring showed the expression levels of each gene (log fold
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expression value between stroke and control using a p value
< 0.05 to indicate statistical significance. Box plots of the
expression of key genes were illustrated by the ggplot2 R
package.

2.13. Statistical Analysis. All data analyses were performed in
R v3.6.3. Details of these bioinformatics analyses were
described in corresponding subsections. A p value < 0.05
was defined as statistically significant.

3. Results

3.1. Data Preprocessing and DEG Screening. Box plots after
normalization of the raw data are illustrated in Figure 1(a).
Principal component analysis (PCA) and uniform manifold
approximation and projection (UMAP) analysis showed a
good distinction between cardioembolic stroke and control
samples (Figures 1(b) and 1(c)). Under the screening criteria
of padjust < 0:05 and ∣ log 2 fold‐change ðFCÞ∣ > 1, a total of
319 genes were identified as DEGs, of which 198 genes were
upregulated and 121 genes were downregulated. The
volcano plot of DEGs is displayed in Figure 1(d). DEGs in
GSE58294 were arranged based on the fold change of
expression values, the top 40 were illustrated by applying
heatmap (Figure 1(e)).

3.2. Functional Enrichment Analyses. All DEGs were selected
for function enrichment analysis; the top 10 most significant
GO terms according to their adjust p values were displayed
in GOCircle plots (Figure 2(a)). The majority of terms in
the biological process category were associated with neutro-
phil activation (GO:0042119), neutrophil degranulation

(GO:0043312), and neutrophil activation involved in
immune response (GO:0002283). Genes involved in biolog-
ical processes that were upregulated in cardioembolic stroke
were shown using a chord plot (Figure 2(b)). We further
explored our microarray data by using GSEA with the
“ggplot2” package in R language; the results indicated that
the cardioembolic stroke groups were mostly enriched in
terms of neutrophil degranulation, cellular response to
external stimuli, toll-like receptor cascades, interleukin-1
family signaling, and nod-like receptor signaling pathway
(Figure 2(c)). Hub genes in key module were selected to per-
form GO enrichment analyses in order to investigate the
biological function, as displayed in Figure 3(b).

3.3. Immune Cell Infiltration Analysis. Applying the CIBER-
SORT algorithm, we investigated the difference of immune
infiltration among cardioembolic stroke and control samples
in 22 subpopulations of immune cells (Figure 4(a)). Further-
more, the results of correlation analysis of infiltrated
immune cells implied that T cells CD8 and B cells naïve,
neutrophils, and macrophages M2 were positively corre-
lated, and T cells CD8 and T cells CD4 naïve, neutrophils,
and T cells CD8 were negatively correlated (Figure 4(b)).
As shown in the heatmap and violin plot, compared with
the control sample, T cells memory activated (p < 0:001),
NK cells resting (p = 0:003), macrophages M0 (p = 0:005),
macrophages M2 (p = 0:003), and neutrophils (p = 0:001)
infiltrated more in the cardioembolic stroke group, while B
cells naïve (p < 0:001), T cells CD8 (p = 0:005), and T cells
CD memory resting (p = 0:009) showed the opposite results
(Figures 4(c) and 4(d)).

MCC

DMNC

MNC

Degree
EPC

0

0

0

1
5

0
0

0
0

0

0
0 0

0

0

0

0

0

0 0

0

0 0

0

0

0 0 0

0
0 1

CLEC4D, MCEMP1, GPR97,
FPR2, TSPAN14

(f)

Figure 3: Identification of the key genes. (a) Heatmap of 110 hub genes in blue module. (b) GO analysis of 110 hub genes in blue module.
(c) PPI network of 58 DEGs. The red color represented the upregulated genes while the blue color represented downregulated genes. DEGs
were subsequently divided into different clusters based on their biological functions. The width of intergenic lines indicated the score of
coexpression. (d) Venn plot of hub genes in WGCNA and DEGs. A total of 25 genes were identified as key genes. (e) Heatmap showing
the expression profile of 25 key genes. (f) A Venn diagram between five algorithms of CytoHubba. CLEC4D, MCEMP1, GPR97, FPR2,
and TSPAN14 were determined as the crucial genes in the cardioembolic stroke.
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Figure 4: Immune cell infiltration analysis. (a) Relative proportions of 20 types of infiltrated immune cells between cardioembolic stroke
and healthy control groups. (b) Correlation heatmap of all 20 immune infiltrated cells. (c) Heatmap of the 20 immune cell proportions
in all samples in GSE58294. (d) Violin plot showing the significant changes of the immune infiltration level in cardioembolic stroke
compared to the control group.
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3.4. Correlation Analysis between Key Genes and Infiltration-
Related Immune Cells. As implied from the correlation anal-
ysis, MCEMP1 displayed a positive correlation with neutro-
phils (r = 0:489, p < 0:001) and macrophages M0 (r = 0:376,
p = 0:001) and a negative correlation with NK cells resting
(r = –0:383, p = 0:001). FPR2 displayed a positive correlation
with neutrophils (r = 0:728, p = 1:26E − 12) and a negative
correlation with T cells CD8 (r = −0:244, p = 0:042).
TSPAN14 was positively correlated with neutrophils
(r = 0:468, p < 0:001) and macrophages M0 (r = 0:266, p =
0:0267). GPR97 positively correlated with neutrophils
(r = 0:726, p = 1:66E − 12) and negatively correlated with T
cells CD4 memory resting (r = −0:325, p = 0:006) and T cells
CD8 (r = −0:263, p = 0:029). CLEC4D showed positively cor-
related with neutrophils (r = 0:29, p = 0:014) and negatively
correlated with macrophages M2 (r = −0:321, p = 0:007), T
cells CD8 (r = −0:388, p < 0:001), and NK cells resting
(r = −0:331, p = 0:005) (Figures 5(a)–5(e)).

3.5. Construction of Coexpression Network. Based on the
screening criteria above, a total of 5413 genes were subjected
to WGCNA. To detect the possible outlier samples, a cluster
tree including 92 samples, clinic traits, and infiltration-
related immune cells was performed by applying average
linkage methods. Results indicated that no outlier was found
in the samples included in the WGCNA analysis
(Figure 6(a)). We then established a scale-free (scale-free
R2 = 0:90) coexpression network with the soft-thresholding

power β = 3 (Figures 6(b) and 6(c)). After merging the
highly correlated modules by a clustering height cut-off of
0.25 (Figure 7(a)), nine modules were finally obtained for
further analysis. Ultimately, initial modules and merged
modules display under the clustering tree (Figure 7(b)).
Then, the correlations between the modules were analyzed;
there was no significant correlation between different mod-
ules (Figure 7(c)). The correlation analysis of transcripts
was performed within the modules, and no significant corre-
lation between different modules was detected, implying the
reliability of the division of modules (Figure 7(d)).

3.6. Identification of the Clinically Significant Modules and
Hub Genes. The association between the modules and clini-
cal traits (disease status and infiltration-related immune
cells) was explored by measuring the correlation between
ME values and clinical features. The results indicated that
blue module was positively correlated with cardioembolic
stroke (r = 0:86, p = 1e − 27), neutrophils (r = 0:64, p = 4e −
12), and macrophages M0 (r = 0:4, p = 8e − 05), and negative
correlations were observed between blue modules and B cells
naive (r = −0:58, p = 9e − 10) and blue modules and T cells
CD8 (r = −0:45, p = 7e − 06) (Figure 8(a)). Additionally, the
module significance displayed in bar diagram showed the
mean gene significance across whole genes of each module.
Blue module was identified as the most clinically significant
module (Figure 8(b)). Scatter plots of GS for stroke vs. MM
(Figure 8(c)), GS for neutrophils vs. MM (Figure 8(d)), GS
for B cells naive vs. MM (Figure 8(e)), and GS for T cells
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Figure 5: Correlation analysis between key gene expressions and the relative percentages of immune cells in the cardioembolic stroke group.
(a–e) Lollipop plots illustrated the relationship between the relative proportions of infiltration-related immune cells and (a) GPR97, (b)
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Figure 6: Clustering of samples and selection of the best fit soft-thresholding power. (a) Clustering according to the expression level of
cardioembolic stroke patients. The color intensity was proportional to disease status (stroke, no stroke) and infiltration-related immune
cells. (b) The cut-off for soft-thresholding power β was set to be 0.80, and β =3 was determined. (c) The coexpression network exhibits a
scale-free topology.
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Figure 7: Continued.
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CD8 vs. MM (Figure 8(f)) in the blue module were plotted,
respectively. The results indicated that blue module was
highly correlated with stoke and immune infiltration.
Under the screening criteria of ∣MM∣ > 0:8 and ∣GS∣ > 0:5
, 110 highly connected hub genes were determined for
further analyses.

3.7. Screening Key Genes by Integrating Multiple Analysis.
Heatmap showed 110 hub genes in the blue module that
were highly expressed in the cardioembolic stroke group
(Figure 3(a)). To gain further insight into the biological
functions of the hub genes in blue module, GO analyses were
applied and results indicated they were mainly enriched in
“neutrophil activation,” “neutrophil-mediated immunity,”
“regulation of immune response,” “T cell cytokine produc-
tion,” and “CD4 positive, alpha-beta T cell cytokine produc-
tion” (Figure 3(b)). DEGs were imported into the online tool
of the STRING database to generate the PPI network, and a
total of 58 genes were identified as hub genes, and their
expression pattern and biological functions are also visual-
ized in Figure 3(c). The results implied that most of them
were associated with immune response and collagen meta-
bolic process. In addition, we used the Venn diagram to
overlap the hub genes in the PPI network and blue module

targets and found 25 overlapped DEGs (Figure 3(d)). As dis-
played in Figure 3(e), the 25 gene expression patterns
between stroke and control were also visualized. Five algo-
rithms of the CytoHubba, containing MCC, DMNC, MNC,
EPC, and Degree, were then used to process the 25 DEG
PPI network to screen the top ten genes. A Venn diagram
(Figure 3(f)) was made to build the intersection of genes
identified by five algorithms, and CLEC4D, MCEMP1,
GPR97, FPR2, and TSPAN14 were determined as key genes.

3.8. MCEMP1 and Its Associated Signal Pathways. We used
the full information provided by the Gene-MANIA database
to identify the 20 next neighboring proteins of the
MCEMP1-related query genes; CLEC4D and FPR2 were
involved in this analysis. Networks were presented in
Figure 9(a). To explore the potential biological functions
of MCEMP1 in CS, GSEA was applied to identify the dif-
ferentially activated signaling pathways in the high
MCEMP1 expression group. Results indicated that the
term of neutrophil degranulation, NFKB pathway, inflam-
masomes, the NLRP3 inflammasome, and IL1R pathway
was significantly enriched in the high expression group
of MCEMP1 (Figure 9(b)). Heatmap displayed the associ-
ated significantly enriched genes in the term of NLRP3
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Figure 7: Construction of coexpression network. (a) Clustering dendrograms were cut at a height of 0.25 to detect and combine the similar
modules. (b) Origin and merged modules displaying under the clustering tree. (c) Adjacency heatmap of module eigengenes. Red indicated
high correlation, and blue represented the opposite results. (d) Clustering dendrogram of nine module eigengenes.
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inflammasome (Figure 9(c)), and interleukin signal path-
way (Figure 9(d)).

3.9. ROC Analysis of Key Genes. We performed receiver
operating characteristic (ROC) analysis of CLEC4D,
MCEMP1, GPR97, FPR2, and TSPAN14 to further validate
the diagnostic value of those key genes. The results indicated
that all these crucial genes showed potential clinical signifi-
cance at 3 h (Figure 10(a)), 5 h (Figure 10(b)), and 24 h
(Figure 10(c)) following the cardioembolic stroke event. Fur-
thermore, the validation dataset (GSE16561) confirmed the
above-presented results: CLEC4D (AUC 0.913), GPR97
(AUC 0.847), MCEMP1 (AUC 0.796), and TSPAN14
(AUC 0.718) (Figure 11(c)). To improve the efficiency in
distinguishing the capacity of stroke, we constructed the
combined diagnosis model of four crucial genes; the AUC
value of the stroke reached to 0.946 (95% CI: 0.892–0.999)
(Figure 11(b)). These results implied that all crucial genes
played key roles in stroke.

3.10. Validation of Key Gene Expression. We further vali-
dated the expression of these key genes in two datasets. In
dataset GSE16561, with the threshold of p < 0:05, CLEC4D,
GPR97, MCEMP1, and TSPAN14 were significantly upregu-
lated in the stroke group (Figures 11(c) and 11(d)) (The
platform GPL6883 did not explore FPR2’s expression). In
another dataset GSE58294, at 3 h, 5 h, and 24 h postonset,
key genes (CLEC4D, MCEMP1, GPR97, FPR2, and
TSPAN14) were significantly upregulated in the stroke
group, as compared with those in the normal control
(Figures 10(d)–10(g)).

4. Discussion

Cardioembolic stroke (CS) results in a high rate of disability,
morbidity, and mortality, which is a common central
nervous system disease with poor prognosis [21]. CS is a
common and complex disease with multiple risk factors
and causes, including atrial fibrillation, coronary heart
disease, valvular heart disease, hypertension, obesity, and
diabetes [21, 22]. Previous studies indicated that inflamma-
tion and immunity response were involved in the occurrence
and development of CS [23]. Markus et al. have also
reported potential cardioembolic stroke biomarkers in their
study, including common inflammatory markers CRP, inter-
leukin-6, interleukin-1β, and tumor necrosis factor-α [24],
whereas, currently, there were no specific and highly sensi-
tive biomarkers for distinguishing CS from large stroke
cases. Therefore, it is imperative to find potential new candi-
date biomarkers in order to help physicians to develop a
strategy for treating CS at early stages.

In this study, we downloaded the GSE58294 dataset
from the available GEO database and estimated the compo-
sition of the immune cells using CIBERSORT algorithms
based on the expression matrix, then employing WGCNA
to determine the modules associated with the immune cell
types. Totally, nine modules were screened; among them,
blue module was the most significantly associated with CS,
neutrophils, B cells naïve, and T cells CD8. To our knowl-

edge, it is the first time to use WGCNA to explore the rela-
tionships between immune cell types and CS. We
systematically analyzed the proportion of specific types of
immune cells in CS patients. It may provide a novel insight
into the strategies for diagnosis and immunotherapy of CS.
Under the condition of MM> 0:8 and GS > 0:5, 110 candi-
date hub genes were then identified within the key modules.
We then applied functional enrichment analysis on genes,
and results indicated that genes were mainly enriched in
neutrophil activation, neutrophil-mediated immunity,
regulation of innate immune response, and T cell cytokine
production. Additionally, DEGs between CS and control
were also screened and used to construct the PPI network.
Genes within the network were clustered into different
subclades, including the adaptive immune system, collagen
metabolic process, and immune response regulating signal-
ing pathway. In order to find potential new biomarkers, we
generated another new 25 hub genes by taking the intersec-
tion of hub genes in DEGs’ PPI network and hub genes in
key module. Based on the CytoHubba, five hub genes were
determined, including MCEMP1, CLEC4D, TSPAN14,
GPR97, and FPR2. The relationship between hub genes
and immune cell was also determined, and results showed
that genes were significantly positively correlated with
neutrophils and macrophages M0 and negatively corre-
lated with T cells CD8. Finally, by using the ROC analysis,
we found that not only individual crucial genes but also
the combined diagnosis model of them had potential diag-
nostic significance.

Mast cell expressed membrane protein 1, this gene
encodes a single-pass transmembrane protein MCEMP1.
Based on its expression pattern, it is thought to be involved
in regulating mast cell differentiation or immune responses.
Jian et al. have reported that MCEMP1 was found to be
highly expressed in rats with cerebral ischemic stroke [25].
Furthermore, silencing MCEMP1 resulted in the upregula-
tion of vascular endothelial growth factor (VEGF), while
downregulation of Caspase3 led to the promotion of micro-
vessel density (MVD) in rats with ischemic stroke [25].
Moreover, silencing of MCEMP1 could increase Ki67-
positive cells and reduce terminal deoxynucleotidyl
transferase-mediated d-UTP nick end labeling (TUNEL)
positive cells in the marginal zone of cortical infarction in
rats. Their study has proved that silenced MCEMP1 could
suppress neuronal apoptosis and enhance angiogenesis in
rats with cerebral ischemic stroke, emphasizing on that
MCEMP1 silencing could serve as a therapeutic target for
cerebral ischemic stroke treatment. Raman et al. implicated
that peripheral blood expression of MCEMP1 within 1
month after stroke has been proposed as a diagnosis and
prognostic biomarker for primary stroke [26]. With all this
being taken into consideration, MCEMP1 is a key molecule
in the regulation and maintenance of the cerebral ischemic
stroke. However, the role of MCEMP1 in cardioembolic
stroke (CS) and its underlying mechanisms remain poorly
understood. Our study was first to associate the immune
response and CS and prove that MCEMP1 was correlated
with neutrophils, B cells naïve, and T cells CD8. Besides this,
NLRP3 inflammasome and interleukin-1 signal pathway

16 Disease Markers



Module−trait relationships

−1

−0.5

0

0.5

1

MEmagenta

MEyellow

MEpink

MEblack

MEpurple

MEblue

MEturquoise

MEgreen

MEred

−0.06
(0.6)

0.06
(0.6)

−0.052
(0.6)

−0.021
(0.8)

0.013
(0.9)

0.079
(0.5)

−0.014
(0.9)

−0.23
(0.03)

−0.082
(0.4)

0.11
(0.3)

0.27
(0.01)

0.065
(0.5)

−0.065
(0.5)

−0.0043
(1)

−0.18
(0.09)

0.13
(0.2)

−0.15
(0.1)

−0.068
(0.5)

−0.11
(0.3)

−0.091
(0.4)

0.088
(0.4)

0.28
(0.007)

0.025
(0.8)

−0.025
(0.8)

0.11
(0.3)

0.61
(1e−10)

−0.089
(0.4)

0.11
(0.3)

0.63
(2e−11)

−0.099
(0.3)

−0.15
(0.2)

−0.22
(0.03)

−0.55
(2e−08)

−0.56
(8e−09)

0.56
(8e−09)

0.4
(8e−05)

0.32
(0.002)

0.46
(4e−06)

−0.15
(0.2)

−0.14
(0.2)

0.3
(0.004)

−0.49
(7e−07)

−0.088
(0.4)

−0.7
(8e−15)

−0.52
(1e−07)

0.52
(1e−07)

0.69
(4e−14)

0.41
(6e−05)

0.2
(0.06)

−0.0093
(0.9)

−0.085
(0.4)

0.16
(0.1)

−0.47
(2e−06)

−0.055
(0.6)

−0.52
(1e−07)

0.86
(1e−27)

−0.86
(1e−27)

−0.58
(9e−10)

−0.45
(7e−06)

−0.34
(8e−04)

0.37
(3e−04)

0.12
(0.3)

−0.29
(0.005)

0.4
(8e−05)

−0.2
(0.06)

0.64
(4e−12)

−0.056
(0.6)

0.056
(0.6)

0.083
(0.4)

0.016
(0.9)

0.34
(0.001)

0.3
(0.003)

−0.12
(0.2)

0.14
(0.2)

−0.37
(3e−04)

−0.42
(3e−05)

−0.36
(4e−04)

0.5
(4e−07)

−0.5
(4e−07)

−0.34
(0.001)

−0.28
(0.006)

0.18
(0.09)

0.34
(0.001)

−0.039
(0.7)

0.047
(0.7)

−0.085
(0.4)

−0.48
(2e−06)

−0.11
(0.3)

0.58
(2e−09)

−0.58
(2e−09)

−0.41
(5e−05)

−0.47
(2e−06)

−0.00037
(1)

0.54
(3e−08)

−0.14
(0.2)

−0.12
(0.3)

0.088
(0.4)

−0.43
(2e−05)

0.36
(5e−04)

St
ro

ke

N
o_

St
ro

ke

B.
ce

lls
.n

ai
ve

T.
ce

lls
.C

D
8

T.
ce

lls
.C

D
4.

m
em

or
y.

re
sti

ng

T.
ce

lls
.C

D
4.

m
em

or
y.

ac
tiv

at
ed

N
K.

ce
lls

.re
sti

ng

N
K.

ce
lls

.ac
tiv

at
ed

M
ac

ro
ph

ag
es

.M
0

M
ac

ro
ph

ag
es

.M
2

N
eu

tr
op

hi
ls

(a)

black blue green magenta pink purple red turquoise yellow

Gene significance for stroke across module (p−value = 0)

G
en

e s
ig

ni
fic

an
ce

0.0

0.6

0.5

0.4

0.3

0.2

0.1

(b)

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

0.0

Module membership in blue module

Module membership vs. gene significance
cor =0.9, p < 1e−200

G
en

e s
ig

ni
fic

an
ce

 fo
r s

tr
ok

e

(c)

0.2 0.4 0.6 0.8

Module membership vs. gene significance
 cor = 0.75, p <1e−200

Module membership in blue module

G
en

e s
ig

ni
fic

an
ce

 fo
r n

eu
tr

op
hi

ls

0.2

0.4

0.6

0.8

0.0

(d)

Figure 8: Continued.

17Disease Markers



were significantly enriched in the MCEMP1 high-expression
group. Consequently, all of the results have suggested that
the MCEMP1 was involved in the process of inflammatory
and immune response and it was worthy of additional inves-
tigation and development.

CLEC4D (C-Type Lectin Domain Family 4 Member D),
a member of the C-type lectin/C-type lectin-like domain
(CTL/CTD) superfamily, acted as a pattern recognition
receptor (PRR) of the innate immune system: recognized
damage-associated molecular patterns (DAMPs) of
pathogen-associated molecular patterns (PAMPs) of bacte-
ria [27, 28]. CLEC4D played vital roles as regulators of cell
adhesion, cell-cell signaling, inflammation, and immune
response [29]. Moreover, studies have shown that the rela-
tive mRNA expression of CLEC4D in peripheral blood of
patients suffering ischemic stroke within 24 h after onset
was dramatically increased, compared with the normal con-
trol group, which was consistent with our analysis results
[29]. Additionally, our study indicated that CLEC4D was
positively correlated with neutrophils and T cells CD4 mem-
ory activated, while negatively associated with T cells CD8,
which implied that CLEC4D might act through an inflam-
matory mechanism dependent upon immune effectors in
cardioembolic stroke.

GPR97, also named as ADGRG3, is especially expressed
in whole blood, particularly in neutrophils. GPR97 was a sig-
nificant molecule that regulated the development of B cell
and migration of lymphatic endothelial cells in vitro via
the small GTPases RhoA and CDC42 [30]. Wang et. al have
also verified that GPR97 regulated proinflammatory cyto-
kine production in vitro culture assay and played an impor-
tant role in the development of experimental autoimmune
encephalomyelitis (EAE), which indicated that it may have

a therapeutic potential for the treatment of CNS autoimmu-
nity [31]. However, the role of GPR97 in CS is unclear and
needs to be further explored.

Tetraspanin 14 (TSPAN14), expressed by many types of
tissues, especially whole blood, was involved in neutrophil
degranulation, positive regulation of notch signaling path-
way, and protein maturation. A previous study has reported
that TSPAN14 was correlated with periventricular white
matter hyperintensities which was an indicator of a history
of cerebrovascular disease [32]. Our results indicated that
TSPAN14 was positively associated with macrophages M0
and neutrophils, which suggested TSPAN14 may contribute
to CS by participating in immunity and inflammation.

Other genes with high degree in the crucial gene cluster,
such as FPR2, also played vital roles in CS pathogenesis.
FPR2 is preferentially expressed by monocytes, as previously
discussed, and was found to be expressed mainly by mam-
malian phagocytic leukocytes and involved in inflammation
and antibacterial host defense [33]. Vital et al. found that
targeting the AnxA1/FPR2/ALX pathway represents an
attractive therapeutic strategy for the treatment of thrombo-
inflammation, counteracting, e.g., stroke in high-risk patient
cohorts [34]. The findings of Gavins et al. implicated that
FPR ligands, particularly in the brain, could be novel and
exciting anti-inflammatory therapeutics for the treatment
of a variety of clinical conditions, including stroke [35].
There are also several limitations still detected in our present
study. First, the data we used was from public databases,
which were limited in the sample size. Further research with
larger sample sizes should be carried out to validate our
results. Second, the functions and potential molecular mech-
anisms of genes are quite complicated, and further verifica-
tion of cellular and animal experiments is required.
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Figure 10: The potential clinical values and expression level of five key genes. (a-c) Applying ROC analysis of 5 key genes to discriminate
between cardioembolic stroke and control group, (a) 3 hours, (b) 5 hours, and (c) 24 hours following cardioembolic stroke. (d) Annular
heatmap showing the expression of hub genes in each sample. (e–g) Box plots displaying changes in expression levels of CLEC4D,
MCEMP1, GPR97, TSPAN14, and FPR2 in 3 h, 5 h, and 24 h after cardioembolic stroke. All crucial genes were significantly increased in
patients with cardioembolic stroke compared to normal individuals.
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Figure 11: The verification of crucial genes as biomarkers for stroke in an independent dataset. (a) Receiver operating characteristic curves for
individual CLEC4D, GPR97, MCEMP1, and TSPAN14 of stroke versus control. (b) Evaluation of clinical diagnostic efficacy of 4 key gene
signatures (AUC = 0.946, 95% CI = 0.892–0.999) (Logistic regression model = -14.1075+ 7.9797∗CLEC4D+ 1.8645∗GPR97+ 1.8384∗
MCEMP1+ 2.7048∗TSPAN14). (c) Heatmap showing the relative expression levels of CLEC4D, GPR97, MCEMP1, and TSPAN14 in each
sample. (d) Box plot indicated the expression of 4 crucial genes following stroke were all significantly higher than healthy individuals.
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5. Conclusion

In our study, we performed WGCNA to analyze the rela-
tionships between immune cell types and cardioembolic
stroke (CS) for the first time. Five crucial genes (MCEMP1,
TSPAN14, CLEC4D, GPR97, and FPR2) were identified.
These five genes may therefore be potential in CS and are
worthy of further investigation.
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