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Neural Spike-Train Analyses of the
Speech-Based Envelope Power
Spectrum Model: Application
to Predicting Individual Differences
with Sensorineural Hearing Loss
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Abstract

Diagnosing and treating hearing impairment is challenging because people with similar degrees of sensorineural hearing loss

(SNHL) often have different speech-recognition abilities. The speech-based envelope power spectrum model (sEPSM) has

demonstrated that the signal-to-noise ratio (SNRENV) from a modulation filter bank provides a robust speech-intelligibility

measure across a wider range of degraded conditions than many long-standing models. In the sEPSM, noise (N) is assumed to:

(a) reduce SþN envelope power by filling in dips within clean speech (S) and (b) introduce an envelope noise floor from

intrinsic fluctuations in the noise itself. While the promise of SNRENV has been demonstrated for normal-hearing listeners, it

has not been thoroughly extended to hearing-impaired listeners because of limited physiological knowledge of how SNHL

affects speech-in-noise envelope coding relative to noise alone. Here, envelope coding to speech-in-noise stimuli was

quantified from auditory-nerve model spike trains using shuffled correlograms, which were analyzed in the modulation-

frequency domain to compute modulation-band estimates of neural SNRENV. Preliminary spike-train analyses show strong

similarities to the sEPSM, demonstrating feasibility of neural SNRENV computations. Results suggest that individual differences

can occur based on differential degrees of outer- and inner-hair-cell dysfunction in listeners currently diagnosed into the

single audiological SNHL category. The predicted acoustic-SNR dependence in individual differences suggests that the SNR-

dependent rate of susceptibility could be an important metric in diagnosing individual differences. Future measurements of

the neural SNRENV in animal studies with various forms of SNHL will provide valuable insight for understanding individual

differences in speech-in-noise intelligibility.
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Introduction

Understanding speech in noisy conditions is a primary
complaint for many people with cochlear hearing loss,
even after a hearing aid has made the speech audible.
Current audiologic diagnoses classify peripheral hearing
losses into the categories of conductive or sensorineural
hearing loss (SNHL), where conductive involves the
outer or middle ear, and SNHL is thought to involve
dysfunction of the cochlear hair cells or nerve fibers
that transmit information to the central nervous
system. SNHL can occur from many causes (e.g., noise
exposure, ototoxic drugs, and age), and there are clear

individual differences within the SNHL category (e.g.,
different speech recognition among patients with similar
audiograms); however, all types of SNHL are currently
classified into a single category. It has long been believed
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that mild-moderate SNHL is primarily outer-hair-cell
(OHC) based (with degraded frequency selectivity
responsible for difficulty understanding speech), and
that inner-hair-cell (IHC) effects only play a role in
cases where threshold shifts are greater than �60 dB
(e.g., Edwards, 2004; Moore, 1995). However, as
explained later, anatomical and physiological evidence
suggests that many common forms of SNHL are likely
to involve mixed OHC/IHC dysfunction and that IHC
dysfunction can significantly affect perceptually relevant
response properties in the AN related to intensity and
speech coding.

The two types of cochlear sensory hair cells (OHCs
and IHCs) serve different roles in the cochlear transduc-
tion process and thus contribute differently to SNHL
(Liberman, 1984; Liberman & Dodds, 1984a; 1984b;
Heinz, 2010; Young, 2012). OHCs are responsible for
varying cochlear gain and frequency selectivity based
on sound level (often described as cochlear amplifica-
tion) by influencing the motion of the basilar membrane.
IHCs pick up the motion of the basilar membrane and
send signals through the auditory nerve (AN) synapses
to the central nervous system. In the case of noise over-
exposure, permanent threshold shifts seem to correlate
most closely with damage of the stereocilia on these hair
cells, rather than with hair-cell loss per se (Liberman,
1984; Liberman & Beil, 1979). A ‘‘normal’’ AN tuning
curve, representing the sensitivity and frequency select-
ivity of the nerve fiber, is obtained only if both the OHC
and IHC stereocilia are intact. Histopathological studies
and single-neuron labeling techniques have shown that
damage to OHC stereocilia results in threshold elevation
and broadened tuning (Liberman & Dodds, 1984b). A
complete loss of OHCs results in a complete loss of the
tuning-curve tip with a bowl-like shape and increased
sensitivity from the tuning-curve tail. On the other
hand, damage to IHC stereocilia results in threshold ele-
vation of the tip and tail of the tuning curve, with no
significant change to the sharpness of tuning. Loss of
IHC stereocilia is also correlated with a reduction in
the spontaneous and driven rates of AN fibers, as well
as with shallower rate-level functions (Heinz & Young,
2004; Liberman & Dodds, 1984a; Liberman & Kiang,
1984; Wang et al., 1997). Based on these known differ-
ences in physiological effects, it is expected that damage
to OHCs and IHCs can produce different perceptual
consequences related to how speech is encoded by the
impaired auditory system. Also, it is likely that IHC dys-
function is more prevalent than commonly thought. In
contrast to the longstanding belief that OHC dysfunction
is the primary correlate of mild-moderate SNHL, ana-
tomical evidence from noise-induced hearing loss studies
show major overlap in the cochlear regions with OHC
and IHC stereocilia damage, and in fact often show
broader regions of IHC stereocilia damage (see

Figures 4, 5, 7–9 in Liberman & Dodds, 1984b). Thus,
consideration of the physiological correlates of individ-
ual differences in SNHL must consider responses at the
level of the AN, rather than the basilar membrane to
account for both OHC and IHC effects (Heinz, 2010,
2016).

One of the most challenging perceptual consequences
of SNHL is the reduced ability to understand speech in
background noise due to diminished temporal coding of
AN fibers with hearing impairment (Henry & Heinz,
2012). The ability to discriminate speech in noise gener-
ally worsens as the degree of hearing loss increases
(Dubno, Dirks, & Morgan, 1984; Hornsby, Johnson, &
Picou, 2011). However, two individuals who have the
same configuration and degree of hearing loss as
shown on an audiogram can vary dramatically in their
ability to discriminate speech in noise (Dubno & Dirks,
1989). These individual differences may result (at least
partially) from differences in the underlying cochlear
pathology (e.g., pure OHC dysfunction vs. mixed
OHC/IHC dysfunction, resulting in the same loss of sen-
sitivity but with different spectral and temporal coding).
The loss of audibility from cochlear hearing loss is
thought to be independent from the loss of signal-to-
noise ratio (SNR loss) that also occurs as a suprathres-
hold consequence of cochlear damage, resulting in the
distortion of speech (Killion & Niquette, 2000).
Although a current notion often applied to interpreting
clinical SNR loss is that hearing loss up to �60 dB HL is
only OHC based and any degree of HL greater than
60 dB is caused by damage to IHCs, this idea regarding
SNR loss has not been tested with a physiologically
based model that includes the known physiological
effects of OHC and IHC dysfunction.

Speech can be characterized in terms of its envelope
(slowly varying fluctuations in amplitude over time) and
fine structure (rapidly changing fluctuations). Envelope
cues are thought to be encoded as fluctuations in the
short-term firing rate of AN fibers and to convey infor-
mation regarding basic speech characteristics such as
phonemes, syllables, and words. When speech and
noise are present together in the signal, these slowly vary-
ing fluctuations in speech are affected by the noise
(Dubbelboer & Houtgast, 2007; Houtgast & Steeneken,
1973). Dubbelboer and Houtgast (2007) showed that in
addition to reducing the fluctuations in speech, the noise
waveform creates new stochastic modulations and inter-
actions with the speech waveform, both of which are
thought to affect speech intelligibility. Therefore, tech-
niques such as the speech transmission index (STI;
Steeneken & Houtgast, 1980) that account only for the
reductions in speech modulations, or measures such as
the articulation index (AI; French & Steinberg, 1947)
and speech intelligibility index (American National
Standards Institute [ANSI], 2007) that measure speech
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and noise levels individually and do not factor in modu-
lations, are not always able to predict speech recognition
in noise accurately (reviewed by Assmann &
Summerfield, 2004).

Recent psychophysically based modeling demon-
strated that the SNR at the output of a modulation
filter bank (SNRENV) provides a robust measure of
speech intelligibility (Jørgensen & Dau, 2011;
Jørgensen, Ewert, & Dau, 2013). The speech-based enve-
lope power spectrum model (sEPSM) assumes that the
effect of the noise (N) on speech (S) coding is to (a)
reduce envelope power of SþN by filling in the dips of
clean speech and (b) introduce a noise floor due to intrin-
sic fluctuations in the noise itself. Changes in the
SNRENV metric with acoustic processing or distortion
were related to a change in speech reception threshold.
An ideal-observer framework was used to convert
SNRENV to percent correct. The central hypothesis of
this modeling framework was that the predicted change
in intelligibility arises because the processing changes the
input (acoustic) SNR needed to obtain the SNRENV cor-
responding to a given percent correct. SNRENV predicted
speech intelligibility across a wider range of degraded
conditions than many long-standing speech-intelligibility
models (e.g., STI). Key insight into the effect of spectral
subtraction on speech intelligibility was garnered by con-
sideration of the modulation-domain SNR, which fac-
tors in the inherent fluctuations within the noise.
Although spectral subtraction increased the envelope
power in the noisy-speech (leading STI-based metrics
to predict improvements), it also increased the envelope
power in the noise-alone response to a greater degree
such that SNRENV decreased, consistent with the
observed performance degradation.

While the sEPSM has been successful in using the
SNRENV metric to predict speech intelligibility in noise
for normal-hearing listeners (Jørgensen & Dau, 2011;
Jørgensen et al., 2013), this modeling approach has not
yet been extended completely to study the effects of
SNHL. One reason the sEPSM has not been extended
to SNHL is because of the limited understanding of how
different types of SNHL affect envelope coding of speech
in noise (S + N) and of noise alone (N). To evaluate the
effects of various types of SNHL on envelope coding of
speech in noise, it is necessary to (a) consider responses
at the level of the AN to include the important aspects of
SNHL related to both OHC and IHC dysfunction and
(b) quantify envelope coding in responses to non-peri-
odic stimuli. Computational models of AN-fiber
responses now exist that incorporate the salient response
properties (both rate and timing) that are important for
modeling individual differences based on much of what is
known about OHC/IHC dysfunction (reviewed by
Heinz, 2010, 2016). Additionally, shuffled correlograms
provide robust temporal analyses of spike-train

responses to non-periodic stimuli (Heinz &
Swaminathan, 2009; Joris, 2003; Louage, van der
Heijden, & Joris, 2004), which have been applied to
quantifying both temporal fine structure and temporal
envelope coding of speech-in-noise stimuli
(Swaminathan & Heinz, 2011, 2012). In fact, these ana-
lyses were used to predict differences in the effects of
OHC and IHC dysfunction in across-channel envelope
coding within different modulation bands (Swaminathan
& Heinz, 2011). Although those predictions were inter-
preted to have implications for speech-in-noise coding,
they lacked a quantitative theoretical framework for
relating them to speech intelligibility.

The current study extended the acoustic sEPSM
model analysis of SNRENV to model neural spike-train
responses in normal-hearing and hearing loss conditions.
The goals of this study were twofold: (a) to establish the
feasibility of computing a neural SNRENV metric from
single AN-fiber spike-train responses and (b) to make
predictions as to whether individual differences in
speech intelligibility are likely to occur between similar
audiometric hearing losses (degree and configuration)
that differed in the relative contributions of OHC and
IHC dysfunction.

Methods

Stimuli

Ten sentences from the Harvard test sentence database
were used in this study (IEEEAudio and Electroacoustics
Group, 1969). The sentences were spoken by a female
talker and recorded in a single channel at a 44.1-kHz
sampling rate, using a Lynx TWOTM soundcard. The
stimuli were down-sampled to 22.05 kHz before being
combined with noise. Speech-shaped noise (SSN) was
generated in three steps—first, the 10 sentences were con-
catenated and linear predictive coding (LPC) analysis was
used to extract 126 LPC coefficients that describe the
long-term average speech spectrum for these 10 sen-
tences. Second, a Gaussian white noise was created with
the same duration as the concatenated sentences. Third,
the white noise was filtered using the LPC coefficients for
the long-term average speech spectrum to obtain SSN. As
required for the sEPSM model (Jørgensen & Dau, 2011),
speech-in-noise (SþN) and noise-alone (N) stimuli were
generated from each clean sentence (S) to create three
stimulus conditions for each sentence (Figure 1, top
panels). Speech-in-noise sentences were generated by
adding a random section of the SSN to each sentence in
quiet. Clean speech sentences were calibrated for the AN
model to be either 50 dB SPL or 80 dB SPL, depending on
hearing condition, as described later. Varying acoustic
input SNR conditions were created by adjusting the
noise level for each acoustic SNR.
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AN Model

The Zilany, Bruce, and Carney (2014) AN model was
used in this study because it is a well-established phe-
nomenological model representing the signal processing
in the peripheral auditory system from the middle ear to
the AN. This AN model incorporates several non-linear
processes related to the cochlear and AN processing,
such as compression, suppression, level-dependent
tuning, neural adaptation, and so forth, and has been
shown to provide an excellent representation of neural
envelope coding based on its synaptic power-law dynam-
ics (Zilany, Bruce, Nelson, & Carney, 2009; Zilany &
Carney, 2010). The model also allows the simulation of
different types of SNHL with varying degrees of OHC
and IHC damage. The AN model takes a sound signal
(in Pa) as input and generates spike times at the level of
the IHC-AN synapse, for a given fiber characteristic fre-
quency (CF) and spontaneous rate (SR) type.

For the purposes of this preliminary study, spike
times from AN fibers were generated from model fibers
with four CFs (0.5 kHz, 1 kHz, 2 kHz, and 4 kHz). This
limited set of CFs was chosen for simplicity to demon-
strate these new neural analyses, while being representa-
tive of the audiometric range of frequencies pertaining to

speech. Since one of our goals is to understand the effects
of SNHL, three hearing conditions were tested: (a)
normal hearing (NH), (b) a flat 30-dB hearing loss due
to OHC damage alone (OHC30), and (c) a flat 30-dB
hearing loss due to an equal degree (15-dB each) of
OHC and IHC damage (MIX15/15). In the AN model,
hearing loss was incorporated at all CFs by specifying
the parameters for OHC and IHC dysfunction (COHC

and CIHC, respectively). Table 1 specifies the exact
values used for each CF in each condition corresponding
to the hearing threshold. Clean speech stimuli were cali-
brated to represent equal sensation levels (SLs) for all
conditions: 50 dB SPL for the normal-hearing condition
and 80 dB SPL for both of the hearing loss conditions.
Unlike a typical clinical prescription, a flat gain was
applied across all frequencies in order to control for
audibility directly by equating SL. Based on correlogram
analyses of the responses of the specific AN fibers used in
this study (described later), these SPL values correspond
very closely to the best modulation level (BML) for these
model AN fibers for all conditions considered here.

The AN model provides options for different SR types
(high: 100 spikes/s, medium: 5 spikes/s, and low: 0.1
spikes/s; Zilany et al., 2009). In this initial feasibility
study, medium-SR model AN fibers were used since

Figure 1. Representation of the acoustic waveforms and corresponding AN-model synapse outputs sampled for a fiber with 2-kHz CF.

The sentence presented was ‘‘The grass curled around the fence post.’’ Each column corresponds to a different acoustic input signal-to-

noise ratio (SNR): (a) �3 dB, (b) 0 dB, (c) 9 dB. For each column, the topmost panel shows the three signal waveforms (from top to

bottom): Clean speech (S), noisy speech (SþN), and noise alone (N). In these panels, the ordinate represents stimulus amplitude in pascals

(Pa). Each signal within the subplot is offset by 0.1 Pa for visual purposes. The three bottom panels in each column show the corresponding

AN-model (normal hearing) synapse output for each signal.
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they represent a balance between the hard saturation of
high-SR fibers and the low spike rates of low-SR fibers.
All stimuli were resampled to 100 kHz to match the sam-
pling rate of the AN model (Zilany et al., 2014).

Figure 1 (bottom panels) shows the AN-model-fiber
synapse output from a medium-SR fiber with a 2-kHz
CF, responding to the three stimulus conditions, clean
speech (S), noisy speech (SþN), and noise alone (N),
based on the sentence ‘‘The grass curled around the
fence post.’’ Each column represents a different acoustic
input SNR: (a) �3 dB, (b) 0 dB, and (c) 9 dB. The wave-
forms represent model AN-fiber output from the NH
condition. In each subfigure, the topmost panel shows
the acoustic waveforms for the three stimulus conditions
with clean S (light gray) at the top, followed by SþN
(black), and N alone (dark gray). The bottom three
panels in each column show the corresponding AN-
model synapse outputs for the three stimulus conditions.
Certain differences are visible when a comparison is
made across different acoustic input SNRs. The increase
in input SNR going from Figure 1 (a) to (c) is seen in the
reduction in noise in the SþN and N waveforms, with
the speech remaining constant throughout. The corres-
ponding AN-model synapse output for SþN is seen to
resemble that of S, especially at the 9 dB SNR. In terms
of envelope coding, it can be seen that the AN-fiber
output follows the acoustic envelope of the correspond-
ing signal waveform. Although the N itself is relatively
steady state, there are some intrinsic short-term fluctu-
ations captured in the AN synapse output. Comparing
the spike output of S with that of SþN, it can be seen
that the larger modulations in the clean S are also pre-
sent in SþN (e.g., between the vertical dashed lines at
�0.2 and 0.4 seconds). On the other hand, smaller modu-
lations are typically embedded in the noise (e.g., between
�1.75 and 1.8 seconds). Based on the sEPSM model
(Jørgensen & Dau, 2011), the relative envelope coding
between speech and the inherent noise fluctuations, as
captured by the SNRENV metric, is an important pre-
dictor of speech understanding. The main purpose of
this initial study is to develop quantitative neural

spike-train analyses to compute the SNRENV metric
from neural spike trains so that the effects of different
types of SNHL (e.g., OHC vs. IHC dysfunction) can be
quantified in the sEPSM framework.

Predicting SNRENV From Model Auditory-Nerve-Fiber
Spike-Train Responses

To replicate the general procedure for obtaining the
SNRENV metric in the sEPSM model (Jørgensen &
Dau, 2011), it is necessary to quantify envelope coding
from single AN-fiber spike-train responses to non-
periodic stimuli, such as SþN. Shuffled correlogram
analyses (e.g., Joris, 2003; Louage et al., 2004;
Swaminathan & Heinz, 2011) were used to quantify
envelope coding in each of the three stimulus conditions
(S, SþN, and N) for each sentence. Model spike trains
were obtained for each stimulus in response to the ori-
ginal stimulus (positive) and its polarity-inverted pair
(negative). For each stimulus, a total of 1,500 spike
times were collected across 100 stimulus repetitions.
Shuffled auto correlograms and shuffled cross-polarity
correlograms (SCCs) were used to quantify temporal
coding for each set of spike trains for a given CF. To
isolate envelope coding, a sumcor was computed by aver-
aging the shuffled auto correlograms and shuffled cross-
polarity correlograms (i.e., emphasizing the similarities
in temporal envelope coding between the positive and
negative polarity responses; Joris, 2003; Louage et al.,
2004). The sumcor thus quantifies temporal envelope
coding in terms of an autocorrelation function (Figure
2 top). The modulation spectrum of the neural response
can be estimated by computing the Fourier transform of
the sumcor, since the Fourier transform of an autocor-
relation function is the power spectral density (PSD) of
the signal (Rangayyan, 2001). Here, the envelope PSD
was computed based on sumcors computed out to �1-
second delays to achieve 1-Hz spectral resolution
(Figure 2, bottom). For a more detailed description of
these neural methods for envelope and modulation-
spectrum analyses, see Swaminathan and Heinz (2011).

Table 1. Parameters Used to Represent Varying Degrees of OHC and IHC Dysfunction in the AN model.

COHC CIHC

CF (kHz) 0.5 1 2 4 0.5 1 2 4

NH 1 1 1 1 1 1 1 1

OHC30 0 0.09 0.15 0.15 0.3 1 1 1

MIX15/15 0.10 0.40 0.40 0.45 0.20 0.15 0.20 0.15

Note. Parameters used are COHC and CIHC, where 1 represents normal function and 0 represents complete dysfunction, respectively. Values varied across

AN-fiber CF and the three hearing conditions considered in this study. Note that because the AN model includes less than 30 dB of cochlear amplifier gain

for the 500-Hz CF (Zilany & Bruce, 2007b), CIHC was less than 1 for this CF to achieve the 30-dB total hearing loss in this fiber. NH¼ normal hearing;

OHC30¼ 30-dB flat hearing loss due to OHC dysfunction alone; MIX15/15¼ 30-dB flat hearing loss due to equal degrees of OHC and IHC dysfunction;

AN¼ auditory-nerve; OHC¼ outer hair cell; IHC¼ inner hair cell; CF¼ characteristic frequency.
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As in the sEPSM analyses (Jørgensen & Dau, 2011),
the total SNRENV metric for each stimulus condition was
computed by combining individual SNRENV values for
each cochlear CF and modulation-filter center frequency
(MF). In the neural domain, the AN-fiber CF defined
cochlear CF, and the neural PSD provides the modula-
tion spectrum from which modulation power within indi-
vidual modulation bands (filters) can be computed. Here,
envelope power was computed within seven modulation-
frequency bands (MF) by integrating the envelope PSD
within different MF ranges (a low-pass range at and
below 1Hz, and six octave-spaced bands centered at
MFs of 2 to 64Hz with a bandwidth equal to the
center frequency, i.e., Q¼ 1). Although not implemented
directly as modulation filters, these seven modulation
bands correspond closely to the seven original modula-
tion bands from the sEPSM approach (Jørgensen &
Dau, 2011). For each CF and MF, the envelope SNR,
SNRENV(CF, MF) was computed by subtracting the
envelope power of N from the envelope power of
SþN and dividing the result by the envelope power of
N (see Equations (2) and (4) in Jørgensen & Dau, 2011).
To verify significant envelope coding in each CF and MF
band, for each sentence, a neural noise floor was com-
puted to provide a baseline for comparison against the
power obtained from the stimulus. For each set of sti-
mulus-driven spike trains, a set of randomized spike
trains was generated that included uniformly distributed
spike times within each repetition, where the number of
spikes in each repetition was maintained (i.e., keeping
the same amount of data, but removing any temporal
structure within the spike trains). The neural noise

floor for each CF and MF was computed from PSDs
derived from sumcors of the randomized spike trains.
If the total SþN power within a modulation band was
within 10% of the neural noise floor power within that
MF band, the band was not allowed to contribute to the
total SNRENV value. Here, the model analyses consisted
of seven MFs (Figure 3) and four CFs (i.e., 28 individual
SNRENV values). To obtain a final value (total
SNRENV), the individual SNRENV(CF, MF) values
were combined by taking the square root of the sum of
the squares of the significant individual SNRENV(CF,
MF) values (as in Equation (6) of Jørgensen & Dau,
2011). The total SNRENV was also calculated from the
random spike times using the same steps to create a
neural SNRENV noise floor (Figure 4).

Statistical Analysis

Data were collected for 10 iterations of the AN model
responding to each of the 10 sentences, yielding data
from 100 presentations. Initial multiple linear regression
(MLR) modeling determined that there was no effect of
iteration, representing only neural variability in the 10
different sets of spike trains in response to each sentence.
Thus, all remaining analyses were based on average
SNRENV values across the 10 iterations. Seven different
acoustic input SNR conditions were tested: �9, �6, �3,
0, 3, 6, and 9 dB SNR to evaluate the effect of input SNR
on SNRENV. Statistical analyses were carried out using
JMP (SAS) to evaluate fits of MLR models that pre-
dicted SNRENV from the categorical variable of hearing
condition and the continuous variable of acoustic input
SNR. The model incorporated the interaction term
between hearing condition and input SNR, as well as
the random effects of sentence using restricted maximum
likelihood fits. Sentence was included as a random-effects
variable because the effect of sentence, while significant,
was not part of our primary hypothesis testing.
Residuals of these regression models were normally dis-
tributed with comparable variance. Adjusted R2 was
used to quantify the degree of association between the
explanatory variables and the total SNRENV.

Results

Neural Analyses Showed Similar Speech-In-Noise
Modulation-Coding Patterns to the sEPSM Model

Figure 3 shows the average envelope power across all
sentences for S, SþN, and N conditions at input
SNRs of �3 dB (left) and 3 dB (right) for the average
of four CFs. Within each stimulus condition, the three
lines represent the three hearing conditions. The enve-
lope power for S was the greatest followed by the enve-
lope power for SþN and then for N. In general, a peak

Figure 2. Neural modulation coding of non-periodic stimuli can

be quantified from spike-train responses of single auditory-nerve

fibers using shuffled correlogram analyses. The shuffled-correlo-

gram sumcor (top) was used to quantify temporal envelope coding

in each response. The envelope power spectral density (PSD) is

computed as the Fourier transform of the sumcor (bottom) and

provides a representation of the modulation spectrum of the

neural response.
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in the clean speech envelope power was observed in the
4-Hz modulation band. These results are consistent with
the modulation excitation patterns for S, SþN, and N in
the sESPM model (Jørgensen & Dau, 2011). Among the
hearing conditions, the NH condition had the greatest
power followed by OHC30 and MIX15/15. Also, of crit-
ical importance for the sEPSM model is the difference
between the power of the SþN and N conditions. At the
lower MFs (1-8Hz), the power for SþN was higher than
the power for N. This difference between SþN and N
for a given CF and MF creates a positive SNRENV (CF,
MF). However, for MF5 16Hz, the envelope power of
SþN and N generally overlap, and thus the power at
these MFs does not contribute to increasing the overall
SNRENV.

SNRENV Increased Monotonically With Increasing
Acoustic Input SNR

Results showed that the total SNRENV predicted from
the AN-model spike trains increased monotonically as
acoustic input SNR was increased from �9 dB to 9 dB,
with all predictions being above the flat neural noise
floor computed from randomized spike times
(Figure 4). This was observed for NH and both the HL
conditions; differences across hearing condition are dis-
cussed in the next section. There was a highly significant
positive correlation between acoustic input SNR and
total SNRENV for all conditions. Based on the MLR

Figure 3. Neural spike-train analyses showed patterns of modulation coding for noisy speech that were similar to the envelope power

spectrum model for speech (sEPSM, Jørgensen & Dau, 2011). Envelope power (in dB) as a function of modulation band center frequency

(MF, in Hz), averaged across all 100 sentence presentations (10 sentences �10 iterations) is shown for a medium-SR model AN fiber

averaged across characteristic frequencies. Each subplot represents a different acoustic input signal-to-noise ratio (SNR): (a) �3 dB and (b)

3 dB, for clean speech (S, solid black lines with filled symbols), noisy speech (SþN, dashed lines with unfilled symbols), and N (dotted lines

with filled symbols) from each hearing condition: (i) normal hearing (NH, squares), (ii) outer hair cell dysfunction alone (OHC30, triangles),

and (iii) mixed outer and inner hair cell dysfunction (MIX15/15, circles).

Figure 4. Individual differences in speech intelligibility are pre-

dicted with varying degrees of OHC/IHC dysfunction. Total neural

envelope signal-to-noise ratio (SNRENV) in dB is plotted as a func-

tion of acoustic input SNR (in dB), averaged across 100 sentence

presentations (10 sentences �10 iterations). The solid lines repre-

sent the predicted SNRENV of noisy speech (SþN), and the dashed

lines represent the predicted SNR of the neural noise floor com-

puted from randomized spike times (NF). Three versions of the AN

model that varied in OHC/IHC dysfunction are represented by a

different line: normal hearing (NH, no symbol), outer hair cell dys-

function alone (OHC30, circles), and mixed outer and inner hair cell

dysfunction (MIX15/15, cross marks). All comparisons were made at

equal SL, using medium-spontaneous-rate fibers. The error bars

represent the standard error of the mean SNRENV.
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model that included NH and both HL conditions, total
SNRENV could be predicted from acoustic input SNR
(b¼ 0.635, p< .001). For the NH condition, SNRENV

values ranged from about 0.8 dB at the lowest acoustic
input SNR of �9 dB to 11.4 dB at the highest input
SNR of 9 dB. This overall range of SNRENV across
this input SNR range is similar to the predictions from
the sEPSM model for steady-state noise maskers
(Jørgensen & Dau, 2011). The SNRENV for the OHC30
and MIX15/15 conditions ranged from �0.4 dB to
12.1 dB and 0.2 dB to 9.9 dB, respectively, over the
same range of input SNRs.

The Overall Effect of Hearing Loss Was
to Decrease SNRENV

Both the OHC30 and MIX15/15 conditions generally
produced SNRENV values below those of the NH
model (Figure 4). To test the overall effect of a 30-dB
hearing loss on SNRENV, a version of the linear regres-
sion model predicting SNRENV from input SNR and
hearing condition was considered where hearing condi-
tion was either NH or HL (i.e., HL condition combined
the OHC30 and MIX15/15 conditions into a single
SNHL category, consistent with audiological classifica-
tion). This model (Adjusted R2

¼ 0.94, p< .0001) demon-
strated negative effects of hearing loss, F(1, 197)¼ 32.51,
p< .0001, and positive effects of acoustic input SNR,
F(1, 197)¼ 2650.00, p< .0001, on SNRENV. However,
analyses suggest that when these two types of HL were
combined into a single category, the effect of HL did not
depend on input SNR (hearing condition by input SNR,
F(1, 197)¼ 1.7139, p¼ .1920.

The Effect of Acoustic Input SNR on SNRENV

Depended on the Type of Hearing Loss

Predictions of total SNRENV as a function of acoustic
input SNR (Figure 4) varied across the three AN-model
versions with different degrees of OHC/IHC dysfunc-
tion. To explore potential effects of individual differ-
ences in HL on SNRENV, a more specific version of
the linear regression model was considered where all
three hearing conditions were included in the categor-
ical HL variable. This model (Adjusted R2

¼ 0.96,
p< .0001) demonstrated significant main effects of hear-
ing condition, F(2, 195)¼ 38.08, p< .0001, and acoustic
input SNR, F(1, 195)¼ 4270.56, p< .0001, on SNRENV,
as well as a significant interaction between hearing con-
dition and input SNR, F(2, 195)¼ 27.26, p< .0001. At
very low input SNRs (4�6 dB), MIX15/15 SNRENV

values were below NH, but above OHC30 values. In
contrast, above �3 dB input SNR, OHC30 SNRENV,
values were above the MIX15/15 values. Thus, a cross-
over was observed between the two HL conditions. This

crossover is due to a greater acoustic input SNR loss
(rightward shift) in the SNRENV versus input SNR
function for OHC30 dysfunction at low input SNRs
(e.g., more noise through broader filters) and less
acoustic SNR loss for cleaner speech (i.e., at higher
input SNRs). In contrast to the level-dependent acous-
tic SNR losses predicted for the OHC30 condition, the
MIX15/15 predictions demonstrated a level-indepen-
dent acoustic SNR loss as the MIX15/15 curve was
generally parallel to the NH curve, with a consistent
rightward shift of �2 dB for this mild hearing loss.
To explicitly evaluate whether the SNRENV effects of
these different types of 30-dB HL depend differently
on acoustic input SNR, a version of the linear regres-
sion model was evaluated that only included the
OHC30 and MIX15/15 conditions in the categorical
variable of hearing condition. This model (Adjusted
R2
¼ 0.97, p< .0001) demonstrated significant main

effects of hearing condition, F(1, 127)¼ 47.50,
p< .0001, and acoustic input SNR, F(1,
127)¼ 4603.94, p< .0001, on SNRENV, as well as a sig-
nificant interaction between hearing condition and
input SNR, F(1, 127)¼ 81.49, p< .0001). Thus, these
analyses suggest that different types of 30-dB audiomet-
ric hearing losses (i.e., arising from differing degrees of
OHC/IHC dysfunction) can have acoustic SNR losses
that depend on input SNR in different ways.

SNRENV Varied Non-Monotonically With MF

These spike-train analyses of the sEPSM model allow for
the exploration of individual differences in the MF
domain for noisy-speech encoding. To do so, individual
SNRENV values were collapsed across CFs for each iter-
ation of each sentence. This was done by calculating the
square-root of the sum of squares of the SNRENV values
of all CFs for a given MF. This value was further aver-
aged across sentences and iterations to provide an aver-
age SNRENV as a function of MF (Figure 5). In general,
at each acoustic input SNR, the relationship between
SNRENV and MF was non-monotonic. Figure 5 shows
this relationship at input SNRs from �6 dB to 9 dB
(panels a–f). In all panels, SNRENV increased with
increasing MF up to 4Hz, reaching peak values between
0.5 dB for NH (at �6 dB SNR) to 10.4 dB for OHC30 (at
9 dB SNR). In general, SNRENV decreased as MF
increased beyond 4Hz. For input SNRs between �6 dB
and 3 dB, the SNRENV for NH was greater than the HL
conditions for MFs between 2 and 8Hz. At 6 dB input
SNR, the SNRENV for the OHC30 condition was higher
than the other two conditions for MF¼ 4Hz, whereas
for 9 dB input SNR, this was true for both 2 and 4Hz
MF. In general, there were only very small differences
across HL condition for MFs of 1Hz and MFs of 16Hz
and above.
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SNRENV Varied Non-Monotonically
With Model AN-fiber CF

To examine the dependence of SNRENV on CF, individ-
ual SNRENV values were collapsed across the seven MFs
for each iteration of each sentence. For a given CF, the
square-root of the sum of squares of the SNRENV at each
MF was obtained. This value was averaged across iter-
ations and sentences to obtain an average SNRENV as a
function of CF. Figure 6 shows that the SNRENV was
generally highest for the 2-kHz CF for all acoustic input
SNRs. Overall, the increase in SNRENV with increasing
acoustic input SNR appears to be driven predominantly
by the 2-kHz CF for input SNRs4 0 dB, with peak
values ranging from 0.7 dB for NH (�9 dB SNR) to
11.3 dB for OHC30 (9 dB SNR). At the highest input
SNRs of 6 dB and 9 dB, the SNRENV for the OHC30
condition was higher than the NH condition. The differ-
ences in SNRENV between HL conditions were greatest
at 2 kHz followed by 4 kHz.

More detailed analyses of the dependence of the
SNRENV effects of HL condition across CF and MF
can be explored with these spike-train analyses of the
sEPSM model. Figure 7 shows a matrix of SNRENV

values as a function of MF and CF for each hearing
condition (rows), at three different acoustic input
SNRs (columns: 0 dB, 6 dB, 9 dB). The SNRENV matrices

in Figure 7 generally show darker regions corresponding
to the 2-kHz CF relative to lighter regions at the other
CFs. Looking across MF, as discussed earlier, it can be
seen that the best SNRENV values were generally
achieved between MFs of 2 to 8Hz. In general for
these preliminary predictions, the patterns of variation
in SNRENV across CF and MF were similar across the
HL conditions; however, detailed analyses of this type
are required to fully explore the source of individual dif-
ferences predicted with the neural sEPSM model.

Discussion

Speech-Based Envelope Power-Spectrum
Model Predictions From Neural Spike Trains
Are Generally Consistent With the
Psychophysically Based Predictions

The SNRENV metric from the sEPSM has been shown to
have great promise for predicting speech intelligibility for
normal-hearing listeners (Jørgensen & Dau, 2011); how-
ever, it has not yet been thoroughly extended to hearing-
impaired listeners due to limitations in our physiological
knowledge of how SNHL affects the envelope coding of
speech in noise (specifically in relation to N). In the pre-
sent study, envelope coding to non-periodic stimuli (e.g.,
speech in noise) was quantified from AN-model spike

Figure 5. Envelope signal-to-noise ratio (SNRENV) varies non-monotonically with modulation frequency (MF). Average SNRENV (in dB) is

plotted as a function of MF (in Hz), averaged across 100 sentence presentations (10 sentences �10 iterations) and the four model AN-fiber

center frequencies (CFs). The SNRENV for the noisy speech (SþN) signal is represented by solid lines, and the SNRENV for the neural noise

floor (NF) is represented by dashed lines. Each hearing condition is represented by a different line and symbol: normal hearing (NH, circle),

outer hair cell dysfunction alone (OHC30, plus sign), and mixed outer and inner hair cell dysfunction (MIX15/15, square). Each panel from

(a–f) corresponds to a different acoustic input SNR.
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Figure 7. Spike-train analyses of the sEPSM model allow for the effects of individual differences in cochlear hearing losses to be explored

as a function of AN-fiber characteristic frequency (CF) and neural modulation frequency (MF). SNRENV (in dB), averaged across 100

sentence presentations (10 sentences �10 repetitions) is shown for each CF (in kHz) and MF (in Hz). Each row represents a different

hearing condition: normal hearing (NH), outer hair cell dysfunction alone (OHC30), mixed outer and inner hair cell dysfunction (MIX15/

15). Each column corresponds to a different acoustic input SNR: (panels a–c) 0 dB, (panels d–f) 6 dB, (panels g–i) 9 dB. The grayscale bar on

the right represents the average SNRENV range (in dB) across all conditions—lighter regions correspond to a lower SNRENV, whereas

darker regions correspond to a higher SNRENV.

Figure 6. Envelope signal-to-noise ratio (SNRENV) varies non-monotonically with model AN-fiber center frequency (CF). Average

SNRENV (in dB) is plotted as a function of CF (in kHz), averaged across 100 sentence presentations (10 sentences �10 iterations) and the

seven modulation frequencies (MFs). The SNRENV for the noisy speech (SþN) signal is represented by solid lines, and the SNRENV for the

neural noise floor (NF) is represented by dashed lines. Each hearing condition is represented by a different line and symbol: normal hearing

(NH, circle), outer hair cell dysfunction alone (OHC30, plus sign), and mixed outer and inner hair cell dysfunction (MIX15/15, square). Each

panel from (a-f) corresponds to a different acoustic input SNR.
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trains using shuffled-correlogram analyses. The envel-
ope-based correlograms (i.e., estimated envelope auto-
correlation functions) were analyzed in the MF domain
to compute modulation-band based estimates of signal
and noise envelope coding (e.g., a neural SNRENV metric
computed in the same manner as the SNRENV metric
from the sEPSM).

Overall, many aspects of the SNRENV predictions
computed here from neural spike trains showed close
similarities to the psychoacoustical model predictions
motivating this work (Jørgensen & Dau, 2011). First,
envelope-power excitation patterns (Figure 3) showed
the same relative position across stimulus conditions,
with the highest envelope power for S, the lowest enve-
lope power for N, and SþN in between. These findings
support the assumptions that the effect of the noise on
speech coding is to (a) reduce envelope power by filling in
the dips of S and (b) introduce a noise floor due to intrin-
sic fluctuations in the noise itself (Figure 1). As the
acoustic input SNR decreased, the neural firing to the
SþN condition became less similar to the S response,
and thus although the envelope power for S did not
change (because the presentation level for S was fixed),
the envelope power for SþN approached that for N
(Figure 3). This observation is in accordance with the
theory that noise reduces the overall envelope power of
the SþN signal compared with S (Jørgensen & Dau,
2011). Second, the peak in speech envelope power
(Figure 3) was generally observed in the 4-Hz modula-
tion band (consistent with the syllabic modulation rate in
speech). The resultant SNRENV also generally peaked at
4Hz (Figure 5) but was significant between 2 and 8Hz
MF, consistent with the psychoacoustical predictions
(Jørgensen & Dau, 2011). With this acoustic model,
time-averaged SNRENV was high for the 1 to 8Hz
MFs for a SSN masker (Jørgensen et al., 2013). The
discrepancy in SNRENV at 1Hz may result from the
maximum delay of 1 second used in the neural correlo-
grams, which may limit the spectral resolution around
1Hz and appears to produce an unexpectedly high enve-
lope power at 1Hz MF relative to 2Hz (Figure 3) in
comparison to the sEPSM predictions. Third, as seen
in Figure 7 of Jørgensen and Dau (2011), negligible dif-
ferences were predicted between noisy-speech and noise-
alone envelope power (i.e., zero SNRENV in Figure 5) for
the 16 to 64Hz modulation bands (Figure 3). Fourth, the
total neural SNRENV varied from about 1 dB to 14 dB as
acoustic (input) SNR varied from �9 to 9 dB, with these
neural values being above the neural noise floor in all
conditions (Figure 4). Thus, the neural SNRENV metric
replicates the main properties seen in the psychoacousti-
cal predictions and thus provides a means to account for
the relative strength of the intrinsic neural fluctuations
due to the noise in relation to the coding of speech
modulations.

Individual SNHL Differences in SNRENV

Varied Across Acoustic Input SNR

Three hearing conditions with varying degrees of OHC/
IHC dysfunction were evaluated in this study: normal
hearing (NH), and two mild SNHL conditions, pure
30-dB OHC dysfunction (OHC30) and mixed 30-dB
OHC-IHC dysfunction (MIX15/15). Preliminary results
predict that even these mild SNHL conditions affect
speech intelligibility in noise at equal-SL conditions, as
characterized by the sEPSM metric SNRENV (Figure 4).
More importantly, the present predictions provide
insight into the possibility of individual differences in
speech intelligibility for similar degrees of hearing loss
arising from differing degrees of OHC and IHC dysfunc-
tion. All three hearing conditions showed increases in
SNRENV with increasing acoustic input SNRs, and in
fact when both the OHC30 and MIX15/15 hearing loss
conditions were combined into a single SNHL category
(as is typical in audiological assessment), there was no
interaction between the effects of hearing condition and
input SNR. This result suggests that the effect of SNHL
on SNRENV does not depend on input SNR and would
support the use of a single SNR-loss value to character-
ize the suprathreshold effects of SNHL on speech
intelligibility.

In contrast, when the two types of SNHL were con-
sidered as separate categories of hearing condition, in
isolation or in addition to normal hearing, there was a
significant interaction between hearing condition and
input SNR, suggesting that the effect of hearing condi-
tion on SNRENV varies across input SNR. In this more
physiologically specific case, a single value of SNR loss
(e.g., evaluated at SNRENV¼ 5 dB, dotted line in
Figure 4) is not sufficient to characterize the effects of
SNHL. These results suggest that the inclusion of IHC
dysfunction in this AN model (i.e., shallower IHC trans-
duction; Bruce, Sachs, & Young, 2003) can have a sig-
nificant effect on speech-intelligibility predictions. This
type of shallower IHC transduction is likely to occur
(in addition to OHC dysfunction) in a wide range of
SNHL etiologies, such as noise-induced, metabolic pres-
bycusis, and ototoxic hearing loss and thus is important
to include in modeling studies of SNHL (Heinz, 2010,
2016). The steeper rate of growth in SNRENV with input
SNR for the OHC30 condition is the primary cause of
the input-SNR-dependent effects and is likely due to
broader cochlear filters that are more susceptible to
noise at low SNRs and become less relevant for higher
SNRs (i.e., for S). Although the details of these prelim-
inary predictions should not be over-interpreted, the
consistent finding of differences in the rate of SNRENV

growth with input SNR suggests that it may be necessary
to characterize speech intelligibility across a range of
input SNRs in order to diagnose fully the individual
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differences in types of SNHLs (e.g., with varying degrees
of OHC/IHC dysfunction).

Summary, Limitations, and Future Directions

The present study extended the successful sEPSM ana-
lyses to the neural domain so that the important effects
of inherent noise fluctuations on speech intelligibility can
be predicted from spike-train data. Modeling at the AN
level or above is required to include the peripheral
physiological factors known to influence neural coding
of complex sounds: (a) OHC dysfunction, (b) IHC dys-
function, (c) IHC loss (dead regions), (d) endocochlear
potential reduction in presbycusis, and (e) cochlear
synaptopathy. This study predicted that the inclusion
of the shallower transduction function associated with
many forms of mild-moderate IHC dysfunction (i.e.,
less severe than IHC dead regions) can affect speech-
intelligibility predictions in addition to the inclusion of
OHC dysfunction. Furthermore, the spiking output pro-
duced at the synapse of the Zilany et al. (2014) AN-
model incorporates processes such as neural adaptation
and spontaneous-rate variations that affect modulation
coding, in addition to cochlear suppression, which are
generally unaccounted for by psychoacoustic analyses
of speech intelligibility. While the preliminary neural pre-
dictions shown here were primarily to demonstrate the
feasibility of neural SNRENV computations from spike-
train responses, the crossover in Figure 4 suggests that
individual differences may occur based on differential
degrees of OHC/IHC dysfunction in listeners currently
diagnosed into the single category of SNHL.

Although the present predictions provide general
insight into individual differences, several limitations
exist in this approach, which need to be addressed in
future studies. A fundamental limitation of autocorrel-
ation based approaches is that they are limited to long-
term coding effects and are thus limited to predicting
overall performance rather than examining specific con-
fusion patterns based on individual speech features. This
is the same limitation faced by well-established frame-
works, for example, the articulation index and STI, for
predicting the effects of degradations in speech commu-
nication channels on overall speech intelligibility
(reviewed by Assmann & Summerfield, 2004). Other
modeling approaches do exist that compare normal
and impaired AN population responses in a spectro-tem-
porally specific manner. For example, the spectro-tem-
poral modulation index (Elhilali, Chi, & Shamma, 2003)
was developed to predict speech intelligibility based on
cortical representations of spectro-temporal modulations
in speech. The spectro-temporal modulation index
approach has been extended to predict the effect of pres-
entation level and cochlear impairment on speech intel-
ligibility by using a more physiologically realistic AN

model (Zilany & Bruce, 2007a). Also, the neural similar-
ity index measure (Hines & Harte, 2012) has been used to
predict speech intelligibility based on slow and fast time-
scaled neurograms, which allows individual speech fea-
tures to be examined (e.g., onset cues, which have been
shown to be important in neural responses to certain
phonemes; Delgutte & Kiang, 1984), However, these
approaches have not been tested across as wide a range
of conditions as the sEPSM in terms of their ability to
account for the perceptually relevant effects of inherent
noise fluctuations on speech intelligibility (Jørgensen &
Dau, 2011; Jørgensen et al., 2013).

Another limitation in the present study is the inclu-
sion of only four CFs and only medium-SR AN fibers.
This restriction was applied in order to provide a simple
demonstration of the feasibility of computing SNRENV

values from neural spike trains that captured the main
features seen in the original psychophysically based
sEPSM study (Jørgensen & Dau, 2011). The 50-dB and
80-dB SPL sound levels chosen for this study provided
sound levels near the BML for the medium-SR fiber
chosen and avoided the common confounds of single-
unit AN-fiber threshold or saturation effects that occur
due to the limited dynamic range of individual AN fibers.
Presenting stimuli at BML is a common modeling
approach (Swaminathan & Heinz, 2012) that quantifies
the effects of various factors (e.g., input SNR and hear-
ing loss) on the maximal envelope coding, for which it is
assumed typically occurs in some AN fibers within the
total population based on the typical broad range of
AN-fiber thresholds (Liberman, 1978). While these sim-
plifications are not expected to affect the general conclu-
sions of the present study, future studies will explore
SNRENV predictions based on a more complete range
of CFs, SRs, and sound levels to generalize these results.

Additional extensions that are needed include extend-
ing these neural analyses to fluctuating maskers, based
on the success of the multiresolution sEPSM (Jørgensen
et al., 2013). This extension is likely to require the inclu-
sion of higher modulation frequencies based on the psy-
chophysically based modeling (Jørgensen et al., 2013),
which can easily be included in the correlogram-based
analyses of temporal envelope coding (Swaminathan &
Heinz, 2011). Also, one limitation of the sEPSM model is
the insensitivity to phase manipulations, which have
been overcome in the short-time objective intelligibility
measure (Taal, Hendriks, Heusdens, & Jensen, 2011).
Such correlation-based decision metrics can be explored
in the neural domain using the neural crosscorrelation
metrics developed for envelope coding (Heinz &
Swaminathan, 2009). Beyond these analysis extensions
that have been developed in the psychoacoustical
domain, the Zilany et al. (2014) AN model provides a
great degree of flexibility in incorporating different com-
binations of cochlear impairment. This enables the
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SNRENV metric to be expanded to analyze a wider range
of audiometric threshold shifts and OHC/IHC dysfunc-
tion configurations. Beyond additional predictions from
the existing model, the feasibility demonstrated here sup-
ports the application of these neural analyses in future
animal studies to quantify the effects of various types of
SNHL (noise-induced, ototoxic, etc.) on the coding of
speech and inherent noise modulations, which will pro-
vide invaluable insight for understanding individual dif-
ferences in speech-in-noise intelligibility and for
extending existing models. One specific form of SNHL
not able to be analyzed in the current single-unit AN-
fiber framework is cochlear synaptopathy that can occur
following moderate noise exposure or aging (Kujawa &
Liberman, 2015). The effects of this form of hidden hear-
ing loss, which have been predicted to affect neural enve-
lope coding (Bharadwaj, Masud, Mehraei, Verhulst, &
Shinn-Cunningham, 2015; Bharadwaj, Verhulst,
Shaheen, Liberman, & Shinn-Cunningham, 2014),
could however be evaluated easily in moderate-noise-
exposed animal studies at the level of ventral cochlear
nucleus, or through the addition to the current modeling
framework of a computational model of ventral cochlear
nucleus responses that includes the effects of convergence
(e.g., Rothman, Young, & Manis, 1993). Finally,
another application for these analyses would be to pre-
dict speech intelligibility outcomes for listeners with
SNHL using various signal-processing techniques for
the purpose of improving hearing-aid fitting and the
development of novel amplification strategies for a var-
iety of real-world listening conditions.
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