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Abstract 

Background:  Mutation processes leave different signatures in genes. For single-base substitutions, previous stud-
ies have suggested that mutation signatures are not only reflected in mutation bases but also in neighboring bases. 
However, because of the lack of a method to identify features of long sequences next to mutation bases, the under-
standing of how flanking sequences influence mutation signatures is limited.

Methods:  We constructed a long short-term memory-self organizing map (LSTM-SOM) unsupervised neural net-
work. By extracting mutated sequence features via LSTM and clustering similar features with the SOM, single-base 
substitutions in The Cancer Genome Atlas database were clustered according to both their mutation site and flanking 
sequences. The relationship between mutation sequence signatures and clinical features was then analyzed. Finally, 
we clustered patients into different classes according to the composition of the mutation sequence signatures by the 
K-means method and then studied the differences in clinical features and survival between classes.

Results:  Ten classes of mutant sequence signatures (mutation blots, MBs) were obtained from 2,141,527 single-base 
substitutions via LSTM-SOM machine learning approach. Different features in mutation bases and flanking sequences 
were revealed among MBs. MBs reflect both the site and pathological features of cancers. MBs were related to clinical 
features, including age, sex, and cancer stage. The class of an MB in a given gene was associated with survival. Finally, 
patients were clustered into 7 classes according to the MB composition. Significant differences in survival and clinical 
features were observed among different patient classes.

Conclusions:  We provided a method for analyzing the characteristics of mutant sequences. Result of this study 
showed that flanking sequences, together with mutation bases, shape the signatures of SBSs. MBs were shown 
related to clinical features and survival of cancer patients. Composition of MBs is a feasible predictive factor of clinical 
prognosis. Further study of the mechanism of MBs related to cancer characteristics is suggested.
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Background
The stability of the cell genome is continually threat-
ened by endogenous and exogenous factors that may 
lead to DNA damage [1, 2]. If not repaired properly, 
DNA damage may result in genetic mutations [3, 4]. 
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The development of cancers involves a series of genetic 
mutations [5]. A number of internal and external factors 
underlying genetic mutations have been identified, such 
as smoking, alcohol consumption and mismatch repair 
deficiency [5, 6]. In some kinds of cancers, such as colon 
cancer [7] and breast cancer [8], there has been a great 
deal of research elucidating the relationship between 
genetic mutations and cancer-related processes.

Genetic mutations include single-base substitutions 
(SBSs), small insertions and deletions (indels), genome 
rearrangement and chromosome copy-number changes 
[9]. SBSs contribute the largest proportion of genetic 
mutations [9]. Mathematical methods have been used 
to decipher mutation signatures from somatic mutation 
catalogs [2, 9–16]. At present, large amounts of muta-
tion data from cancer patients have been obtained and 
made available in relevant databases, such as the cancer 
genome atlas (TCGA) database [17]. In the context of 
increasing sample sizes, a number of mutation signatures 
that are correlated with certain mutation processes have 
been identified [18, 19]. The clustering methods for SBSs 
applied in some studies have included 1–2 bases next to 
mutated bases, and the results have suggested that bases 
next to the mutation site influence mutation signatures 
[2, 9]. However, the inclusion of adjacent genes in such 
analyses leads to an exponential increase in the number 
of possible classifications. Because of the lack of a highly 
efficient method to identify features of long sequences 
next to mutation bases, the understanding of how flank-
ing sequences influence somatic mutation characteristics 
is limited.

The application of machine learning, especially neural 
networks, makes it possible to effectively mine informa-
tion from large amounts of data [20]. A long short-term 
memory (LSTM) network is a special kind of recurrent 
neural network (RNN) [21]. Compared with a naive 
RNN, LSTM performs better in extracting features from 
long sequences, such as sentences [22, 23]. LSTM has 
been used to analyze DNA or RNA sequence information 
in some studies [24–26]. A self-organizing map (SOM) 
algorithm is an unsupervised clustering algorithm. The 
method of "competitive learning" can identify intercon-
nections between samples and present their categories in 
a lower-dimensional form [27, 28]. The use of LSTM to 
extract the features of mutated sequences and the iden-
tification of similar features with the SOM algorithm 
provided an approach for analyzing the characteristics 
of mutated sequences and their relationship with cancer 
development. In this study, we established an LSTM-
SOM unsupervised learning network to include long 
flanking sequences into the analysis of mutant sequence 
signatures. Via the LSTM-SOM method, we clustered 
the mutation sequences of SBS in the TCGA database 

into different classes (for a clear understanding, mutant 
sequence signatures clustered by the LSTM-SOM are 
referred to as mutation blots, MBs) and then analyzed 
the relationships among MBs, clinical features, and can-
cer patient survival.

Methods
Data sources
SBS data and clinical data of patients enrolled in this 
study were obtained from the TCGA database. First, the 
SBS information includes the sample barcode, chromo-
somal location, mutant allele, reference allele, Hugo gene 
symbol, etc. Clinical data, including age, sex, weight, can-
cer stage, and survival time or time to the last follow-up, 
were extracted according to the sample barcode. In the 
LSTM-SOM model, 100 flanking bases were included 
in the analysis, and the flanking sequence was obtained 
from the Genome Reference Consortium human genome 
build 38 (GRCh38) based on the mutation sites of SBSs in 
TCGA data.

LSTM‑SOM model building
In brief, our LSTM-SOM model works via a cycle of 3 
steps: 1. extraction of the feature vector of the mutant 
sequence by LSTM; 2. clustering of feature vectors by the 
SOM, and feature vectors are updated at the same time 
to bring vectors with similar features closer together; and 
3. use of the updated feature vectors for the labeling and 
training of the LSTM model (Additional file 1: Figure S1).

Step 1. Obtaining feature vectors with LSTM Mutant 
sequences are represented in the form of a matrix. A 
1 × 2 vector is used to represent different bases (A: [0, 0]; 
T: [0, 1]; C: [1, 0]; G: [1, 1]; N:[− 1, − 1]). When placing 
the reference sequence in the corresponding position, 
mutated bases can be recorded as a 1 × 4 vector. When 
the flanking bases are included, a mutated sequence 
can be represented by an n × 4 matrix. For example, 
CATTG > CACTG can be expressed as follows:

RNNs have long been used in the analysis of sequence 
data. A naive RNN effectively analyzes short sequences. 
An LSTM network is based on the network structure of 
RNNs [25]. The LSTM approach introduces the mecha-
nisms of "forgetting" and "memory". Thus, the capacity of 
the LSTM network to analyze long sequences is improved 
by controlling the long-term state [22]. As the "forgetting" 
mechanism of LSTM, the unit closer to the end of the 
sequences has a greater influence on the output of LSTM. 
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In our study, LSTM was designed to read from both ends 
of the mutated sequence. In this way, the mutation site 
is placed at the ends of both sequences to reinforce its 
influence on the LSTM output.

We used the torch.nn package in PyTorch to construct 
a neural network. The LSTM procedure that we used 
consists of two hidden layers, each with 64 nodes. The 
data subsequently entered a full connection layer, and a 
1 × 8 vector was finally output as the feature vector of a 
single mutated sequence.

Step 2. Clustering with the SOM The SOM consists 
of two kinds of layers: an input layer and a competition 
layer. The randomized units in the competition layer 
were trained to describe the distribution of units in the 
input layer via the mechanism of "competitive learning" 
[29]. In the SOM process of the LSTM-SOM model, the 
feature vector obtained from the LSTM process is used 
as the input. Units in the competition layer are adjusted 
continuously according to their distance to the input 
unit. For one input unit, the unit in the competition layer 
nearest to it is regarded as the "winning unit", which will 
move the maximal distance to the input unit (target), 
and for the other units, their travel distance to the target 
decreases with the increase in the distance to the winning 
unit. To avoid an excessive concentration of the results, 
we set a threshold value in the model. When the distance 
between the competition layer unit and the target is over 
the threshold value, the unit will move in the opposite 
direction to the target. In particular, not only will units 
in the competition layer be updated in our SOM model, 
but the input unit will also be updated in the opposite 
direction of the vector sum of the competition layer unit 
movement. Then, the updated input unit will be used as a 
label to train the LSTM model.

First, we obtained feature vectors of 100 samples from 
LSTM in one batch, and they were used as the input units 
of the SOM. The settings included 200 units in the SOM 
competition layer. For each input vector, the Euclidean 
distance between it (x) and each unit in the competition 
layer ( wj ) was calculated as follows:

The unit closest to x is recorded as wmin , and the dis-
tance between wmin and each other competition layer 
unit is calculated as follows:
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A threshold of S was set in the process of training. If 
dj(wmin) ≤ S , wj will move in the direction of x; other-
wise, wj will move in the opposite direction. The trans-
portation distance decays with an increase in dj(wmin) . 
The neighborhood function refers to the Gaussian func-
tion [29]:

In the decay function, σ is a constant that affects the 
amplitude of transportation distance decay. The update 
vector is as follows (where L is the learning rate of the 
SOM):

When the distance between wj and the target x is less 
than S, they will approach each other. Otherwise, they 
will pull away from each other. Due to the existence of 
the decay function, the influence of distant units on each 
other is very small, and no excessive dispersion of units 
was observed in training. To avoid overfitting, the units 
in the SOM competition layer are updated after each 
training batch of 100 samples. The samples in each batch 
are selected randomly from different cancers. To change 
the discrete status of the input vectors and cause similar 
input vectors to aggregate, the input units are updated in 
the opposite direction ( x is the input vector):

Step 3. Training the LSTM model The updated x(new) is 
used as the label to train the LSTM network. In this way, 
the output feature vectors of LSTM with similar features 
can be gradually closed.

The above three steps are repeated until a clear, stable 
classification is obtained.

Obtain the classification
During training, the units in the competition layer of the 
SOM were sorted according to the distance to wmin . S 
was set as the distance of unit rank 40 (5% of entire com-
petition layer units) to wmin . After each iteration of SOM 
analysis, the updated input data were used as labels to 
train the LSTM model for 2 iterations. The LSTM learn-
ing rate was set as 0.001. The SOM learning rate was set 
as 0.005.

Two classes were obtained after one round of training. 
After 3 rounds of training, a total of 8 clustered classes 
were obtained. It was observed that there were 2 classes 
showing significantly larger sample sizes than the other 
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classes. Therefore, an additional round of clustering 
was carried out in the 2 classes. Finally, we obtained 10 
classes of mutated sequences.

Analysis of clinical features
In the analysis of clinical features, measurement data 
were expressed as the mean ± standard deviation. In the 
analysis of differences between groups, an independ-
ent-samples T test (number of groups = 2) or analysis 
of variance (ANOVA) (number of groups > 2) was used. 
Enumeration data were expressed as count data, and chi-
square analysis was used for difference testing. A sample 
was removed if the data of an item required for statistics 
were missing. p < 0.05 was considered to indicate a statis-
tically significant difference. In the survival analysis, the 
log-rank test was used to analyze the difference in sur-
vival between different groups.

Clustering of patients according to the MB composition
Patients were clustered according to their MB composi-
tion. In the clustering method according to the MB com-
position, each kind of MB was reflected as the percentage 
of the entire MB in one patient. The K-means method was 
used for clustering performed by the K-means method in 
the scikit-learn package. An "elbow method" was used to 
evaluate the K value (number of clustered groups) [30]. 
The K value evaluated in different cancers, and the entire 
sample was generally between 5–8. After comparing the 
clustering results, K = 7 was selected as the class number 
for K-means clustering.

Code available
All mathematical methods were performed with Python. 
The code for the pretreatment of TCGA data and the 
construction, training and testing of the model is stored 
at https://​github.​com/​Freud​Dolce/​SBS_​CLUST​ER/. For 
clinical data analysis, patient clustering, survival analy-
sis and drawing, the code is stored at https://​github.​
com/​Freud​Dolce/​SATA/. All the code is open source and 
freely available.

Results
SBS clustering via the LSTM‑SOM unsupervised machine 
learning approach
A total of 2,141,527 somatic SBS data points from 9596 
patients were collected from the TCGA database. For 
each SBS sample, 100 flanking bases (50 bases at the 5′ 
end and 50 at the 3′ end) were included in the LSTM 
training data.

In brief, our LSTM-SOM model functions by extracting 
the features of mutant sequences via the LSTM network 
and then taking the generated feature vector as the input 
data for the SOM. Units in competitive layers of the SOM 

are then refreshed to edges closer to the distribution of 
the input data. After each iteration of the SOM in our 
LSTM-SOM model, not only will the units in the com-
petitive layer of the SOM be refreshed, but the input data 
generated by LSTM will also be adjusted in the opposite 
direction (Fig.  1A). Then, the refreshed input data are 
used as the labels to train the LSTM model. The above 
steps were repeated until the LSTM outputs formed clear 
classifications.

One hundred samples from patients with different can-
cers were selected randomly in each training iteration. 
In the LSTM process, the influence of unit data on the 
LSTM output results decreased with increasing distance 
to the ending unit. The LSTM process was carried out 
on both sides of the mutation site in opposite directions. 
Thus, the mutation site was placed at the end of both 
sequences to expand its influence on LSTM output and 
to reflect the difference between the reference allele and 
mutant allele. Mutated sequences were clustered into 
2 types after one stage of training. Thus, we obtained 8 
classes of MBs after 3 stages of training. Then, an addi-
tional stage of training was performed for 2 classes of 
MB with a significantly larger number of samples and 
ultimately revealed 10 classes of MBs, recorded as MB 1–
MB 10 (Fig. 1B).

Features of mutation bases and flanking sequences 
in different MBs
Following the principle of complementary base pair-
ing, 4 kinds of bases form 6 classes of base substitutions: 
C > A, C > G, C > T, T > A, T > C, and T > G, where base 
substitutions are represented by the pyrimidine residue 
of the base pair. Among the 10 classes of MBs clustered 
by the LSTM-SOM, 4 contained a single kind of mutation 
(MB 7: C > A; MB 8: C > T; MB 9: T > A; MB 10: T > C). 
The other 5 classes contained multiple types of mutations 
(MB 1: C > G, T > C, and T > G; MB 2: C > A, C > T, T > A 
and T > G; MB 3: T > A and T > C; MB 4: C > G and C > T; 
MB 5: C > A, C > G, T > C and T > G; MB 6: C > A, C > T, 
T > A and T > G) (Fig. 2, Additional file 2: Table S1).

The clustering results were strongly influenced by the 
flanking bases of the mutation site. For example, both 
MB 5 and MB 7 exhibited C > A mutations, and the flank-
ing bases of MB 5 were dominated by T bases, but MB 7 
was dominated by A bases. Differences in flanking bases 
could also be observed in other classes of MBs with simi-
lar mutation features, such as MB 2 and MB 6, MB 4 and 
MB 8 (Fig. 2). With an increase in the distance from the 
mutation site, the proportions of the four bases tended 
to become balanced. In the analysis of cancers with high 
incidence (lung, breast, prostate, colon, stomach, bladder, 
ovary, cervix uteri, liver, thyroid, skin and kidney can-
cers), the composition of the bases in the mutation site 

https://github.com/FreudDolce/SBS_CLUSTER/
https://github.com/FreudDolce/SATA/
https://github.com/FreudDolce/SATA/


Page 5 of 14Ji et al. BMC Medical Genomics          (2021) 14:298 	

Fig. 1  Training process of the LSTM-SOM model. a Sketch map of LSTM-SOM. b The clustering process. Two classifications were used for each 
training period. Ten classes of mutant sequences were obtained after 3 rounds and an extra round of training. Three of the eight dimensions in 
LSTM output vectors are shown in the space rectangular coordinate system
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and the flanking sites of each MB basically followed that 
in the entire sample (Additional file 1: Figure S2).

Study on MBs difference in cancers of multiple organ origin 
and pathologic types
Significant differences in the composition of MBs existed 
among cancers with different pathologies. Overall, MB 4, 
MB 5, MB 7 and MB 8 accounted for much greater per-
centages of the MBs than the other classes of MBs, espe-
cially MB 4 and MB 8 (Fig. 3A). Malignant mesenchymal 
tumors seemed to present a higher percentage of MB 2 
and MB 6 than epithelial malignant tumors. Transitional 
cell carcinoma of the urinary tract showed a distinctly 
higher MB 1 incidence than other cancers. Cancers of 
germ cells and the glomus (paragangliomas) exhibited a 
high proportion of MB 10. An obvious feature of melano-
mas was the dominance of MB 4 and MB 8. This finding 

suggested that these classes of MBs may be correlated 
with ultraviolet light exposure.

The components of MBs varied in different cancers, 
and some cancers presented distinct features. The pro-
portions of MBs in different cancers were influenced by 
the pathological type to some extent (Fig. 3B; Additional 
file  1: Figure S3). For example, cancers of the skin and 
lymph nodes showed extraordinarily high proportions 
of MB 4 and MB 8 but small proportions of other MBs. 
In both types of cancers, melanoma is the major patho-
logic type. Lung cancer presented high proportions of 
MB 5 and MB 7. Among the 2 major pathological types 
of lung cancer, adenocarcinoma (AC) exhibited much 
higher proportions of MB 5 and MB 7 than did squamous 
cell carcinoma (SCC). This was consistent with the MB 
composition in the two pathological types. However, 
for the same pathological type, differences in the MB 

Fig. 2  Mutation type and composition of flanking bases in different MBs. Each bar except for “Reference Allele” and “Mutation Allele” represents one 
flanking genetic locus. Bars on the left of “Reference Allele” represent bases on the 5’ end of the mutation site, and bars on the right of “Mutation 
Allele” represent bases on the 3’ end of the mutation site
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composition could be observed in different cancers. For 
example, AC of the colon presented higher proportions 
of MB 4 and MB 8 than did AC of the lung. SCC of the 
lung exhibited more MB 5 and MB 7 than SCC in the 
head and neck (Additional file 1: Figure S4).

In most classes of MBs, the frequency of genes that 
were commonly mutated in malignant tumors, such as 
TTN, TP53, and MUC16, was relatively high. Distinct 
features existed in some classes of MB. The propor-
tion of TP53 mutations was generally high, but it was 
relatively low in MB 7 and MB 10. Remarkably, BRAF 

was the most common mutated gene in MB 9. A higher 
proportion of PIK3CA mutations was observed in MB 
8 and MB 10 than in the other classes of MBs (Addi-
tional file 2: Table S2). More distinct features could be 
observed when considering specific cancers. For exam-
ple, in pancreatic cancer, MB 4 and MB 5 contained a 
higher frequency of KRAS mutations than did the other 
classes of MBs. In kidney cancer, the frequency of VHL 
mutations ranked high in MB 3, MB 5, MB 7 and MB 
9. In skin and thyroid cancers, BRAF mutations were 
common in MB 9 but not in the other classes of MBs 
(Additional file 1: Figure S5).

Fig. 3  Quantity and proportion of MBs in different cancers. a MBs in cancers of multiple organ origin. b MBs in cancer of different pathologic types. 
The left subgraph shows the proportion of different MBs in all SBS mutation data points from different kinds of cancers. The right subgraph shows 
the quantity and proportion of different MBs in patients. Differences in quantity are reflected in the size of the point, and differences in proportion 
are reflected in the color of the point
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Survival analysis of patients with different MBs in the same 
mutation gene
In the mutated genes with a high frequency, the compo-
sition of MBs varied between different kinds of cancers. 
Such differences reflected the overall MB composition 
of each cancer (Additional file  1: Figure S6). To fur-
ther study the influence of certain genes with different 
MBs on survival, we analyzed the survival of patients 
who exhibited mutations in genes with high mutation 
frequencies (TTN, MUC16, TP53, DNAH5, USH2A, 
PIK3CA, SYNE1, etc.). Patients were grouped accord-
ing to the MB classification of specific genes. Patients 
carrying genes with MB 4 and MB 8 mutations usually 
showed better survival. In contrast, MB 1, 6, and 9 in 
a gene could predict worse survival (Fig.  4 and Addi-
tional file 1: Figures S7 and S8).

Relationship between MBs and clinical features of cancer 
patients
Analysis was performed to determine the relation-
ship between MBs and the clinical features of tumor 
patients, including their age, sex, weight, AJCC stage 
and TNM stage. The change in MBs showed a non-
monotonic trend with patient age. The percentages 
of MB 2, MB 5, and MB 7 in single patients increased 
with age within the first interval (< 70 for MB 2; < 75 for 
MB 5 and MB 7) but decreased when age exceeded the 
threshold. This trend was reversed for MB 4 and MB 8. 
An exception was observed for MB 9, whose propor-
tion in single patients decreased monotonically with 
age. The proportion of MBs in a single patient generally 
varied between the sexs. Female patients were likely to 
show higher percentages of MB 2, MB 3, MB 5, MB 6 
and MB 10, while male patients exhibited higher per-
centages of MB 4, MB 8 and MB 9. The difference was 
not significant in MB 1 and MB 7. No apparent rule 
regarding the relationship between the weight and MB 
composition of a patient was observed (Fig. 5 and Addi-
tional file 1: Figure S9).

Although the detailed methods of AJCC staging in dif-
ferent cancers are not the same, they generally follow 
similar principles [31]. Therefore, we merged the subdi-
visions of the stages in some cancers to analyze cancer 
stage. The proportions of MB 3, MB 7 and MB 9 showed 
a decreasing trend with increasing T and N stages. In 
contrast, MB 4 and MB 8 had a positive relationship with 
T and N stages. For some MBs, their relationship with 
cancer staging was complicated. MB 5 decreased with the 
progression of T and N stages, but M1 patients presented 
more MB 5 than M0 patients. MB 2 and MB 6 exhibited 
a remarkably high prevalence in N3 patients (Fig. 5 and 
Additional file 1: Figure S9).

In most cancers, the MB composition at different ages 
basically followed the pattern shown in the total samples. 
The proportion of MB 2 in most cancers was significantly 
higher in males than in females. Regarding cancer stag-
ing, T and M stages showed obvious tendencies in most 
kinds of cancers, and their trends were basically consist-
ent with those for the total sample. Stomach cancer and 
colon cancer, in particular, showed opposite MB tenden-
cies in T and N stages compared with the entire sample 
and with other cancers with high incidence (Additional 
file 1: Figures S10–S13).

Composition of MBs in cancer patients is related to clinical 
prognosis
To further analyze the influence of the MB composition 
on the clinical features of patients, a K-means cluster-
ing method was used to classify patients according to 
MB composition. Different kinds of MBs were recorded 
according to their proportion rather than their number 
in a single patient. K = 7 was selected as the number of 
classes to be distinguished. Clustered patients were des-
ignated as Classes 1–7. The compositions of MBs in dif-
ferent cancers are shown in Fig. 6A.

In the survival analysis, significant differences in sur-
vival curves were observed in different classes of patients 
(Fig.  6B). In the pairwise survival analysis, patients in 
Classes 2, 4, and 5 showed better survival, and patients 
in Classes 1, 3, 6, and 7 showed worse survival (Fig. 6C). 
In the analysis of specific cancers, survival in different 
classes of patients generally followed the results obtained 
for the total sample but with some discrepancies that 
were not significant. Class 3 patients, in particular, 
seemed to show poor survival for most of the analyzed 
cancers (Additional file 1: Figure S14).

Patients of different classes showed distinct clinical fea-
tures (Fig.  6D, E). According to AJCC staging, a signifi-
cantly lower proportion of stage IV patients and a higher 
proportion of stage I patients were observed in Classes 4 
and 5, which may be related to the better survival of these 
2 classes of patients. Interestingly, Class 4 included sig-
nificantly more T4 patients but hardly any M1 patients. 
This suggests that the MB composition of Class 4 may be 
associated with the local progression of cancers. Class 6 
patients showed the highest percentage of AJCC stage 
4 and lowest percentage of AJCC stage I, which may be 
the reason for the poor survival of these patients. In the 
analysis of age, patients of Class 3 were found to present 
significantly greater ages. At the same time, the weight of 
Class 3 patients was also high. Class 1 patients exhibited 
a high percentage of AJCC stage 1 and a low percentage 
of stage IV. Moreover, the proportion of N0 patients in 
Class 1 was significantly higher than that in other classes.
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Fig. 4  Relationship between patient survival and MB in genes with high mutation frequencies. The top 4 most frequently mutated genes are 
shown (other genes with high mutation frequencies are shown in Additional file 1: Fig. S5). For each gene, the left subgraph shows the p value 
of the log-rank test between groups in the whole population; and the right subgraph shows the p value of the log-rank test between groups of 
patients with different cancers with high incidence. Only p values less than 0.05 are shown in the heat map
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Discussion
Several studies on mutation signatures have been pub-
lished. Most of the studies were based on the TCGA 
or other databases. Several mathematical methods are 
now used to cluster the mutation signature [2, 4, 9, 11, 
12]. Some of the studies have suggested that adjacent 
bases may affect the characteristics of the mutation 
signature.

An increase in the number of included flanking bases 
leads to an exponential increase in the number of possible 
classifications. In our study, together with the 50 flank-
ing bases on both sides, there were theoretically 6 × 4100 
possible classes, making it nearly impossible to analyze 
such classes with classical statistical methods. LSTM is a 
machine learning approach that is good at extracting the 
features of long sequences [32]. This approach provided 

Fig. 5  MBs in patients with different clinical features. *: p < 0.05 in the t test or ANOVA between groups; **p < 0.005 in the t test or ANOVA between 
groups. The proportion is shown as the mean ± standard deviation, and error bars represent standard deviation
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us with a method for extracting the features of mutated 
sequences across a wider spatial scope. A follow-up 
SOM method can then be used to discover internal rela-
tionships between the extracted features and ultimately 
obtain different categories of mutant sequences. To avoid 
overfitting of the model, the weight of the vectors in the 
competitive layer was updated after all input data were 

trained in one batch. Each iteration of training included 
2 LSTM iterations and 2 SOM iterations. In this way, we 
identified 10 classes of mutation sequences. No one kind 
of mutation was contained in a single class of MBs. The 
composition of the bases flanking the mutation sites dif-
fered considerably. Generally, units located far from the 
endpoint had less influence on the LSTM output than 

Fig. 6  Differences in survival and clinical features between patients clustered according to MB composition. a Characteristics of MB composition in 
patients of 7 classes clustered by the K-means method; each line represents one patient. b Survivorship curve of each class of patients. c Log-rank 
test between classes; differences in the p value are reflected in color. d e: Clinical features of patients in different classes (*: p < 0.05 ANOVA or the 
chi-square test; **: p < 0.005 ANOVA or the chi-square test; error bars represent standard deviation)
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those located close to the endpoint [26]. This character-
istic was reflected in the flanking bases of the mutation 
site. In all kinds of MBs, the proportions of A, T, C, and G 
were quite different among the bases near the mutation 
site. With an increase in the distance from the mutation 
site, the proportions of the four bases tended to become 
balanced.

The analysis of MBs in different kind of cancers sug-
gested that MBs may comprehensively reflect the dif-
ference in cancers according to both location and 
pathological type. Previous studies have proven that dif-
ferent mutation signatures may be associated with differ-
ent triggers involved in various mutation processes and 
result in differing biological behaviors of cancers [2, 9]. 
A variety of mutation signatures that may be related to 
the biology and etiology of cancer have been identified 
[2, 9, 14–16, 33–36]. Our study suggests that a high inci-
dence of MB 4 and MB 8 is associated with pathologic 
types of cancer that are believed to be caused by exter-
nal mutagenic exposure, such as SCC, transitional cell 
carcinoma, malignant mesothelioma, and complex epi-
thelial carcinoma. We also found that some kinds of can-
cer, such as melanoma and transitional cell carcinoma, 
had distinctive features that are worthy of further study 
to determine the relationship between each MB and spe-
cific cancer processes. In a given gene, SBSs may occur 
at different bases with different features and present as 
different kinds of MBs. Each gene with a high mutation 
frequency contained multiple kinds of MBs. On further 
study of the MB proportion in genes that are highly fre-
quently mutated, we observed differences in the mutated 
gene compositions of different MBs. This finding sug-
gests that attention should be paid to the effect of differ-
ent MBs on the characteristics of cancer when they occur 
in the same gene.

Then, in the subsequent analysis, we focused on the 
relationship between MBs and clinical features, includ-
ing survival. First, survival analysis between patients with 
different MBs in the same gene showed a significant cor-
relation between survival and MBs for specific genes. In 
the analysis between MBs and clinical features, it was 
observed that the proportion of MBs generally showed 
an obvious tendency with a change in clinical features, 
which suggests that characteristics of MBs reflect the 
characteristics of cancers. Considering the differences 
in the clinical significance of staging in different can-
cers, further analysis was performed on each cancer with 
high incidence. Generally, in most cancers, the MB com-
position in patients with different clinical features basi-
cally followed the pattern observed in all samples. While 
there were some exceptions, such as in stomach can-
cer and colon cancer, MB tendencies in T and N stages 
were opposite to those in the entire sample and to other 

cancers with high incidence. This result suggests that 
local and lymph node progression in gastrointestinal 
cancers may exhibit distinct mechanisms. In the analy-
sis of age, younger and older patients showed similar MB 
compositions in the form of a conic structure in the bar 
graph. This suggests that the similar cancer biologies of 
young and old patients require further study. Generally, 
although the results showed a clear relationship between 
MBs and clinical features, details of the relationship as 
well as its mechanism still require further study.

To further explore the translational relevance of MBs, 
we then clustered patients into 7 classes according to MB 
composition. Interestingly, patients with a balanced com-
position of MBs (Classes 1, 3 and 5, especially Class 3) 
were associated with poor survival for most of the ana-
lyzed cancers. These results suggest that a balanced MB 
composition may predict poor survival in patients and 
may be related to mixed mutation triggers. Some classes 
of patients showed typical clinical features. For example, 
patients in Class 3 were older and weighed more than 
those in the other classes. These factors may be partly 
responsible for the poor survival of patients in Class 3. 
In contrast, although the patients in Class 1 were older, 
they did not weigh more than those in the other classes. 
Therefore, further study is still needed to determine the 
mechanism by which patients in Class 1 experience poor 
survival. Due to the natural differences in cancer inci-
dence, large differences exist between different cancers. 
In different cancers, MB may be involved in different 
kinds of cancer-related processes. Therefore, the analy-
sis of the relationship between MBs and distinctive clini-
cal features in specific kinds of cancer can provide more 
information about how MBs are related to cancer etiol-
ogy, processes, prognosis and drug susceptibility.

There were still some constraints and limitations to this 
study. The clustering results obtained from the LSTM-
SOM model were largely dependent on the selection of 
SOM parameters (especially the neighborhood function 
parameter). There exists the possibility that when train-
ing with other parameters, the classification obtained 
may have been related to clinical features that were not 
included in this study and thus need further study. More-
over, the mechanism of machine learning models is dif-
ficult to explain [37]. It would be meaningful to use a 
mathematical method to explore the mechanism of the 
LSTM-SOM functions to improve the interpretability of 
the LSTM-SOM model and to explain the formation of 
different classes of MB to determine how sequences of 
bases affect the characteristics of cancers. Different MBs 
may also be involved in complex changes in three-dimen-
sional chromosome conformation. Moreover, molecular 
biology methods are helpful for explaining the different 
characteristics of MBs.
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Conclusion
This study provided a method for analyzing the char-
acteristics of mutant sequences. Result of this study 
showed that flanking sequences, together with mutation 
bases, shape the signatures of SBSs. The analysis of MBs 
in different kind of cancers suggested that MBs reflect 
the difference in cancers according to both location and 
pathological type. Mutation sequence signatures (MBs) 
identified via LSTM-SOM method in this study were 
shown related to clinical features and survival of cancer 
patients. Composition of MBs is a feasible predictive fac-
tor of clinical prognosis. Patients with balanced MB com-
position seems to have worse survival. Further study on 
the interpretability of LSTM-SOM network and on the 
mechanism of MBs related to cancer characteristics is 
suggested.
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