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Abstract: The COVID-19 pandemic caused important health and societal damage across the world
in 2020–2022. Its study represents a tremendous challenge for the scientific community. The correct
evaluation and analysis of the situation can lead to the elaboration of the most efficient strategies and
policies to control and mitigate its propagation. The paper proposes a Multi-Criteria Decision Support
(MCDS) based on the combination of three methods: the Group Analytic Hierarchy Process (GAHP),
which is a subjective group weighting method; Extended Entropy Weighting Method (EEWM), which
is an objective weighting method; and the COmplex PRoportional ASsessment (COPRAS), which is a
multi-criteria method. The COPRAS uses the combined weights calculated by the GAHP and EEWM.
The sum normalization (SN) is considered for COPRAS and EEWM. An extended entropy is proposed
in EEWM. The MCDS is implemented for the development of a complex COVID-19 indicator called
COVIND, which includes several countries’ COVID-19 indicators, over a fourth COVID-19 wave,
for a group of European countries. Based on these indicators, a ranking of the countries is obtained.
An analysis of the obtained rankings is realized by the variation of two parameters: a parameter
that describes the combination of weights obtained with EEWM and GAHP and the parameter of
extended entropy function. A correlation analysis between the new indicator and the general country
indicators is performed. The MCDS provides policy makers with a decision support able to synthesize
the available information on the fourth wave of the COVID-19 pandemic.

Keywords: multi-criteria decision support; complex COVID-19 indicator; group AHP; extended
entropy; COPRAS multi-criteria method; normalization; fourth COVID-19 wave

1. Introduction

The coronavirus SARS-CoV 2, the virus that generated COVID-19 disease, has been the
main cause of important changes in people’s lives since it was identified at the end of 2019.
The COVID-19 has received pandemic status in March 2020, as it spread to all continents
and all countries in a relative short period of time. Sustained efforts are being made to limit
the spread of the virus and to support and allow health systems to cope with the situation.
The evolution of the pandemic generated by the SARS-CoV 2 virus differs from continent
to continent, from country to country and from the virus variants. This situation posed
many challenges to European healthcare systems. Most governments have implemented
restrictive, sometimes intrusive decisions to reduce the spread of SARS-CoV 2.

The pandemic generated by the SARS-CoV 2 coronavirus is monitored, at the level of
each country, every day, by several COVID-19 indicators.

Under these conditions, the correct evaluation and analysis of the situation caused
by the COVID-19 pandemic can lead to the elaboration of the more efficient strategies at
the country level. An important contribution in the elaboration of European policies is the
understanding of the situation generated by the coronavirus infection (COVID-19) from
several points of view. This may be achieved by calculating a complex indicator that takes
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into account several, separate, measured COVID-19 indicators. The problem of obtaining a
complex COVID-19 indicator can be solved by a multi-criteria decision support based on
multi-criteria method and/or weighting method or combination of methods.

New multi-criteria methods and combination of methods have been developed in the
last decades. They were applied in various domains. Many of these methods are extensions
or improvements of the existing methods [1–3].

The paper proposes a Multi-Criteria Decision Support (MCDS) based on the combi-
nation of three methods: GAHP [4,5], a subjective group weighting method, EEWM, an
objective extended weighting method, and COPRAS [6,7], a multi-criteria method. The
principal contribution of the paper is the MCDS. In MCDS, a generalization of Shannon
entropy, which we shall call extended entropy, is proposed for computing objective weights.
The method that uses this entropy is called EEWM. In addition, in MCDS, a linear combi-
nation between GAHP and EEWM weights is proposed. It includes both the uncertainty in
the evaluation matrix and the contribution of the experience of a group of experts in the
related field. The trade-off between the subjective involvement of experts and the objective
evaluation in the final calculation of weights is controlled by a parameter.

The MCDS is implemented for the development of a new complex COVID-19 indicator
called COVIND, that includes several countries COVID-19 indicators, over a fourth COVID-
19 wave, for a group of European countries. Based on these indicators, a ranking of the
countries is obtained. This indicator can identify which countries are more vulnerable to
COVID-19 illnesses from several points of view (indicators) considered together.

The proposed MCDS may provide decision makers with a decision support capable
of synthesizing the available information into a complex indicator. MCDS and COVIND
can contribute to the correct evaluation and analysis of the pandemic situation and to the
elaboration of strategies for mitigating the risks of spreading the infection by considering
the multi-criteria aspect of the problem.

This paper is organized as follows. In the second section, a literature review on the
application of multi-criteria methods in the study of the COVID-19 pandemic is presented.
In the third section, the proposed decision support MCDS is described. Section 3.1 is
dedicated to the selection of methods and Section 3.2 to MCDS input data description. In
Section 3.3, MCDS stages were described. The GAHP weighting method in the context
of the proposed decision support is presented in Section 3.4. The consistency check of
the pairwise comparison matrices, the pairwise comparison matrices aggregation, and
the calculation of the GAHP criteria weights by Dominant Eigenvalue (Power Method) is
detailed. Section 3.5 presents the extended entropy function and the EEWM. In Section 3.6,
the overall criteria weights calculation is detailed. Section 3.7 is dedicated to the COPRAS
multi-criteria method. The normalized evaluation matrix is weighted. The COPRAS
solutions and the ranks of the alternatives are calculated. In the fourth section, the MCDS is
implemented for ranking and analysis of a set of 12 European countries for five COVID-19
indicators (criteria) in the fourth COVID-19 wave. An analysis is realized.

2. Literature Review

At present, there is a rich literature on the applications of multi-criteria methods to
problems connected with COVID-19 in various domains such as health, economics, finance,
and education. Some examples are: the grade assessment of COVID-19 Disease [8], estimat-
ing of the Brazilian health care system risk due to COVID-19 [9], evaluation of the available
COVID-19 treatment options by MCDM techniques, fuzzy PROMETHEE and VIKOR [10],
the selection of strategic guidelines for the healthcare system reorganization under the con-
ditions of the COVID-19 pandemic, based on a multi-criteria methodology [11], evaluation
and benchmarking the different diagnostic models for COVID19 based on multi-criteria
decision-making [12], the initial spreading of COVID-19 in New York City in the conditions
of the particulate matter PM2.5 air pollutant [13], a multi-factor weighted spatial analysis
to understand how each country is impacted by the virus [14], quarantine decisions due
to the COVID-19 pandemic [15], an integrated multi-criteria framework to evaluate the
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healthcare sector [16], and a SEIRD model (Susceptible, Exposed, Infective, Recovered and
Deceased) for COVID-19 infection with a new parametrization that was proposed [17].

An analysis of the scientific literature reveals that the idea of using a complex indicator
for the study of COVID-19 calculated by a multi-criteria method and a combination of
weighting methods (EEWM and GAHP) is new.

There are several articles in which the indicators taken into account are different
depending on the situation approached. No weighting methods are considered or equal
weights are used for the criteria. Some examples are presented in the following.

The authors of [18] evaluated and analyzed the safety levels of 100 regions in the
world in terms of COVID-19 using TOPSIS, VIKOR and COPRAS methods. The main
criteria of quarantine efficiency, government efficiency of risk management, monitoring
and detection, health readiness, regional resilience, and emergency preparedness are used
in the evaluation of countries and regions. No weighting methods are used or a hybrid
combination of methods is used.

In [19], the multi-criteria method TOPSIS is used to generate a ranking of countries
based on health, society and work criteria that define three areas severely affected by the
COVID-19. TOPSIS calculates a score that cumulates the considered criteria. No weighting
methods are used in the paper.

In the study by [20], MCDM techniques such as Weighted Sum Model (WSM), Weighted
Product Model (WPM), Weighted Aggregated Sum Product Assessment (WASPAS), and
TOPSIS were used, and regions were listed according to control measures implemented to
stop the spread of COVID-19. No weighting methods are used.

In [21], the authors computed an index of vulnerability at the state and district lev-
els of India based on 15 indicators across the following five domains: socioeconomic,
demographic, housing and hygiene, epidemiological, and health system. A percentile
ranking method which is a simple method to compute both domain-specific and overall
vulnerability is used. The equal weights were assigned to each indicator for calculating the
domain vulnerability.

The aim of the paper [22] is to generate an area-level COVID-19 Pandemic Vulnerability
Index (CPVI) and to assess its correlation with COVID-19 cases. Using factor analysis,
four latent factors were identified and named as sociodemographic, medical conditions,
transportation, and land use. No weighting methods are used in the paper.

Paper [23] presents a comparison of the OECD countries’ performance during the
COVID-19 pandemic with the Global Health Security Index. No weighting methods were
used for the criteria weights. The cumulative score involving all four variables of interest
was equally weighted for each criterion. This was achieved by calculating the average rank
for the cumulative score.

In [24], several factors that vary across geographies and can determine adverse effects
on the National Health System during a pandemic, such as age, existing disease prevalence,
medical resource availability, and deprivation are combined in order to obtain an indicator
of community-level vulnerability that shows which areas are more exposed. The new indi-
cator may help policy makers to mitigate the impact of similar pandemics. No weighting
methods are used in the paper.

In [25], an indicator was developed, comprising appropriate components for assessing
the level of wealth and “happiness” of all the Romanian counties. This indicator was
used for approaching the entrepreneurial resilience during times of crisis caused by the
COVID-19 pandemic in Romania in multiple manners according to its diverse forms. No
weighting methods were used for the criteria. The indicator is calculated by summing the
normalized indicators.

In [26], the correlation between tourism vulnerability and the COVID-19 pandemic
was investigated. The authors proposed a vulnerability indicator for the tourism in Spain
provinces. The multi-criteria method used is DEA, and the weighting method used is
Principal Component Analysis.
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For the control and diagnosis of COVID-19 in the paper [27], a spherical intelligent
fuzzy decision model is proposed. This model is based on TOPSIS and COPRAS methods
under a spherical fuzzy environment.

A comprehensive review and an analysis of the multidisciplinary fields, carried out
by different MCDM concerning COVID-19 in complex case studies, are provided in the
paper [28].

In the paper [29], for estimating and choosing the best alternative of health care waste
treatment, the COPRAS method in a Pythagorean fuzzy set (PFS) is used. A new entropy
measure on PFSs is proposed, and its validity is studied.

3. The Multi-Criteria Decision Support—MCDS
3.1. Selection of Methods

The MCDS is based on the combination of GAHP, EEWM and COPRAS methods. The
overall criteria weights are calculated as a linear combination of criteria weights obtained
with the GAHP and EEWM. These weights are used in COPRAS.

The weight associated to each criterion reflects the relative importance of the criterion.
The determination of the weights can be performed by an expert (evaluator, decision-
maker) or by a group of experts (evaluators, decision-makers). A critical input to most
multi-criteria methods is the assignment of criteria weights. These can be obtained by
subjective, objective or a combination of weighting methods [30].

The determination of the subjective weights is based on the opinion and experience of
the experts. In order to obtain judgments on the criteria, experts answer a set of questions
about the criteria. Determining subjective weights is often time consuming and depends
on the expertise of the specialists involved.

Subjective weighting methods are based on the experts’ preferences, while the em-
phasis of the objective methods is put on the statistical evaluation of data taken from the
evaluation matrix. In cases when experts’ opinions are difficult to obtain, one can use objec-
tive weights [31]. Each of these weighting methods has its advantages and disadvantages.

The lack of experience, imprecise information, the limited capability of the expert
for analyzing and correlating criteria may have a negative impact on the precision of the
weights assigned to criteria. A disadvantage of the objective methods is that they do not
benefit from the expert’s experience.

None of the two weightings methods, subjective and objective, are perfect, and the
integrated weighting method might be the most appropriate for determining the criteria
weights. A combination of a subjective weighting method and an objective weighting
method would ensure the combination of the experience of experts who know the field
well with the measurement of the existing uncertainty in the evaluation matrix. The
combination is controlled by a parameter that ensures the level of subjectivity (objectivity)
in the calculation of the weights of the criteria.

Examples of objective weighting methods are the Entropy method [32–34], CRITIC
(Criteria Importance Through Intercriteria Correlation) [35], and the Weighted Least-Square
Method [36]. Example of subjective weighting methods are the Simple Multi-Attribute
Rating Technique (SMART) [37], Analytical Hierarchy Process (AHP) [38,39], Step-Wise
Weight Assessment Ratio Analysis (SWARA) [40], Weighted Aggregated Sum Product
Assessment (WASPAS) [41], and Best–Worst Method (BWM) [42]. A summary of criteria
weighting methods is presented in [43].

One of the effective and appropriate subjective weighting methods for group decision
making is GAHP. A group approach was chosen because the diversity of stakeholders can
have direct effects on the quality of results as well as the decision-making procedure. The
GAHP is a structured method for organizing and analyzing complex decisions. Group AHP
is suitable when the number of criteria is not very large. The method was chosen because
it has a sound mathematical foundation, has a Saaty evaluation scale for the evaluation
in pairs of criteria, is systematic, concise and calculates a consistency ratio that ensures a
correct comparison in pairs, without inconsistencies.
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The concept of information entropy was first introduced by Shannon [32]. Shannon
and Weaver’s [33] entropy is a measure of uncertainty in information theory that indicates
the inherent contrast intensity of the corresponding criteria. It can measure the amount of
useful information in the evaluation matrix. When the difference between criteria values is
high, then the entropy is small. When a criterion provides more useful information, the
value of the corresponding weight should be higher [44].

One of the popular objective weights methods for obtaining criteria weights is the
entropy weighting method (EWM). The entropy and EWM method were used in various
other problems. In [45], EWM was used in the selection of an industrial robot for the
arc welding operation. The TOPSIS method, combined with the EWM, was used to
improve freight selection decisions [46]. In [47], EWM was used for the selection of Femoral
Component material for total knee replacement. The paper [48] introduced the EWM to
develop a combination prediction model for the ionospheric F2 layer critical frequency.
The weights for calculating a multivariate index of sustainable development are calculated
with the EWM in [49]. A gray EWM and a gray relation–projection pursuit model was
proposed in [50] to calculate the weights of criteria for soybean irrigation schedule in
the Huaibei Plain. In [51], EWM was used for providing collective information of the
entropy weights methodology applied to different machining operations which compute
the objective weights. A bibliometric analysis of EWM for multi-objective optimization
in machining operations was made in [52]. The EWM is widely used compared to other
objective weighting methods.

The EEWM, proposed in this paper, uses an extended definition of entropy that is a
generalization of Shannon entropy. There are several generalizations of Shannon entropy;
see for example [53]. The most important generalized entropies are Rényi entropy [54],
Tsallis entropy [55], Havrda and Charvát entropy [56], and Kapur entropy [57]. The
generalized entropies have played an important role in thermodynamic, statistical and
informational systems.

Let ∆m = {(p1, p2, . . . , pm) ∈ Rm : ∑m
k=1 pk = 1 and pi > 0, i = 1, 2, . . . , m} be the stan-

dard simplex. Examples of entropy functions are:
Shannon entropy [32]:

f1(p1, p2, . . . , pm) = −∑m
k=1 pklnpk;(p1, p2, . . . , pm) ∈ ∆m (1)

Renyi entropy [54]:

f2(p1, p2, . . . , pm) =
1

1− q
ln

m

∑
k=1

pq
k; (p1, p2, . . . , pm) ∈ ∆m (2)

Here, q 6= 1, q > 0. One can easily check that f2 is concave if 0 < q < 1. Renyi entropy
reduces to Shannon entropy as a limiting case when q→ 1.

Tsallis entropy [55]:

f3(p1, p2, . . . , pm) =
1

1− q

(
∑m

k=1 pq
k − 1

)
;(p1, p2, . . . , pm) ∈ ∆m (3)

Here, q 6= 1, q ≥ 0. Tsallis entropy reduces to Shannon entropy as a limiting case
when q→ 1.

Kapur entropy [57]:

f4(p1, p2, . . . , pm) =
1

1− q
ln

(
∑m

k=1 pq+β−1
k

∑m
k=1 pβ

k

)
; (p1, p2, . . . , pm) ∈ ∆m (4)

Here, q 6= 1, q > 0, β > 0, q+ β− 1 > 0. The above function reduces to Renyi entropy
when β = 1. Further, it reduces to Shannon entropy when β = 1 and q→ 1.
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In our study, we shall propose a generalization of Shannon entropy, which we shall
call extended entropy.

f5(p1, p2, . . . , pm) = −
m

∑
k=1

pa
k ln(pk); (p1, p2, . . . , pm) ∈ ∆m (5)

Note that f5 is concave for a ∈ [0.5; 1]. The Shannon entropy is obtained for a = 1.
We shall use the extended entropy in the classical entropy weighting method for

finding objective weights. We shall call EEWM the resulting entropy weights method.
A linear combination between GAHP and EEWM weights is proposed. The trade-off

between the subjective involvement of experts and the objective evaluation in the final
calculation of weights is controlled by the parameter µ ∈ [0, 1].

The advantages of using the parameter µ that controls the trade-off between the
objective and the subjective weighting is that the decision maker can face various real-life
situations. For example,

1. If there are no experts to help in the evaluations, then the parameter will be chosen to
be equal to zero.

2. If there are some experts for the evaluations in which there is a little confidence, one
can take the values of the parameter close to zero.

3. If there are several experts for the evaluations in which there is great confidence, one
can take the values of the parameter close to one or even equal to one.

In MCDS, the COPRAS multi-criteria method is selected.
Examples of multi-attribute methods frequently used in the practice are: SAW [34,58],

TOPSIS [34], VIKOR [59,60], COPRAS [6,7], AHP [38,39], PROMETHEE [61] and ELECTRE
III [62].

The COmplex PRoportional ASsessment (COPRAS) method was introduced by Zavad-
skas, Kaklauskas, and Sarka in 1994 [6,7]. In this method, the ranking of alternatives is
performed using the value evaluation of maximizing and minimizing indexes. A compara-
tive analysis of SAW and COPRAS was realized in [63]. A recent comparative analysis of
TOPSIS, VIKOR and COPRAS was performed in [18]. The paper [64] presents a state-of-
the-art literature survey on COPRAS applications and methodologies.

The COPRAS method is simple, logical, easy to understand for non-specialists in
the field and provides a rational basis for decision making. Although it is a relatively
new method, it has proven its effectiveness. However, the COPRAS method involves
establishing weights associated with the selected criteria. It is based on an evaluation
matrix (criteria alternatives) with quantitative values. In the COVID problem, the arrays of
the evaluation matrix have numerical, concrete values given by the COVID-19 indicators
for the fourth wave.

The choice of the methods VIKOR and ELECTRE III involves the user’s subjective
contribution in setting parameters (the selection of threshold parameters). The subjective
involvement of experts was preferred only in the case of calculating the criteria weights.

The choice of the COPRAS method was based on the advantages of this method com-
pared to other multi-attribute methods for the studied problem. One of these advantages is
that EEWM and COPRAS use the same normalization method (sum normalization, SN) for
the evaluation matrix. The use of different normalization methods, when a combination of
methods is applied, may lead to disruption of the results.
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3.2. MCDS Input Data

The input data in the GAHP method are:

• E =
{

E1, E2, . . . , Ep
}

the set of p ≥ 1 experts.
• C is the set of n criteria C = {C1, C2, . . . , Cn}. A criterion Ci from the set C is measured

using a measure unit. They are two types of criteria: min criteria (those for which the
decreasing values are better) and max criteria (those for which the increasing values
are better). A weight can be calculated for each criterion.

• α is the threshold for acceptance of inconsistency. In our study, we shall take α = 0.1.

The input data in the EEWM are:

• A = {A1, A2, . . . , Am} the set of m alternatives.
• C is the set of n criteria (same as in GAHP).
• Q is the evaluation matrix alternatives criteria.
• Parameter a ∈ [0.5; 1] of the extended entropy function.
• The input data in the overall criteria weights are:
• Parameter µ ∈ [0; 1] that shows the trade-off between subjective and objective weights.
• GAHP weights and EEWM weights.

The input data in the COPRAS are:

• A = {A1, A2, . . . , Am} is the set of m alternatives (same as in EEWM).
• C is the set of n criteria (same as in GAHP and EEWM).
• Q is the normalized evaluation matrix alternatives criteria (same as in EEWM).
• Overall criteria weights.

3.3. MCDS Stages

MCDS has the following stages (Figure 1):

1. Construction of input data in the MCDS;
2. Application of the GAHP weighting method:

a. Checking the consistency and aggregation of the pairwise comparison matrices GEr ;
b. Calculation of the GAHP criteria weights W(GAHP);

3. Application of the EEWM and overall criteria weights:

c. Normalized evaluation matrix calculation;
d. Extended entropy calculation;
e. Calculation of EEWM criteria W(EEWM);
f. Overall criteria weights calculation W(T);

4. Application of the COPRAS method:

g. Weighted normalized evaluation matrix calculation;
h. Maximizing indexes and minimizing indexes calculation;
i. Relative significance value calculation;
j. Calculation of COPRAS solutions S and COPRAS solutions ranks S̃.

The details of the MCDS steps are presented in the following sections.
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Figure 1. The proposed MCDS approach.

3.4. Group Analytic Hierarchy Process Weighting Method

Each expert from the set E of p experts makes sets of pairwise comparisons between
criteria from the criteria set C based on Saaty’s 1–9 scale. For each expert Er from the set
E of experts, a n × n pairwise comparison matrix GEr =

(
g(Er)

ij

)
is obtained. We have

g(Er)
ii = 1; g(Er)

ij = g(Er)
ji ; i, j = 1, 2, . . . , n; r = 1, 2, . . . , p. The element g(Er)

ij denotes the
evaluation of pairwise comparison of the Er-th expert on the degree the criterion Ci, which
influences the criterion Cj on the Saaty scale (Table 1).

Table 1. AHP Saaty scale [38,39].

Scale Criteria

1 Equal Importance
3 Moderate Importance
5 Strong Importance
7 Very Strong Importance
9 Absolute Importance

2, 4, 6, 8 Intermediate values
1/2, . . . , 1/9 Reciprocals of above
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Each matrix G(Er) is verified for consistency. For each matrix G(Er), the maximum
eigenvalue λ

(Er)
max and consistency index CI(Er) are determined:

CI(Er) =
λ
(Er)
max − n
n− 1

(6)

The consistency ratio CR(Er) for each matrix G(Er) is calculated:

CR(Er) =
CI(Er)

RI
(7)

where RI is the random consistency index obtained from Table 2.

Table 2. Average random consistency index [38,39].

Number of Criteria 3 4 5 6 7 8 9

Average RI 0.58 0.90 1.12 1.24 1.32 1.41 1.45

If CR(Er) ≤ α, then the matrix G(Er) is consistent.
If CR(Er) > α, then the expert Er must correct his pairwise comparison.
The matrices GEr are aggregated. There are several methods to obtain a group aggre-

gation [65]. The comparison matrix in pairs G =
(

gij
)

of the group of experts E will be
calculated as follows:

gij =
p

∏
r=1

(
g(Er)

ij

)1/p
, i, j = 1, 2, . . . , n (8)

The GAHP criteria weights are calculated in the proposed MCDS using the Dominant
Eigenvalue (Power Method).

The Dominant Eigenvalue algorithm used in MCDS is presented in the following:
Step 1. The initial elements are defined:
The initial eigenvector is defined: V(0) =

(
v(0)i

)
where v(0)i = 1; i = 1, 2, . . . , n.

The error tolerance ε = 0.000000001 and calculated error ERR = 10 is fixed.
The initial scaled vector V(0) is defined: V(0)

=
(

v(0)i

)
where v(0)i = 1; i = 1, 2, . . . , n.

The initial normalized vector
=
V
(0)

is defined:
=
V
(0)

=

(
=
v
(0)
i

)
=
v
(0)
i = 1/

n

∑
j=1

v(0)j ; i = 1, 2, . . . , n

The initial iteration number k = 1.
Step 2. The greatest eigenvalue and the corresponding eigenvector are calculated

iteratively:
While ERR > ε then:
V(k) =

(
v(k)i

)
where v(k)i = ∑n

j=1 gij ∗ v(k−1)
i is computed.

The vector V(k) is scaled: V(k)
=
(

v(k)i

)
; bk = max

1≤i≤n
v(k)i ; v(k)i =

(
v(k)i
bk

)
.

The vector V(k) is normalized:
=
V
(k)

=

(
=
v
(k)
i

)
where

=
v
(k)
i =

(
v(k)i

∑n
j=1 v(k)j

)
.

The approximative eigenvalue at iteration k, EIG(k) = ∑n
i=1

((
∑n

j=1 gij

)
∗ =v

(k)
i

)
is computed.

The error at iteration k, ERRk =
n
∑

i=1

(
=
v
(k−1)
i − =

v
(k)
i

)2
is calculated.

k = k + 1.
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End While
If ERRk ≤ ε, then the approximation of the greatest eigenvalue is EIG(k−1) and the

corresponding eigenvector (whose entries are the weights) is
=
V
(k)

.

Step 3. W(GAHP) =
=
V
(k)

the GAHP criteria weights where:

W(GAHP) =
(

w(GAHP)
j

)
; j = 1, 2, . . . , n.

The weights have numerical values in the range (0,1) and ∑n
j=1 w(GAHP)

j = 1.

3.5. Extended Entropy Weighting Method—EEWM

In order to have a valid comparison, the matrix Q must be normalized. Normalization
methods usually map criteria with different measurement units to a common scale in the
interval [0; 1]. The matrix Q is normalized with sum normalization (SN).

The entries of normalized matrix Q = (qij) are calculated as follows:

qij =
qij

∑m
k=1 qkj

, i = 1, 2, . . . , m; j = 1, 2, . . . , n (9)

A value in the range [0.5; 1] for the parameter a is selected. Then, ej is calculated with
the normalized extended entropy:

ej = −
ma−1

ln(m) ∑m
i=1 qa

ijln(qij), 0 ≤ ej ≤ 1; j = 1, 2, . . . , n, (10)

Recall that for a = 1, the Shannon entropy is obtained.
The arrays of the vector of criteria weights W(EEWM) =

(
w(EEWM)

j

)
based on the

entropy concept are calculated:

w(EEWM)
j =

1− ej

∑n
k=1(1− ek)

, j = 1, 2, . . . , n (11)

The weights have numerical values in the range (0; 1) and
n
∑

j=1
w(EEWM)

j = 1.

3.6. Overall Criteria Weights Calculation

The set of overall criteria weights W =
(
wj
)

is obtained by a linear combination

of GAHP criteria weights W(GAHP) =
(

w(GAHP)
j

)
and entropy criteria weights

W(EEWM) =
(

w(EEWM)
j

)
:

wj = µ ∗ w(GAHP)
j + (1− µ) ∗ w(EEWM)

j , j = 1, 2, . . . , n (12)

The trade-off between the subjective involvement of experts and the objective evalua-
tion in the final calculation of weights is controlled by a parameter µ ∈ [0; 1]. The value of
the parameters can be set depending on the degree of trust in the experts’ expertise.

In the case where there are no evaluators or there is little confidence in the evaluators’
expertise, the choice of µ is 0 or close to 0. In the case that there is great confidence in the
evaluators’ expertise, the choice of µ is close to 1.

3.7. COPRAS Method

In the following, COPRAS solutions, and alternatives ranks are calculated.
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The weighted normalized matrix
=
Q = (

=
q ij) is calculated based on the normalized

matrix Q = (qij), (cf. Equation (9)) and the weights vector W =
(
wj
)

(cf. Equation (12))
as follows:

=
q ij = wj ∗ qij (13)

Let M1 =
{

j ∈ {1, 2, . . . , n} : Cj is amaxcriterion
}

.
Let M2 =

{
j ∈ {1, 2, . . . , n} : Cj is amincriterion

}
.

The Maximizing Indexes (for max criteria set M1) A+ =
(
a+i
)

and Minimizing Indexes
(for min criteria set M2) A− =

(
a−i
)
, i = 1, 2, . . . , m are calculated as:

a+i = ∑
j∈M1

=
q ij , (14)

a−i = ∑
j∈M2

=
q ij (15)

For each i = 1, 2, . . . , m, are calculated the Relative Significance Value, the vector
P = (pi) and the COPRAS solution S = (si):

pi = a+i +
∑m

k=1 a−k

a−i ∗∑m
k=1

(
1

a−k

) ; i = 1, 2, . . . , m (16)

si = pi/max
k

pk (17)

The best alternative is Ai for which si = max
k

sk.

The vector of solution ranks is S̃ = (s̃i).

4. Case Study

In the following, we shall apply the above-described MCDS to rank a group of Euro-
pean countries, in the context of the fourth wave of the SARS-CoV 2 pandemic based
on COVIND indicators. The group of countries for which the analysis is conducted
is considered as the set of alternatives. A set of COVID-19 indicators for the fourth
wave is considered as the set of criteria. The COPRAS solutions are considered coun-
tries’ COVIND indicators.

The criteria (set C) in MCDS are:

• The slope of the fourth COVID wave in 2021 (C1). Here, by the slope, we understand
the ratio between the number of new cases, in the period of time this number (we
shall consider the smooth number) is increasing, and the number of days in the above-
mentioned period. One can easily see that a great slope is not desirable, since the
hospitals have a limited capacity and cannot treat more patients than they can handle;

• New cases smoothed/1 million inhabitants (C2);
• New deaths smoothed/1 million inhabitants (C3);
• Patients in intensive care units/1 million inhabitants (C4);
• New tests smoothed/1 million inhabitants (C5).

These criteria can be compared because they are calculated in relation to the population
of a country (per 1 million inhabitants).

There are two types of indicators: min indicators: C1, C2, C3, C4 and max indicators: C5.
The set of European countries was selected according to several conditions:

• European countries with a population of more than 5 million;
• Countries for which data were available for the all selected criteria;
• Countries where there was an obvious COVID-19 fourth wave.
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Important sources of information for MCDS were:

1. COVID-19 Data Repository of the Center for Systems Science and Engineering (CSSE)
at Johns Hopkins University [66]. Source data for COVID-19 are daily updated from 22
January 2020. The data come from governments, national and sub-national agencies
around the world. Here are links to aggregate data sources for COVID-19. Two of
them are the World Health Organization (WHO) [67] and European Centre for Disease
Prevention and Control (ECDC) [68].

2. Worldometer [69]. For the COVID-19 data, Worldometer collects data from official
reports, directly from the government’s communication channels or indirectly, through
local media sources when deemed reliable (5000 sources).

3. The COVID-19 dataset, a collection of the COVID-19 data, maintained by The Oxford
Martin School and University of Oxford. It is updated daily throughout the duration
of the COVID-19 pandemic [70].

From the 48 European countries for which COVID-19 data are available, 25 European
countries with more than 5 million inhabitants [69] were considered. These countries are:
Austria, Belarus, Belgium, Bulgaria, Czechia, Denmark, Finland, France, Germany, Greece,
Hungary, Italy, Netherlands, Norway, Poland, Portugal, Romania, Russia, Serbia, Slovakia,
Spain, Sweden, Switzerland, Ukraine, and the United Kingdom. Countries with no data to
all criteria are: Belarus, Greece, Hungary, Norway, Poland, Russia, and Ukraine. Belarus
and Poland have no data [70] for: patients in intensive care units/1 million inhabitants (C4),
new tests smoothed/1 million inhabitants (C5). Greece, Hungary, Norway, Russia, and
Ukraine have no data on: patients in intensive care units/1 million inhabitants (C4) [63].
From the remaining European countries were selected countries where there was an obvious
COVID-19 fourth wave in the period considered.

We preferred to choose a smaller number of countries to make it easier to highlight
the proposed application of MCDS. Decision makers can apply the proposed MCDS for
any set of countries for which an analysis is wanted and for any pandemic wave.

In MCDS, the European countries selected (the set A) were: Austria (A1), Belgium (A2),
Bulgaria (A3), Czechia (A4), France (A5), Germany (A6), Italy (A7), Romania (A8), Slovakia
(A9), Spain (A10) Switzerland (A11) and Serbia (A12).

The set A1, A2, A5, A6, A7, A10 and A11 is a group of Western European countries.
The set A3, A4, A8, A9 and A12 is a group of Eastern European countries.
Each country from the set A was monitored by COVID-19 indicators in the fourth

wave in 2021.
The entries of the Q matrix are calculated taking into account existing information on

the Internet.
The fourth wave of COVID-19 happened differently in the European countries selected

in the MCDS. In some countries, it started earlier than in others. The period is different; the
slope corresponding to the period the number of new cases was increasing, was different
and the peak of the wave was higher or lower. A situation of the number of smoothed daily
new confirmed COVID-19 cases/1 million people, for the fourth wave, for the selected
countries, is illustrated in Figure 2. The entire period considered of fourth wave COVID-19,
for these countries, is between 1 June 2021 and 28 December 2021.
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Figure 2. Number of smoothed daily new confirmed COVID-19 cases/1 million people, for the fourth
wave, for the selected countries.

The entries of the Q matrix are displayed in Table 3.

Table 3. The Q matrix for the fourth COVID wave.

European Countries C1 C2 C3 C4 C5

Austria 308.4294 378.1481 1.8043 28.0773 40344.41
Belgium 334.3022 434.6661 1.3662 26.9196 5489.175
Bulgaria 212.2888 267.2547 10.6268 62.8098 3425.509
Czechia 235.7848 372.5565 2.5862 23.8699 8749.032
France 191.4035 176.2033 0.8478 22.6953 7687.89

Germany 157.3036 213.8961 1.2861 23.0129 1812.396
Italy 69.1924 68.6557 0.6042 6.1044 3821.611

Romania 193.1306 222.6808 7.53 46.6847 2116.905
Serbia 326.6165 466.465 4.3935 20.9965 2211.028

Slovakia 413.3236 603.5366 4.1888 20.776 6302.605
Spain 245.1909 229.3405 1.1545 25.1098 2722.29

Switzerland 156.6182 157.1383 0.3978 16.0821 3174.591

4.1. Application of the GAHP Method

For the calculation of the criteria weights, a group of four experts in the field is selected.
Each of them will evaluate in pairs the criteria considered according to Saaty’s scale and
build four comparisons in pairs matrices GE1 , GE2 , GE3 , GE4 (Table 4).

Each matrix is verified for consistency based on Equation (7). All the matrices GE1 , GE2 ,
GE3 , GE4 are consistent. The CRE1 = 0.086 for matrix GE1 , CRE2 = 0.035 for matrix GE2 ,
CRE3 = 0.098 for matrix GE3 and CRE4 = 0.085 for matrix GE4 .
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Table 4. Comparison in pairs matrices (a) GE1 , (b) GE2 , (c) GE3 , (d) GE4 .

(a) (b)

GE1 C1 C2 C3 C4 C5 GE2 C1 C2 C3 C4 C5

C1 1 2 1 1 1 C1 1 1 1/2 1/2 3
C2 1/2 1 1 1 2 C2 1 1 1/2 1/2 1
C3 1 1 1 2 3 C3 2 2 1 2 5
C4 1 1 1/2 1 5 C4 2 2 1/2 1 5
C5 1 1/2 1/3 1/5 1 C5 1/3 1 1/5 1/5 1

(c) (d)

GE3 C1 C2 C3 C4 C5 GE4 C1 C2 C3 C4 C5

C1 1 3 1/3 1/3 7 C1 1 1 1/3 1/5 9
C2 1/3 1 1/5 1 3 C2 1 1 1/5 1/5 5
C3 3 5 1 2 6 C3 3 5 1 2 9
C4 3 1 1/2 1 5 C4 5 5 1/2 1 7
C5 1/7 1/3 1/6 1/5 1 C5 1/9 1/5 1/9 1/7 1

GE1 , GE2 , GE3 , GE4 are aggregated with the geometric mean method (Equation (8)),
and the aggregated comparison in pairs matrix are presented in Table 5.

Table 5. The aggregated comparison in pairs matrix.

Criteria C1 C2 C3 C4 C5

C1 1.000 1.565 0.485 0.427 3.708
C2 0.639 1.000 0.376 0.562 2.340
C3 2.060 2.659 1.000 2.000 5.335
C4 2.340 1.778 0.500 1.000 5.439
C5 0.270 0.427 0.187 0.184 1.000

The GAHP criteria weights for each expert and aggregated criteria weights are calcu-
lated using the Dominant Eigenvalue algorithm (Section 3.4). The results are presented in
Table 6.

Table 6. Experts’ criteria weights.

C1 C2 C3 C4 C5

WE1 0.2245 0.1830 0.2611 0.2302 0.1013
WE2 0.1601 0.1336 0.3594 0.2724 0.0745
WE3 0.1938 0.1128 0.4112 0.2414 0.0408
WE4 0.1258 0.0941 0.4064 0.3446 0.0292

W(GAHP) 0.1712 0.1294 0.3736 0.2717 0.0541

4.2. Application of the EEWM

The criteria weights calculated with EEWM (Equation (11) for different values of
parameter a ∈ [0.5; 1] are presented in Table 7. A comparison between the GAHP weights
and EEWM weights for different values of a is displayed in Figure 3.

Table 7. Criteria weights calculated by EEWM for different values of parameter a.

a C1 C2 C3 C4 C5

0.5 0.0698 0.1094 0.3518 0.1035 0.3656
0.6 0.0680 0.1065 0.3440 0.1021 0.3794
0.7 0.0662 0.1038 0.3373 0.1006 0.3921
0.8 0.0642 0.1008 0.3309 0.0990 0.4051
0.9 0.0619 0.0975 0.3243 0.0970 0.4193
1 0.0592 0.0935 0.3170 0.0946 0.4357
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The objective nature of the EEWM shows a high value for the weight of criterion C5
compared to the weight of criterion C5 calculated with GAHP. The large value of the weight
corresponding to criterion C5 calculated by EEWM is due to the fact that there is a great
variability of data values for this criterion. For a = 1/2, the variability of the data values is
smaller than that for a = 1 (Shannon entropy). The low value of the weight corresponding
to C5 criterion calculated by GAHP is due to the subjectivity of the experts in evaluating the
criteria. Experts considered that the criterion C5, new tests smoothed/1 million inhabitants,
is less important than the other criteria.

4.3. Overall Criteria Weights Calculation

To make a compromise between the subjective involvement of experts and the ob-
jective evaluation, in the final calculation of weights, EEWM and GAHP are combined in
Equation (12). The parameter µ controls the degree of subjectivity versus objectivity in
calculating the weights of the criteria.

The vector of overall criteria weights W is calculated with the EEWM and GAHP for
different values of parameter µ and for a = 0.5 (Table 8). The differences of criteria weights
for variations of parameter µ are presented in Figure 4.

The variation of the criteria weights depends on the importance of the objective
evaluation of matrix Q (in EEWM) compared to the subjective evaluation of experts (in
GAHP). When the parameter µ = 0, the criteria weights are calculated only with the EEWM.
The objective character in the calculation of the criteria weights is maximum. Then, by
varying the parameter µ from 0.1 to 0.9, the objective character gradually decreases, and the
subjective character gradually increases. For µ = 1, the criteria weights are calculated only
with the GAHP method. The subjective character in the calculation of the criteria weights
is maximum.

The weights of criteria C2 and C3 vary less than weights of criteria C1, C4 and C5. The
largest variation is for the C5 criterion.

Table 8. The overall criteria weights W for a = 0.5.

µ C1 C2 C3 C4 C5

0 0.0698 0.1094 0.3518 0.1035 0.3656
0.1 0.0799 0.1114 0.3540 0.1203 0.3345
0.2 0.0901 0.1134 0.3561 0.1371 0.3033
0.3 0.1002 0.1154 0.3583 0.1539 0.2722
0.4 0.1103 0.1174 0.3605 0.1708 0.2410
0.5 0.1205 0.1194 0.3627 0.1876 0.2099
0.6 0.1306 0.1214 0.3649 0.2044 0.1787
0.7 0.1408 0.1234 0.3671 0.2212 0.1476
0.8 0.1509 0.1254 0.3692 0.2381 0.1164
0.9 0.1611 0.1274 0.3714 0.2549 0.0853
1 0.1712 0.1294 0.3736 0.2717 0.0541
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4.4. Application of the COPRAS Method

For the fourth COVID-19 wave, the COPRAS solutions are calculated. These solutions
are considered countries’ COVIND indicators.

For each value of parameter µ, a criteria weights set is considered (Table 8). For each
criteria weights set, the COPRAS method is applied.

The vector S with COPRAS results for each criteria weights set is displayed in Table 9
(for the parameter a = 0.5).

Table 9. The COPRAS results for different criteria weights set.

European Countries
The COPRAS Results (with Different Criteria Weights Set) a = 0.5

µ = 0 µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5 µ = 0.6 µ = 0.7 µ = 0.8 µ = 0.9 µ = 1

Austria 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.876 0.712 0.551
Belgium 0.243 0.254 0.267 0.282 0.301 0.323 0.352 0.389 0.385 0.366 0.346
Bulgaria 0.099 0.101 0.103 0.106 0.110 0.114 0.119 0.126 0.118 0.105 0.093
Czechia 0.276 0.283 0.291 0.301 0.313 0.328 0.347 0.371 0.354 0.322 0.290
France 0.372 0.389 0.409 0.433 0.462 0.498 0.543 0.602 0.598 0.569 0.541

Germany 0.190 0.205 0.223 0.245 0.271 0.302 0.343 0.395 0.409 0.406 0.403
Italy 0.436 0.475 0.521 0.576 0.642 0.723 0.826 0.960 1.000 1.000 1.000

Romania 0.079 0.083 0.087 0.092 0.097 0.105 0.114 0.126 0.124 0.118 0.111
Serbia 0.101 0.106 0.113 0.121 0.131 0.143 0.158 0.178 0.180 0.174 0.168

Slovakia 0.192 0.197 0.202 0.208 0.216 0.226 0.238 0.254 0.241 0.218 0.196
Spain 0.215 0.229 0.246 0.267 0.292 0.322 0.361 0.411 0.420 0.412 0.404

Switzerland 0.413 0.442 0.475 0.515 0.564 0.625 0.702 0.802 0.823 0.810 0.798

The ranks of COPRAS results obtained with different criteria weights set are obtained
based on Equations (13)–(17) (Table 10).

Table 10. The ranks of COPRAS results obtained with different criteria weights set.

European Countries
The Rank of COPRAS Results (with Different Criteria Weights Set) a = 0.5

µ = 0
(EEWM)

µ =
0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5 µ = 0.6 µ = 0.7 µ = 0.8 µ = 0.9 µ = 1

(GAHP)

Austria 1 1 1 1 1 1 1 1 2 3 3
Belgium 6 6 6 6 6 6 6 7 7 7 7
Bulgaria 11 11 11 11 11 11 11 12 12 12 12
Czechia 5 5 5 5 5 5 7 8 8 8 8
France 4 4 4 4 4 4 4 4 4 4 4
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Table 10. Cont.

European Countries
The Rank of COPRAS Results (with Different Criteria Weights Set) a = 0.5

µ = 0
(EEWM)

µ =
0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5 µ = 0.6 µ = 0.7 µ = 0.8 µ = 0.9 µ = 1

(GAHP)

Germany 9 8 8 8 8 8 8 6 6 6 6
Italy 2 2 2 2 2 2 2 2 1 1 1

Romania 12 12 12 12 12 12 12 11 11 11 11
Serbia 10 10 10 10 10 10 10 10 10 10 10

Slovakia 8 9 9 9 9 9 9 9 9 9 9
Spain 7 7 7 7 7 7 5 5 5 5 5

Switzerland 3 3 3 3 3 3 3 3 3 2 2

Countries from the group of Western European countries (µ = 0.8, µ = 0.9 and µ = 1)
occupy the first positions, and countries from the group of Eastern Europe occupy the last
positions. The same rank is observed, whatever the value of µ, for Serbia and France.

As the degree of objectivity, in the calculation of the criteria weights, decreases, the
countries’ ranks change. For µ = 0.1, µ = 0.2, µ = 0.3, µ = 0.4 and µ = 0.5, there are no
changes in countries ranks. The greater differences are for µ = 0.8, µ = 0.9 and µ = 1 when
the subjective character in the criteria calculation is high. It is observed that great variations
are from Germany and Czechia (three positions) and Austria and Spain (two positions)
(Figure 5).
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4.5. Comparison of COPRAS Ranks Obtained with EWM and EEWM

A comparison of the COPRAS ranks obtained with EWM (a = 1) and EEWM for
a ∈ {0.5; 0.6; 0.7; 0.8; 0.9} is presented in Table 11.

A difference of one position is for Bulgaria, Slovakia, Spain and Serbia.
The ranks of results obtained with VIKOR and TOPSIS multi-criteria methods for

a ∈ {0.5; 0.6; 0.7; 0.8; 0.9; 1} are presented in Table 12.
By comparing the COPRAS with VIKOR and TOPSIS, it is observed that the smallest

difference in rank change is between COPRAS and TOPSIS for EEWM with a = 0.5.
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Table 11. The ranks of COPRAS results obtained with EWM and EEWM.

European Countries
EEWM EWM

a = 0.5 a = 0.6 a = 0.7 a = 0.8 a = 0.9 a = 1

Austria 1 1 1 1 1 1
Belgium 6 6 6 6 6 6
Bulgaria 11 10 10 10 10 10
Czechia 5 5 5 5 5 5
France 4 4 4 4 4 4

Germany 9 9 9 9 9 9
Italy 2 2 2 2 2 2

Romania 12 12 12 12 12 12
Serbia 10 11 11 11 11 11

Slovakia 8 8 8 8 8 7
Spain 7 7 7 7 7 8

Switzerland 3 3 3 3 3 3

Table 12. The ranks of VIKOR and TOPSIS results obtained with EWM and EEWM.

European Countries
VIKOR TOPSIS

EEWM EWM EEWM EWM
0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1

Austria 1 1 1 1 1 1 1 1 1 1 1 1
Belgium 5 5 5 5 4 4 6 6 6 6 6 6
Bulgaria 12 12 12 12 12 12 12 12 12 12 12 12
Czechia 3 3 3 3 3 3 5 4 3 3 3 3
France 2 2 2 2 2 2 2 2 2 2 2 2

Germany 9 9 9 9 9 9 8 8 8 8 8 8
Italy 4 4 4 4 5 5 3 3 4 4 4 4

Romania 11 11 11 11 11 11 11 11 11 11 11 11
Serbia 10 10 10 10 10 10 10 10 10 10 10 10

Slovakia 8 7 7 7 7 7 9 9 9 9 9 9
Spain 7 8 8 8 8 8 7 7 7 7 7 7

Switzerland 6 6 6 6 6 6 4 5 5 5 5 5

4.6. A Comparative Analysis with General Countries’ Indicators

A comparative analysis of the COVIND indicator ranks with general countries’ indi-
cators is realized based on Spearman correlations. The general countries indicators are:
number of people fully vaccinated/per million (I1), stringency index (I2), population den-
sity (I3), median age (I4), aged 65 older (I5) and GDP per capita (Gross Domestic Product
per capita (per person)) (I6).

The Stringency Index is a composite measure based on nine metrics. The metrics used
are: school closures; workplace closures; cancellation of public events; restrictions on public
gatherings; closures of public transport; stay-at-home requirements; public information
campaigns; restrictions on internal movements; and international travel controls [71]. The
index is calculated as the mean score of these metrics, each taking a value between 0 and
100. A higher score indicates a stricter response to the SARS-CoV 2 pandemic [71].

The COVIND ranks obtained with criteria weights set for µ ∈ {0; 0.1; 0.2; 0.3; 0.4; 0.5;
0.6; 0.7; 0.8; 0.9; 1} and a = 0.5 are compared with the ranks for general indicators. The
Spearman correlations are calculated (Table 14).

In all cases, the highest correlation is for I6—GDP per capita and then for I1—number
of people fully vaccinated/per million.

The values of these indicators and indicators ranks are presented in Table 13.
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Table 13. The values of general indicators for the group of European countries.

European
Countries I1

I1
Rank I2

I2
Rank I3

I3
Rank I4

I4
Rank I5

I5
Rank I6

I6
Rank

Austria 59,171.006 4 56.457 4 106.749 8 44.4 5 19.202 6 45,436.686 2
Belgium 66,140.159 1 46.863 6 375.564 1 41.8 10 18.571 8 42,658.576 4
Bulgaria 20,621.523 12 41.222 10 65.18 12 44.7 4 20.801 3 18,563.307 11
Czechia 51,762.378 8 34.712 12 137.176 5 43.3 6 19.027 7 32,605.906 8
France 53,305.963 6 57.74 3 122.578 6 42 9 19.718 4 38,605.671 5

Germany 60,714.67 3 60.345 1 237.016 2 46.6 2 21.453 2 45,229.245 3
Italy 56,522.685 5 59.984 2 205.859 4 47.9 1 23.021 1 35,220.084 6

Romania 30,956.606 11 51.767 5 85.129 10 43 8 17.85 10 23,313.199 10
Serbia 41,966.813 10 37.51 11 80.291 11 41.2 11 17.366 11 14,048.881 12

Slovakia 42,070.169 9 42.319 9 113.128 7 41.2 11 15.07 12 30,155.152 9
Spain 62,134.074 2 46.704 7 93.105 9 45.5 3 19.436 5 34,272.36 7

Switzerland 52,368.273 7 44.393 8 214.243 3 43.1 7 18.436 9 57,410.166 1

Table 14. The Spearman correlations between COVIND ranks and the general indicators.

µ I1 I2 I3 I4 I5 I6

0 0.5245 0.3007 0.5035 0.2312 0.2727 0.7203
0.1 0.5664 0.3566 0.5385 0.2977 0.3427 0.7622
0.2 0.5664 0.3566 0.5385 0.2977 0.3427 0.7622
0.3 0.5664 0.3566 0.5385 0.2977 0.3427 0.7622
0.4 0.5664 0.3566 0.5385 0.2977 0.3427 0.7622
0.5 0.5664 0.3566 0.5385 0.2977 0.3427 0.7622
0.6 0.6503 0.4266 0.4825 0.3398 0.3706 0.7762
0.7 0.6783 0.5734 0.5105 0.3958 0.3986 0.8252
0.8 0.6713 0.5874 0.5385 0.4238 0.4336 0.7972
0.9 0.6503 0.5594 0.5734 0.4098 0.4126 0.8042
1 0.6503 0.5594 0.5734 0.4098 0.4126 0.8042

5. Conclusions

The paper proposes a multi-criteria decision support (MCDS) implemented to solve
the problem of ranking a group of countries based on a new country COVID-19 complex
indicator called COVIND in the COVID-19 fourth wave.

The experts are selected by a manager or decision maker. The parameter that controls
the trade-off between the subjective and objective weighting helps decision makers face
various situations in which the confidence in experts’ evaluations is essential. The value of
parameter can be set by the decision maker or analyst depending on the degree of trust in
the experts’ expertise.

Applying MCDS could lead to a better understanding of the factors involved in
the COVID-19 pandemic on population health in a cumulative way. The information
gained from this research can be used for support efforts and to justify public health
spending. The decision makers can propose interventions and health policies based on
scientific knowledge.

This COVIND indicator can better reflect the situation of a country in a group of
countries or on a continental level in a desired period of time or wave. Based on COVIND
results, decision makers can make more informed decisions and set strategies and policies
to combat the pandemic.

MCDS can also be applied to other areas where it is necessary to rank the alternatives
evaluated according to several criteria.

The contributions of the paper can be summarized as follows:

• A multi-criteria decision support (MCDS) based on EEWM, GAHP and COPRAS
was proposed.
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• An extended method called EEWM for computing the objective weights of the criteria
was proposed. This method extends the classical EWM method by using an entropy
function, which generalizes the classical Shannon entropy function. The EEWM is
used in combination with GAHP and COPRAS in the MCDS.

• In order to emphasize the compromise between the subjectivism of experts and the
objectivism of evaluation matrix, a parameter was introduced. The parameter can be
varied in the range [0; 1] to achieve the compromise between the two methods for
determining the criteria weights.

• The proposed MCDS is applied for the calculation of a complex indicator COVIND
for a group of European countries in the fourth wave COVID-19.

• An analysis of the obtained MCDS rankings was realized:
• By the variation of the parameter that combines the EEWM and GAHP weights;
• By the variation of the parameter of extended entropy;
• By using alternative multi-criteria methods VIKOR and TOPSIS.

A Spearman correlation analysis with general country indicators such as the number
of people fully vaccinated/per million, stringency index, population density, median age,
aged 65 older and GDP (Gross Domestic Product) per capita per capita is realized.

By varying the two parameters (parameter a from the extended entropy function
and parameter µ from the linear combination of weights), several ranking alternatives are
obtained. They allow decision makers to analyze different evaluations of the fourth wave
of COVID-19.

An interesting development of our study in the spirit of the papers [72] is the approach
of consensus issues in the evaluators group and the consideration of the situations when
experts show their self-confidence levels by referring to consensus reaching for group
decision making with multi-granular unbalanced linguistic information. A minimum
adjustment optimization model based on bounded confidence may be developed.

Author Contributions: Conceptualization, C.Z.R. and M.R.; methodology, C.Z.R.; software, R.B.
and C.Z.R.; validation, M.R. and R.B.; resources, M.R.; writing—original draft preparation, C.Z.R.;
writing—review and editing, C.Z.R., M.R. and R.B.; supervision, C.Z.R.; funding acquisition, R.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Core Program of the Ministry of Research, Innovation
and Digitization (SMARTIC, project No. PN 19 37 04 01).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We thank the reviewers for the constructive and insightful comments, which
have helped us to substantially improve our manuscript. We thank the reviewers for the constructive
and insightful comments, which have helped us to substantially improve our manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
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