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The advance in high-throughput sequencing technologies has yielded complete genome

sequences of several organisms, including complete bacterial genomes. The growing

number of these available sequenced genomes has enabled analyses of their dynamics,

as well as the molecular and evolutionary processes which these organisms are under.

Comparative genomics of different bacterial genomes have highlighted their genome size

and gene content in association with lifestyles and adaptation to various environments

and have contributed to enhancing our understanding of the mechanisms of their

evolution. Protein–protein functional interactions mediate many essential processes

for maintaining the stability of the biological systems under changing environmental

conditions. Thus, these interactions play crucial roles in the evolutionary processes of

different organisms, especially for obligate intracellular bacteria, proven to generally have

reduced genome sizes compared to their nearest free-living relatives. In this study, we

used the approach based on the Renormalization Group (RG) analysis technique and

the Maximum-Excluded-Mass-Burning (MEMB) model to investigate the evolutionary

process of genome reduction in relation to the organization of functional networks of

two organisms. Using a Mycobacterium leprae (MLP) network in comparison with a

Mycobacterium tuberculosis (MTB) network as a case study, we show that reductive

evolution in MLP was as a result of removal of important proteins from neighbors of

corresponding orthologous MTB proteins. While each orthologous MTB protein had an

increase in number of interacting partners in most instances, the corresponding MLP

protein had lost some of them. This work provides a quantitative model for mapping

reductive evolution and protein–protein functional interaction network organization in

terms of roles played by different proteins in the network structure.
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1. INTRODUCTION

Worldwide DNA sequencing efforts have led to a rapid
increase in sequence data for many organisms in the public
domain. Comparative genomics analyses have yielded many
valuable insights into genome relatedness and dynamics of
organizational complexity of these genomes, including their sizes,
gene content and other essential features, such as adaptation
to their environment. In the case of bacterial species, for
example, a variation in sizes of their genomes has been
observed, revealing that intracellular bacteria commonly have
a reduced genome size, as a consequence of their nutritional
dependence on, and adaptation to their host environment
and specialization (Tamames et al., 2007; Gil and Latorre,
2012; Rosinski-Chupin et al., 2013). This results in inactivation
or loss of genes within the bacterial genome, resulting in
reductive evolution, where several ancestral genes have been
rendered non-essential and completely removed from the
genome (Tamames et al., 2007; Gil and Latorre, 2012). In the
context of mycobacterial species, Mycobacterium leprae has the
smallest genome as a result of massive reductive evolution,
compared to Mycobacterium tuberculosis, while both have an
increasingly parasitic lifestyle in the host compared to other
mycobacteria (Han and Silva, 2014).

The genome sizes of MLP and MTB are 3,268,203 and
4,411,532 base pairs, respectively (Cole et al., 2001). Thus, the
genome of MLP is approximately 1.4 Mb smaller than MTB.
In addition, the G+C content of MLP is 57.7% which is lower
than other mycobacterial genomes, while that of MTB is 65.5%.
Although MTB and MLP share a common ancestor, MLP is
an obligate intracellular parasite, while MTB is a facultative
intracellular parasite (Youm and Saier, 2012). Youm (Youm and
Saier, 2012), compared the clinical CDC1551 strain of MTB
(4189 proteins) to the TN strain of MLP (1605 proteins) and
proposed two main consequences of the reduction in the genome
of MLP (Cole, 1998): the presence of few proteins belonging
to the PE and PPE functional category and traces belonging to
insertion sequences and bacteriophages. As shown in Table S1
in Akinola et al. (2013), the number of proteins in the MTB
genome belonging to the PE and PPE family is roughly fifteen
times that of MLP, and while 82 proteins in MTB are insertion
sequences or derived from bacteriophages there are only two in
MLP.

Gómez-Valero et al. (2007) defined reductive evolution as
the process by which genes and their corresponding functions
are lost, resulting in the downsizing of the genome. Three
reasons based on changes in lifestyle were given why an
organism may have reductive evolution: a desire to “move”
from a free living to a host-associated or intracellular life, when
the organism restricts itself from multiple to specific hosts
and from multiple to specific host tissues. The presence of
pseudogenes in MLP and the corresponding absence thereof in
MTB accounts for some of the genotypic differences between the
two pathogens with remarkable disease phenotypic differences in
their host. MLP infection leads to leprosy, which is a chronic
dermatological (Monot et al., 2009) and malignant human
neurological disease (Cole et al., 2001), affecting mainly the skin,

peripheral nerves, the eyes and mucosa of the upper respiratory
tract (World Health Organization, 2012). On the other hand,
MTB infection leads to tuberculosis (TB), one of the “most
dangerous” infectious diseases, affecting mainly lungs (Mazandu
and Mulder, 2012) with active pulmonary tuberculosis.

MLP’s highly reduced genome makes it an interesting species
as a model for reductive evolution within a genus with ancestral
genes classified into three categories (Gómez-Valero et al., 2007),
namely retained, absent/deleted and pseudogenized. Genes
belonging to the “absent” category have either diverged so much
that they cannot be recognized or were totally deleted, while those
in the pseudogenized category have sufficient levels of nucleotide
similarity with MTB. These pseudogenes that are found in MLP
are inactivated versions of genes that are still functional in MTB.
These are most likely the remains of genes that have lost their
functions, for example, by acquiring nutrients from the host,
as constrained by their intracellular lifestyle (Tamames et al.,
2007; Rapanoël et al., 2013). It was also reported that 1537
genes have been lost from the ancestor to MLP, of which, 1129
are pseudogenes (Gómez-Valero et al., 2007). Different features
related to evolutionary processes were elucidated mostly using
comparative genomics analyses, and so far only Tamames et al.
(2007) have used the modular organization of protein–protein
interaction networks to analyze the reductive evolution in the
Buchnera genome compared to the E. coli genome.

In this work, we use protein–protein functional interactions
generated for both MLP and MTB and ortholog data to study
reductive evolution using the Renormalization Group (RG)
analysis technique and the Maximum-Excluded-Mass-Burning
(MEMB) model. This is based on the premise that both
organisms descended from the same ancestral mycobacterium.
In a recent study (Akinola et al., 2013), using ortholog data, we
found 2859 proteins out of 4136 proteins interacting in the MTB
functional network alone and 1277 that are shared between MLP
and MTB functional networks. Here, we extend this study to
analyze these 2859 proteins unique to MTB and the 1277 shared
between them under the transformation of the MTB functional
network into successive smaller copies of itself (Gallos et al.,
2012) to reveal different biological features that are able to explain
reductive evolution in MLP in comparison to its closely related
MTB genome.

2. MATERIALS AND METHODS

To analyze reductive evolution in the MLP genome compared
to the MTB genome, we used previously generated MLP and
MTB functional networks (Akinola et al., 2013). These functional
networks were obtained by combining protein interaction data
from multiple sources, including the STRING database (Jensen
et al., 2009; Franceschini et al., 2013), other functional data,
such as sequence and microarray data, and protein–protein
interaction (PPI) datasets (Salwinski et al., 2004; Yellaboina
et al., 2009, 2011; Licata et al., 2012; The UniProt Consortium,
2015). We mapped different protein identifiers from different
sources to UniProt Accession numbers using datasets for
the two mycobacterial organisms: Mycobacterium leprae and
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Mycobacterium tuberculosis downloaded from the UniProt
database (The UniProt Consortium, 2015). We applied the
Renormalization Group (RG) analysis technique (Song et al.,
2005; Gallos et al., 2008, 2007a,b; Rozenfeld et al., 2011; Jin
et al., 2013), the Maximum-Excluded-Mass-Burning (MEMB)
algorithm (Song et al., 2005; Gallos et al., 2008, 2007a,b;
Rozenfeld et al., 2011; Jin et al., 2013) and other network
clustering and centrality measures to explain the reductive
evolution undergone by MLP compared to the closely related
MTB genome.

2.1. Generating Unified MLP and MTB
Functional Networks
Protein–protein functional associations were retrieved from
different sources and weighted according to their sources and the
technology used to derive them. Functional interactions extracted
from the STRING database were used with confidence scores
as defined by the STRING schemes, comprised of interactions
derived from genomic context (genomic conserved neighbor
or gene order, gene fusion events and gene co-occurrence or
phylogenetic profiles across genomes), text mining, knowledge
from pathway databases, and known experimental interactions.
In addition, we derived other interactions from sequence
similarity and signatures (shared domains), microarray data
(co-expression), Protein Data Bank (PDB; Yellaboina et al.,
2009, 2011 and MINT Licata et al., 2012, DIP Salwinski et al.,
2004) and Intact (http://www.ebi.ac.uk/intact/) data. We used an
information-theory based technique proposed by Mazandu and
Mulder (2011a) to derive PPI’s from protein sequence similarity
and signatures as well as shared domains.

PPI data from MINT, DIP, and Intact were used to predict
interologs in MLP based on the premise that orthologs of
interacting proteins should themselves interact. Ortholog data
were downloaded fromEnsembl BioMart at http://www.ensembl.
org/biomart/. The Domain–Domain Interactions (DDI) are
inferred from Protein Data Bank (PDB) entries and those
interactions from PFAM domain definitions predicted by
thirteen different methodologies. We extracted DDI’s with PFAM
ids from the DOMINE website (http://domine.utdallas.edu/
cgi-bin/Domine), neglecting self interactions to avoid loops.
With the aid of the data containing PFAM ids and their
corresponding InterPro ids, we converted those interactions
from DDI into their InterPro equivalents, before changing them
to UniProt-UniProt protein interaction ids. InterPro data was
downloaded from the interPro website (http://www.ebi.ac.uk/
interpro) for both MLP and MTB. A uniform score of 0.85 was
assigned to all these interactions assumed to be of reasonable
quality.

In line with Mazandu et al. (2011), the microarray data
for MTB were downloaded from the Standford Microarray
Database (SMD), at http:smd.stanford.edu/ and NCBI Gene
Expression Omnibus (GEO) at http://www.ncbi.nlm.nih.gov/
geo/. However, for MLP, we downloaded only four experiments
contained in the GSE17191 series matrix from GEO (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17191). This
limited number of microarray experiments prevented us from

using the same technique used for MTB, so we used the Pearson
correlation coefficient to find co-expressed genes and we inferred
interactions between genes for which the correlation coefficient
was exactly one.

All functional interactions from these different sources were
integrated into a single network. After calculating the confidence
score for each functional association protein pair, we computed
the combined confidence score C(p,q) for interacting proteins p
and q using the formula (Franceschini et al., 2013):

C(p,q) = 1−

n
∏

s= 1

(

1− cs(p,q)
)

, (1)

under the assumption of independency, and where n is the total
number of PPI data sources and cs

(p,q)
is the confidence score of

a functional association between p and q predicted using the type
of data source s. In the two networks, n = 11.

2.2. Network Centrality Measures and
Clustering Coefficient
To avoid repetition, we refer the interested reader to Akinola et al.
(2013) for a description of some network centrality measures
in use, including degree, betweenness, closeness and eigenvector
centrality measures. Here, we describe the clustering coefficient
of a network useful in the analysis of reductive evolution as
it provides an indication of the modular organization of the
network. Let p be a node with np neighbors. The total number
of possible edges between p’s neighbors is np(np − 1)/2 (i.e.,
when every neighbor of p is linked with everyone of its other
neighbors). Thus, the clustering coefficient of p is the ratio of
the actual number of edges ap between p’s neighbors to the total
number of possible edges. Hence, for undirected networks, the
clustering coefficient of a node p is defined as Futschik et al.
(2007) and Watts and Strogatz (1998):

Cp =
2ap

np(np − 1)
. (2)

The clustering coefficient of a node is between 0 and 1. A
value zero means there is no clustering and one signifies
maximal clustering. For directed networks, the definition is
slightly different, i.e., Equation (2) without the factor 2 in
the numerator (Watts and Strogatz, 1998). A high clustering
coefficient indicates that neighbors of a node are likely to interact
with each other (Futschik et al., 2007). The clustering coefficient
does not depend on the size of the network (Barabási and Oltvai,
2004) and that is why we are using it in this work to compare
networks. The average clustering coefficient on the other hand
depends on the number of nodes and edges in the network,
describes the overall ability of nodes in the network to form
clusters and is defined as Barabási and Oltvai (2004):

C̄ =
1

n

n
∑

p= 1

Cp. (3)
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2.3. Fractal, Self Similarity, and
Renormalization
In this section, we describe the terms fractal and self similarity
as used in the MEMB algorithm for taking different snapshots
of a large network and apply this idea to gain an understanding
of reductive evolution. Mandelbrot (1986) defined a fractal by
making use of the term self-similarity as follows. A set is self-
similar if it can be broken into arbitrary small pieces, each of
which is a replica of the entire set (Kraft, 1995; see also Engelking,
1978; Mandelbrot, 1982).
Definition: A fractal is a shape made of parts similar to the whole.
There are two methods for computing the fractal dimension of
a network: box covering and cluster growing methods. In the
cluster growing method, a random node is chosen and a cluster
is grown such that the nodes are LB distance apart. Moreover,
the distribution of the mass in the boxes is exponential with
LB (Gallos et al., 2007a). The results obtained using this method
are biased because of the presence of hubs, since the same hub
appears in almost all the boxes. For the purpose of this work, we
will base our computations on the box covering method.

Whenever the box covering method is applied to a network
and especially (Equation 4), the resulting covering can result in
a fractal or non fractal network (Gallos et al., 2007a). In the
case of the fractal network, the fractal dimension dB is finite,
they are less compact because hubs are connected with non-hubs
and there is a strong hub-hub “repulsion.” Examples of fractal
networks are protein–protein interaction networks or metabolic
networks, the World Wide Web (WWW) and social networks.
Non-fractal networks on the other hand have an infinite fractal
dimension, are very compact networks, hubs are connected with
hubs and there is a strong hub-hub “attraction.” Examples are
the internet at the router level and models based on uncorrelated
preferential attachment. Fractality influences the robustness,
transport and modularity of a network. Fractal networks are
robust against targeted attacks because of the strong hub and
non-hub connections and, fractality can be linked with transport
in networks. A scaling theory on transport was developed and
some important exponents that describe flows in networks were
given in Gallos et al. (2007b). In addition, fractality is related to
modularity because boxes are synonymous with modules (Gallos
et al., 2007a).

Let G be a network tiled or covered with box sizes LB. A
box is a set of nodes such that all distances L between any two
nodes p and q inside the box are less than LB (Song et al., 2007).
Mathematically, a box can be defined as

B = {p, q ∈ P : L = |p− q| < LB}, (4)

where P is the set of nodes. Let NB be the minimum number
of boxes needed to cover the whole network G. It is trivial to
note that if the box size LB equals one, then NB is the total
number of nodes in the network (Song et al., 2007). For a given
box size LB, the aim of the box covering algorithm is to find
the minimum number of boxes NB(LB) needed to cover the
entire network (Song et al., 2007) such that Equation (4) is
satisfied (Song et al., 2005). The fractal dimension dB describes
the self similarity property between different topological scales of

the network (Jin et al., 2013). The box size, LB and the fractal
dimension dB are related by Jin et al. (2013):

NB(LB) ∼ L
−dB
B . (5)

Every node is covered once.
Once the network is covered, a new network is created

known as the renormalized network formed by replacing each
box by a node (Song et al., 2005). If there exists at least an
edge between any two boxes, then they are connected. The
network is renormalized again and again until only one node is
left. Scale free networks satisfy the following degree probability
distribution,P(k), approximating power-law property: that is, for
each protein degree k,

P(k) ∼ k−γ , (6)

where γ is the degree exponent. Similarly, renormalized
networks have a degree probability distributionP(k′) (Song et al.,
2005):

P(k) → P(k′) ∼ (k′)−γ , (7)

with k′ representing the degree of protein in the renormalized
network. Note that unless otherwise stated, prime denotes
quantities in the renormalized network; as used in Rozenfeld
et al. (2011) and Gallos et al. (2008). Renormalization Group
(RG) analysis is a technique that allows one to observe a network
at different topological scales. This is because, it transforms the
original network into successive smaller copies of itself (Gallos
et al., 2012) which can reveal distinct characteristics that are
difficult to observe from the original network. In addition, the
RG analysis can be used to study how a network evolves and
most importantly the evolution of biological networks which is
the crux of this paper. An illustrative diagram can be found in
Figure 3 of Gallos et al. (2007a).

For a given box size and after a network has been
renormalized, the average mass of the boxes used in covering the
network

〈

MB(LB)
〉

is defined (Song et al., 2005) as:

〈

MB(LB)
〉

≡
N

NB(LB)
= L

dB
B , (8)

where N is the total number of nodes in the network. Further,
the degree k′ of the renormalized and the degree k of the
unrenormalized network satisfy a scaling relationship

k′ = s(LB)k, (9)

and the scaling factor (s < 1) (Song et al., 2005) is related to the
box size LB by

s(LB) = L
−dk
B , (10)

where dk is the degree exponent showing how the boxes are
connected to each other (Gallos et al., 2007a) or describing how
the degree of a node changes during renormalization. From Song
et al. (2005), it was stated that for a given LB, N

′ = NB(LB),
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that is, the number of boxes needed to cover the network equals
the number of nodes in the renormalized network. This means
Equation (8) reduces to:

N

N′
= L

dB
B . (11)

Using the relationship between n(k) and n′(k′) as presented
in Song et al. (2005):

n(k)dk = n′(k′)dk′, (12)

and the fact that n(k) = NP(k) and n′(k′) = N′
P(k′), then:

NP(k)dk = N′
P(k′)dk′. (13)

Upon making the right substitutions for P(k), P(k′) and
using Equation (9),

Nk−γ dk = N′(sk)−γ dk′.

After simplifying and using Equation (9), Ndk = N′s−γ dk′ and

N = N′s(1−γ ). (14)

Now, N′ = Ns(γ−1), and by dividing both sides by N′ using
Equation (11), we have

1 = s(γ−1)
L
dB
B .

But, s(LB) = L
−dk
B , hence 1 = L

dB+dk−γ dk
B . After applying the

laws of indices, it is easy to see that

γ = 1+
dB

dk
. (15)

A box is “compact” if there is no node in the network that can be
included in it. In the same vein, a box is “connected” if any node
in the box can be reached from any other node in the box and
disconnected otherwise (Song et al., 2005).
Definition 2: Given a central node, the box radius rB is defined as
the maximum distance from the central node.
The box size and box radius are related by

LB = 2rB + 1. (16)

This relationship holds for random configurations but fails when
the nodes are in a circle (Song et al., 2005).

2.4. Maximum-Excluded-Mass-Burning
(MEMB) Algorithm
As described in Song et al. (2007), there are three methods used
to cover a network using the box diameter defined above. The
methods are the greedy, random and the Compact-Box-Burning
(CBB) algorithms. However, it is still possible to cover a network
using the box radius rB and this is the main idea behind the
MEMB algorithm. A box in this case is defined as nodes which
are within a radius rB from a central node. Though the algorithm

is not optimal for scale free networks because of the presence
of hubs, it gives the same fractal dimension dB as the greedy
and CBB algorithms and it is the easiest to implement. For scale
free networks, in Song et al. (2007) (Figure 9), it was shown
that burning with the radius from non-hubs as central nodes is
worse than burning from hubs. The algorithm makes use of the
following definition.
Definition 3: The “excluded mass” of a node is the number of
uncovered nodes within a chemical distance less than the box
radius rB.
The first step in the MEMB algorithm is to compute the excluded
mass for all uncovered nodes. This is then followed by covering
the network with boxes of maximum excluded mass.

1. Mark all nodes as uncovered and non-centers.
2. For every non-central node (including nodes that are

covered), compute the excluded mass and choose the node s
having the maximum excluded mass as the next center.

3. Mark all the nodes with chemical distance less than rB from s
as covered.

4. Repeat the last two steps until all nodes are either centers or
covered.

5. The number of selected centers correspond to NB.

Throughout this paper, all networks were drawn using PINV
(Salazar et al., 2014) (http://biosual.cbio.uct.ac.za/pinv.html).
In the results, an ’insertion’ means the addition of a non-
orthologous protein to a protein’s neighborhood.

2.5. Analysis of MLP Pseudogenes in MTB
Network
We extracted 1115 pseudogenes from MLP with their start and
end positions fromNCBI (Benson et al., 2009; Sayers et al., 2009).
Fasta sequences for these pseudogenes were downloaded from
the NCBI website using the Biopython package (Chapman and
Chang, 2000; Cock et al., 2009). We ran the MLP pseudogene
nucleotide sequences against the protein sequences of MTB using
BLASTX (Altschul et al., 1990; Gish and States, 1993; Madden
et al., 1996) with an E-value cutoff of 10−10.

3. RESULTS AND DISCUSSION

Comparison of orthologs between MTB and MLP shows that
there are 2859 proteins unique to the MTB network i.e., not
present in the MLP network, 135 unique to MLP and they
share 1277 proteins in common (Mulder et al., 2014). From the
functional MTB PPI used in Akinola et al. (2013) containing
59,919 edges (functional interactions), 4136 nodes (proteins)
and 201 hubs, there are 25,916 functional interactions which
are unique to MTB. This corresponds to 43.2% of the total
number of functional interactions in the MTB network. This
suggests that MLP has lost 2859 proteins in its genome and
25,916 interactions from its PPI network even though it shares
a common ancestor with MTB (Table 1). Out of the 201 hub
proteins in the MTB network, 164 have no orthologs in MLP.
A close look at each of these 164 hubs reveals that 59 also have
no orthologous neighbors; that is, all their neighbors in MTB
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TABLE 1 | Comparing network parameters and values in MTB and MLP

subnetworks.

Parameters Values

MTB MLP

Number of proteins (Nodes) 2859 135

Number of functional interactions (Edges) 25916 143

Number of hubs 281 16

Density 0.0065 0.0488

Average degree 20 4

Average shortest path length 4.2077 1.8974

Average clustering coefficient 0.5610 0.4997

Number of connected components 42 14

% of Nodes in largest component 94.5% 12.5%

The subnetworks comprise proteins unique to the MTB or MLP networks.

have been deleted in MLP. If we remove these 59 hub-proteins
and their edges from the MTB network, we have 3972 (94.6%)
proteins out of 4136 and 55,860 (93.2%) functional interactions.
However, the removal disconnected the entire MTB network into
175 connected components and the percentage of the largest
component became 93.6%. We give two examples of proteins in
MTB each with 40 neighbors which have been lost/deleted in
MLP: “Q7D7I7” (MT2163) with UniProt description “Putative
uncharacterized protein” and “O07760” (MT0646) “Probable
ribonuclease.” Figure 1 shows that most of the neighbors belong
to the ‘virulence, detoxification and adaptation’ functional class
and these proteins are absent from MLP.

After filtering the 59 proteins by clustering coefficients with
degrees greater than five as the cut-off, we found 16 proteins. We
also noted that the betweenness centralities of these 59 proteins
are very high. Only three protein’s betweenness are below 4000
as shown in Figure S1. This shows that these proteins play crucial
roles in the survival and flow of information in theMTB network.
As shown in Figure S2, we see that only three of these proteins
have GC contents less than the average GC content for the MLP
genome, quite a number are above this threshold (57.7% and
above the lower blue line). This shows that these proteins are
GC rich and their absence from the MLP proteome might have
contributed to the reduced genome and GC content of MLP.
However, the MTB proteome is generally GC rich and these 59
proteins are just examples, because any random set of proteins
from the MTB proteome shows a similar trend.

As mentioned in the materials and methods section, the
clustering coefficient does not depend on the size of the
network, therefore, we computed the clustering coefficient of
each of the 1277 orthologous proteins in both organisms to
see if there is a correlation between them. We calculated the
Spearman’s correlation coefficient and p-value between their
clustering coefficients as 0.3093 and 1.0 × 10−29, respectively.
The mean±standard deviation are 0.4853 ± 0.3194 for MLP
and 0.4402 ± 0.2471 for MTB, r2 = 0.0849. The correlation
coefficient shows that though the 1277 proteins have orthologs
in both MLP and MTB, there is a low linear correlation (0.3093)
between their clustering coefficients. To gain further insight
into the low correlation, we looked at the clustering coefficients

of orthologs that are either hubs in MTB or hubs in MLP.
We counted 127 such candidate proteins and compared their
clustering coefficients by plotting them for each protein id.
Results (not shown) indicate that the clustering coefficients were
randomly distributed.

Out of the 1277 orthologs common to both organisms, 1188
proteins (76.1%), have the same functional classes while 89 differ.
The distribution of the number of proteins corresponding to each
conserved functional class is shown in Table 2. Two subnetworks
comprising the 392 proteins belonging to the intermediary
metabolism and respiration functional class, have 2911 edges
out of the 59,919 edges in the MTB network and 2946 edges
out of the 20,742 edges in the MLP network. Interestingly, the
average clustering coefficient of the two subnetworks are almost
the same, 0.4141 for MTB and 0.4191 for MLP. However, the
two subnetworks were “highly” disconnected (considering the
number of edges) with the number of connected components
being 14 and 17 for MTB and MLP, respectively.

We examined the 89 proteins with diverged functional classes
among the orthologs in the two species and the results are
presented in Table S1. The table shows that 10 proteins in MLP
have changed functional class from “conserved hypotheticals” to
“intermediate metabolism and respiration” in MTB. In the same
vein, 2 proteins in MLP belonging to “conserved hypotheticals”
functional class have changed to “cell wall and cell processes” in
MTB. These differences may reflect misannotations or the less
well annotated status of the MLP proteome compared to MTB.

We subdivided the 1277 orthologs into three groups based on
the number of neighbors; such that the number of neighbors in
MLP are either less than, equal to or greater than the number
of neighbors in MTB. 882, 18, and 377 candidate proteins in
MLP have neighbors less than, equal to, and greater than their
corresponding number of neighbors in MTB, respectively. This
categorization is important because for each orthologous pair,
we identified where insertions or deletions (indels) took place
in each of the networks. Specifically, we are interested in cases
where proteins have been deleted in the MLP proteome as a case
for reductive evolution. For example, let (p, q) be an orthologous
pair of proteins; where p is from the MLP network and q
from the MTB network. If the number of neighbors of p are
less than the corresponding number of neighbors of q, then,
this represents (the “less than” case) a case in which proteins
have been deleted from the MLP network. This is one of the
functional network analysis approaches for detecting genome
reduction. Table S3 shows properties of the subnetworks formed
from just the 882 orthologous candidate proteins where MLP
proteins have fewer neighbors than their MTB counterparts.
Two examples to illustrate deletions in MLP are given in
Figures S3, S4 and Figures 2, 3. As shown in Figure S3, the
two orthologous proteins: O32890 (MLCB1779.30) “the putative
acyl-CoA dehydrogenase protein” in MLP and P95187 (fadE24)
the “probable acyl-CoA dehydrogenase protein” in MTB have
six each in the ortholog subnetwork of which three are direct
orthologs. O32890 had two protein neighbors inserted which
have no ortholog in MTB, while 41 such neighbors were inserted
for P95187. This accounts for the 8 neighbors of the MLP protein
and 48 of the MTB protein as illustrated in Figure S4. In the

Frontiers in Genetics | www.frontiersin.org 6 March 2016 | Volume 7 | Article 39

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Akinola et al. Genome Reductive Evolution

FIGURE 1 | Two out of 59 hub proteins and their 80 neighbors in the MTB network that have been deleted/have no orthologs in MLP. (A) The probable

ribonuclease hub protein “O07760” (MT0646) in MTB and its 40 neighbors absent from MLP. (B) The putative uncharacterized hub protein “Q7D7I7” (MT2163) in MTB

and its 40 neighbors absent from MLP.

TABLE 2 | The distribution of the number of proteins with conserved

functional classes in the two mycobacteria.

Functional classes Number of proteins

Intermediary metabolism and respiration 392

Cell wall and cell processes 242

Unknown/conserved hypotheticals 216

Information pathways 168

Lipid metabolism 79

Regulatory proteins 42

Virulence, detoxification, adaptation 42

pe/ppe 5

Insertion seqs and phages 2

Pseudogene 0

Total 1188

second example, Figure 2 shows the ortholog network of the two
proteins: the “possible glucose epimerase/dehydratase protein”
Q9CB57 (ML2428) in MLP and the “uncharacterized protein”
P0A5D1 (Rv0501) in MTB with their 58 and 62 neighbors,
respectively, while Figure 3 shows that 90 proteins have been
deleted from the MLP protein’s neighbors.

In the same vein, the “greater than” case means MTB has
experienced some loss of proteins on the one hand or MLP
has undergone some insertions on the other. A closer look
at the subnetworks of both networks consisting of these 377
orthologous proteins shows that there are 1267 and 8139 edges
in MTB and MLP, respectively, constituting 2.1 and 39.2% of the
total number of edges in their respective networks. We give two

examples in Figure S5 and Figure 4. In the first example, Figure
S5 shows Q49999 (ML1037) the putative uncharacterized protein
in MLP and its 30 neighbors in the ortholog subnetwork and
O07185 (MT2757), the “CBS domain protein” in MTB with its
10 inserted non-ortholog and 5 orthologous neighbors. The two
proteins belong to the intermediary, metabolism and respiration
functional class. Similarly, Figure 4 shows the neighbors of
the two orthologous proteins Q9CBU2 (ML1584) in MLP and
Q10802 (Rv2876) in MTB. Both have UniProt description
“uncharacterized protein” and belong to the same functional
class, “cell wall and cell processes.” Another example is shown
in Figure S5 in Supplementary Material. While MLP has more
neighbors than MTB, some of the MTB neighbors are proteins
that are not present in MLP, i.e., they have either been lost by
MLP or gained by MTB.

Furthermore, we checked for proteins in both networks that
have the same degree and found a total of 18 candidate proteins.
As shown in Table S2, 12 of them have the same functional classes.
A Pearson correlation test reveals that there is a statistically
significant correlation between their clustering coefficients with
correlation coefficient= 0.51, r2 = 0.2631, p-value= 0.029.
One point of interest is that though the proteins ‘Q9CDE8’ and
“P71580” in MLP and MTB, respectively, belong to the same
functional class and each have one neighbor, their neighbors are
not orthologs. A similar result holds for “Q49803” in MLP and
“P65300” in MTB. Therefore, they are connecting to different
proteins.

Since the sizes of the two networks are different, we considered
the set of 1277 orthologs in both mycobacterial species to identify
ancestral proteins and determined their significance in their
respective networks. To do this, we used the MEMB algorithm
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FIGURE 2 | The two proteins Q9CB57/ML2428 in MLP (left) and P0A5D1/Rv0501 (right) in MTB, and their respective 58 and 62 neighbors. As shown by

the green lines, 53 proteins are direct ortholog neighbors in both. In this example, we used the ortholog network.

FIGURE 3 | An example of a deletion in MLP. The two proteins are orthologs in MLP (left) and MTB (right), respectively, but Q9CB57 has 90 of its neighbors

deleted with respect to its ortholog network. Fifty three proteins are direct ortholog neighbors in both. (A) The protein Q9CB57 in MLP and its 60 neighbors

comprising 2 non-orthologs and 58 orthologs. (B) The protein P0A5D1 in MTB and its 152 neighbors. Among the neighbors, 90 are non-orthologs while 62 are

orthologs. We drew the two figures from the full network.
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FIGURE 4 | An example of an insertion/deletion in MTB. Q9CBU2 in MLP (left) and its 51 neighbors, and its ortholog Q10802 (right) in MTB together with 6

non-orthologous neighbors. Forty out of the 51 neighbors have orthologs in MTB, but are part of other subnetworks. This shows that 11 proteins have been inserted

in the MLP network while the MTB network has 6 proteins inserted. There are no direct ortholog neighbors in both subnetworks. We used the full network in creating

this figure.

discussed in the materials and methods section by applying it to
the largest connected components of the two subnetworks, with
the distance L between two proteins defined as the length of the
shortest path between these proteins in the functional network.
The results of the network topologies are presented in Table 3.
We found 15 proteins in the MLP PPI subnetwork and 9 in the
MTB PPI subnetwork having different box radii ranging from
one to three. We did this to see how the degree varies with the
box radius and noted that for most of the proteins with box
radii less than or equal to 3 in both subnetworks, the degree
decreases as the box radii increases. The results are presented
in Figures S6, S7. The protein “P45486” in the MLP subnetwork
(Figure S6) and “O06620” in the MTB subnetwork (Figure S7)
are orthologs and belong to the functional class, “intermediary
metabolism and respiration.” Conservation of functional classes
is expected since protein hubs experience stronger selective
constraints than non-hub proteins (Kaçar and Gaucher, 2013)
in the functional network as they are essential for the survival
of the organism (Mazandu and Mulder, 2011b). Thus, biological
functions of these hubs proteins tend to be evolutionarily more
conserved than the others. The MEMB algorithm for rB =

1 applied on the largest component of both subnetworks re-
confirms the fact that both organisms descended from a common
ancestor as shown in Table 4, this is because both organisms
have almost the same number of ancestral orthologous proteins,
193 and 182 for MLP and MTB, respectively. Similarly, both

TABLE 3 | Subnetwork topologies computed using the largest connected

components.

Parameter MLP MTB

dB 3.4 3.5

dk 2.5 3.7
dB
dk

1.4 0.9

γ = 1+
dB
dk

2.4 1.9

No. of nodes in subnetworks 1277 1277

No. of edges in subnetworks 18223 13047

No. of nodes in Largest component 1239 1254

No. of edges in Largest component 18207 13047

% of edges in Largest component 99.8 100

% of nodes in Largest component 97.0 98.1

We removed non-orthologous MTB and MLP proteins from the two networks to ensure

each subnetwork has 1277 proteins.

organisms have almost the same number of ancestral functional,
interactions viz 2670 for MLP and 2787 for MTB.

After blasting the 1115MLP pseudogene nucleotide sequences
against the MTB protein sequences using BLASTX with an
E−value cutoff of 10−10, we obtained 899 proteins in the MTB
proteome, 875 of which are in the MTB network and 25 have
orthologs in MLP. Only one of the 875 proteins is a hub protein
in MTB, this is P95315, which hit the pseudogene ML1054. This
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TABLE 4 | Number of proteins at each stage of the renormalization

process for rB = 1 in the two mycobacteria.

Parameter Stage 1 Stage 2 Stage 3

MLP MTB MLP MTB MLP MTB

Number of nodes 193 182 34 20 4 –

Number of edges 2690 2787 351 159 4 –

provides an indication that some of the MTB proteins which are
“pseudogenized” in MLP are well connected proteins in the MTB
functional network, thus playing important roles. To confirm
this, we compute the average network centrality scores and check
whether the values for MTB proteins with pseudogenes in MLP
are higher than those of the remaining proteins in the MTB
network. The average eigenvector, betweenness, closeness and
degree centralities of the 875 MTB proteins with pseudogenes
in MLP are 0.0047, 5377.38, 0.2837, and 32, respectively. These
numbers surpass those of the remaining 3261 MTB proteins
which are 0.0031, 5274.64, 0.2720, and 28, which shows that
these proteins on average play crucial roles in the MTB network.
To ensure that these average values are more than expected
by chance, we randomly chose 10 independent sets of 875
proteins in the 3261 MTB proteins. After computing the average
network centrality values for each set, the means viz average
eigenvector, betweenness, closeness and degree centrality values
are 0.0034, 5244.23, 0.2747, and 29, respectively. This suggests
that some of the 875 MTB proteins with pseudogenes in MLP
are greater than the average network centrality values, indicating
that these proteins are important in the MTB system, helping in
maintaining the “small world” property and in quickly exhibiting
a qualitative change in response to the system perturbations.

Finally, we looked at the functional class in which the 2859
proteins unique to MTB are involved. The distribution of
these proteins per functional class is shown in Table 5. Table 5
indicates that more than 90% of proteins involved in “insertion
seqs and phages” and “PE/PPE” functional classes are specific
to MTB. These proteins are probably key players in mediating
genome rearrangements and deletions (Fang et al., 1999), and
may play an important role in immunogenicity (Mazandu and
Mulder, 2011b). Some of these proteins are pseudogenes in
MLP, which are non functional genes that are still functionally
active in MTB as observed above. These genetic differences
provide a sign of selective pressure, which altered genes in MLP,
possibly for adaptation to its environments during infection and
transmission. This has potentially influenced pathogenesis and
immunity, and has defined the genotype and intracellular lifestyle
differences between these two pathogens, which remarkably
reflect on each organism’s pathogenicity and disease phenotype.

4. CONCLUSIONS

In this study, we analyzed reductive evolution based on
functional interaction networks, focusing on the MLP genome
to reveal different biological features that are able to explain a
massive reductive evolution undergone by MLP in comparison

TABLE 5 | The distribution per functional class of 2859 proteins unique to

MTB (PUM) and that of 875 with pseudogenes in MLP (PPM).

Functional class Number of PUM Number of PPM

Cell wall and cell processes 368 139

Intermediary metabolism and respiration 476 229

Information pathways 72 36

Insertion seqs and phages 77 12

Lipid metabolism 148 83

Virulence, detoxification, adaptation 133 20

Regulatory proteins 132 57

Unknown 1311 291

pe/ppe 142 8

Total 2859 875

to the closely related MTB genome. Out of 201 hubs found in
theMTB functional network, we identified 164 without orthologs
in MLP, of which 59 have no orthologous neighbors either. That
is, 59 proteins and their 257 neighbors (formed by the union of
all neighbors, i.e., without multiplicities) were deleted from the
MLP proteome during reduction in its genome. The GC content
of most of these 59 proteins were above the GC content of MLP
itself. Furthermore, out of the 1277 orthologous proteins in both
networks, we identified 1188 and 89 proteins with conserved and
divergent functional classes, respectively, in both organisms. This
may be due to the state of annotation in each. It is also important
to note that due to the divergence of MLP, the orthologs may
not have exactly the same functions. For example, Patil et al.
(2011), compared the activities of MLP RecA protein with

those of MTB RecA protein after cloning, purifying and over-
expressing it. They found that while at the amino acid level the
RecA protein were 91% identical, they are functionally different
in both micro-organisms.

In order to identify instances where MLP suffered
insertions/deletions (indels), we further classified the 1277
proteins based on their degrees into those in which MLP had a
lower number of neighbors compared to MTB, equal number
of neighbors and those in which MLP had a higher number
of neighbors compared to MTB; we found 882, 18, and 377
proteins, respectively. For each orthologous pair among the
377 proteins, we found instances where the MTB network had
insertions of novel proteins (not present in MLP), or where its
MLP counterpart had suffered massive deletions.

Besides the deletions providing ameans of reductive evolution
in MLP, the reduction can also by viewed as a corresponding
lack of insertions of orthologs compared to MTB. Starting with
the 1277 orthologs in both organisms, while 2859 proteins were
added to MTB, only 135 were added to MLP. The inserted
proteins contributed 25,916 and 143 edges to the MTB and MLP
networks, respectively. This work provides a quantitative model
for mapping reductive evolution and protein–protein functional
interaction network organization in terms of roles played by
different proteins in maintaining the stability and the structure
of the system. The MEMB algorithm for rB = 1 applied on the
largest component of both ortholog subnetworks re-confirms the
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fact that both organisms descended from a common ancestor
because both organisms have almost the same number of
ancestral proteins: 193 and 182 for MLP and MTB, respectively.
In the same vein, both organisms have almost the same number
of ancestral functional interactions viz 2690 for MLP and 2787
for MTB. Finally, by taking a look at the pseudogenes, we found
that the MTB orthologs of the MLP pseudogenes tended to have
higher than average centrality measures. The removal of these
potentially important proteins in MLP may be the cause of the
limited host range and growth potential outside of these hosts in
MLP.
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