
sensors

Article

Suppressing the Spikes in Electroencephalogram via
an Iterative Joint Singular Spectrum Analysis and
Low-Rank Decomposition Approach

Zikang Tian 1, Bingo Wing-Kuen Ling 1,*, Xueling Zhou 1, Ringo Wai-Kit Lam 2 and Kok-Lay Teo 3

1 School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China;
Zikang_Chio_Tian@163.com (Z.T.); zzhouxueling@163.com (X.Z.)

2 AI Mnemonic Limited, Science Park, Hong Kong, China; ringolam.hk@gmail.com
3 School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University,

Perth WA 6845, Australia; k.l.teo@curtin.edu.au
* Correspondence: yongquanling@gdut.edu.cn

Received: 14 October 2019; Accepted: 4 January 2020; Published: 7 January 2020
����������
�������

Abstract: The novelty and the contribution of this paper consists of applying an iterative joint
singular spectrum analysis and low-rank decomposition approach for suppressing the spikes in
an electroencephalogram. First, an electroencephalogram is filtered by an ideal lowpass filter via
removing its discrete Fourier transform coefficients outside the δ wave band, the θ wave band, the α
wave band, the βwave band and theγwave band. Second, the singular spectrum analysis is performed
on the filtered electroencephalogram to obtain the singular spectrum analysis components. The
singular spectrum analysis components are sorted according to the magnitudes of their corresponding
eigenvalues. The singular spectrum analysis components are sequentially added together starting
from the last singular spectrum analysis component. If the variance of the summed singular spectrum
analysis component under the unit energy normalization is larger than a threshold value, then
the summation is terminated. The summed singular spectrum analysis component forms the
first scale of the electroencephalogram. The rest singular spectrum analysis components are also
summed up together separately to form the residue of the electroencephalogram. Next, the low-rank
decomposition is performed on the residue of the electroencephalogram to obtain both the low-rank
component and the sparse component. The low-rank component is added to the previous scale of
the electroencephalogram to obtain the next scale of the electroencephalogram. Finally, the above
procedures are repeated on the sparse component until the variance of the current scale of the
electroencephalogram under the unit energy normalization is larger than another threshold value.
The computer numerical simulation results show that the spike suppression performance based on
our proposed method outperforms that based on the state-of-the-art methods.

Keywords: suppressing the spikes; electroencephalogram; singular spectrum analysis; low-rank
decomposition

1. Introduction

Electroencephalogram is a brain signal that reflects the activities of the human body such as
the splendid, the sleeping quality, the emotion level and the epileptic disorder. By studying the
electroencephalogram, many related diseases can be diagnosed effectively [1–3]. However, the quality
of the acquired signal is usually very poor—this may be due to the sensor limitations, the background
environmental noise and the human factors. Here, human factors include human motions such as the
winks. It is found that the electroencephalogram is usually corrupted by the spikes [4–6]. Hence, the
suppression of spikes plays an important role in the medical community.
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There are many existing linear and nonadaptive time frequency analysis-based methods for
suppressing the noise in a signal. If the noise is wide sense stationary, then the power spectral density
of the denoised signal is equal to that of the original signal multiplied to the squares of the magnitude
response of the filter. Therefore, the conventional filtering approach based on a linear time invariant
filter is employed to suppress the noise [7–9]. Nevertheless, the noise is not wide sense stationary in
the practical situation. To address this difficulty, the filter bank and wavelets approach is employed.
A filter bank refers to a system consisting of two sub-systems, namely the analysis bank and the
synthesis bank. The analysis bank consists of a bank of filters and a set of downsamplers. Since the
input signal is decomposed into different subband components via the filters with different frequency
bands, the input signal can be analyzed via the analysis bank. The soft thresholding is applied to the
subband coefficients. The synthesis bank consists of a bank of filters and a set of upsamplers. Since the
denoised subband components are combined via the filters, the denoised signal can be synthesized via
the synthesis bank [10–12]. Since the downsamplers and the upsamplers are linear time periodically
varying systems, this approach is effective to cyclostationary noise [10–12]. Nevertheless, as both the
analysis filters and the synthesis filters are required to be predefined prior, the denoising performance
is highly dependent on the choice of the filters.

To address the above difficulty, many nonlinear and adaptive time frequency analysis-based
methods are proposed for suppressing the noise in a signal. For example, the empirical mode
decomposition is employed to decompose a signal into a set of intrinsic mode functions. The first
intrinsic mode function is discarded, and the rest of the intrinsic mode functions are summed up
together to obtain the denoised signal [13,14]. Although this approach is effective for the additive
white Gaussian noise, it is not effective for the additive white impulsive noise. This is because the first
intrinsic mode function has the highest total number of the extrema, while the total number of the
extrema of the impulses is very small. As the spikes behave like the impulses, this approach is not
effective for suppressing the spikes in the electroencephalogram.

Likewise, the singular spectrum analysis is also employed to decompose a signal into a set of
singular spectrum analysis components. However, for the conventional singular spectrum analysis
approach, the singular spectrum analysis components corresponding to the small eigenvalues are
discarded because they do not contribute significantly to the signal components. On the other hand,
the singular spectrum analysis components corresponding to the large eigenvalues are used for the
reconstruction of the signal. Hence, they are summed up together to obtain the denoised signal [15–17].
However, as the spikes are with the large magnitudes and the singular spectrum analysis components
corresponding to the spikes are usually corresponding to the large eigenvalues, the spikes are still
corrupted in the denoised signal.

To tackle the above issue, the low-rank decomposition is employed for decomposing a signal into
two components, namely the signal component and the noise component. Here, the decomposition
problem is formulated as an optimization problem such that the weighted sum of the rank of the signal
component and the total number of the nonzero elements in the noise component is minimized [18–20].
Although this approach is effective for suppressing the impulsive noise, it is not effective for suppressing
the Gaussian noise. Nevertheless, the signals acquired in the practical situation are corrupted by
both the impulsive noise and the Gaussian noise. Hence, this approach does not yield a desirable
denoising performance.

Since different approaches have their own advantages and disadvantages, this paper proposes an
iterative joint singular spectrum analysis and low-rank decomposition approach for suppressing the
spikes in an electroencephalogram. Unlike the conventional singular spectrum analysis based denoising
methods [15–17], this paper sums up the singular spectrum analysis components corresponding to the
small eigenvalues. Also, this paper does not completely discard the sparse component obtained by
the low-rank decomposition. On the other hand, the singular spectrum analysis is performed on the
sparse component again and the useful information in the sparse component is dug out via an iterative
approach. The outline of this paper is as follows. Section 2 reviews both the singular spectrum analysis
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and the low-rank decomposition. Section 3 presents the proposed spike suppression method. The
computer numerical simulation results are presented in Section 4. Finally, a conclusion is drawn in
Section 5.

2. Reviews on the Singular Spectrum Analysis and the Low-Rank Decomposition

2.1. Review on the Singular Spectrum Analysis [15–17]

The singular spectrum analysis is to represent a signal as the sum of the singular spectrum analysis
components. The procedures for performing the singular spectrum analysis are as follows. Let N be

the length of a signal and the vector form representation of the signal be x =
[

x1 · · · xN
]T

. Denote

L as the window length. Here, L ≤ N
2 . Define K = N − L + 1. Define Xk =

[
xk · · · xk+L−1

]T
for

k = 1, · · · , K. The first step is to construct the trajectory matrix as X =
[

X1 · · · XK
]
. That is:

X =


x1 x2 · · · xN−L+1

x2 x3 · · · xN−L+2
...

...
. . .

...
xL xL+1 · · · xN

. (1)

It is worth noting that X is a Hankel matrix. The second step is to apply the singular value
decomposition to XXT. Denoteλl for l = 1, · · · , L as the eigenvalues of XXT. Here, it is assumed that they

are sorted in the decreasing order. That is, λ1 ≥ . . . ≥ λL ≥ 0. Denote Λ = diag
([
λ1 · · · λL

]T
)
. Let

Ul for l = 1, · · · , L be the eigenvectors of X. Define U =
[

U1 · · · UL
]
. Then, we have XXT = UΛUT.

Define Vl =
XTUl√
λl

for l = 1, · · · , L. It can be shown that the trajectory matrix can be written as:

X =
L∑

l=1

√
λlUlVT

l =
L∑

l=1

X̃l. (2)

The third step is to group X̃l for l = 1, · · · , L based on a certain criterion. Assume that the index
set {1, 2 . . . , L} is partitioned into M̃ disjoint subsets and they are denoted as Im for m = 1, · · · , M̃. Let
X̂m =

∑
i∈Im

X̃i for m = 1, · · · , M̃. It can be shown that X can be represented as:

X =
M̃∑

m=1

X̂m. (3)

The fourth step is to perform the de-Hankelization on X̂m for m = 1, · · · , M̃. This is to convert X̂m

to a one-dimensional signal for m = 1, · · · , M̃. In particular, let x̂a,b,m be the element in the ath row and
the bth column of X̂m for a = 1, · · · , L, for b = 1, · · · , K and for m = 1, · · · , M̃. Define:

xn,m =



1
n

n∑
p=1

x̂p,n−p+1,m f or 1 ≤ n < L

1
L

L∑
p=1

x̂p,n−p+1,m f or L ≤ n < K

1
N−n+1

L∑
p=n−K+1

x̂p,n−p+1,m f or K ≤ n ≤ N

. (4)
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for m = 1, · · · , M̃ and for n = 1, · · · , N. Here, xn,m is obtained by averaging x̂a,b,m in the nth off-diagonal
of X̂m for n = 1, · · · , N and for m = 1, · · · , M̃. Define the singular spectrum analysis component as
¯
xm =

[
x1,m · · · xN,m

]T
for m = 1, · · · , M̃.

Since the singular spectrum analysis components are obtained based on the magnitudes of the
eigenvalues of the trajectory matrix, the singular spectrum analysis is a magnitude-based signal
decomposition method. Therefore, there is not a simple relationship between the indices and the
frequency bands of the singular spectrum analysis components. As a result, the frequency bands of the
singular spectrum analysis components are not sorted according to their indices. This is unlike the
empirical mode decomposition that the frequency bands of the intrinsic mode functions are sorted
according to their indices. Because of this reason, the bandpass filtering is required to obtain the signal
bands of the electroencephalogram.

2.2. Review on the Low-Rank Decomposition [18–22]

Let an observed signal y(n) be a combination of two components, namely the signal component
s(n) and the noise component e(n). That is, y(n) = s(n) + e(n). Define the trajectory matrix of y(n),
s(n) and e(n) as Y, S and E, respectively. Then, we have Y = S + E. Here, it is assumed that S only
consists of few singular values. This implies that rank(S) is small. Besides, the total number of the
nonzero elements in E is also assumed to be small. Denote the L0 norm of a matrix Z as ‖Z‖0. Here, the
L0 norm of a matrix refers to the total number of the nonzero elements in that matrix. This implies that
‖E‖0 is small. As a result, the low-rank decomposition problem can be formulated as an optimization
problem with the objective function being the weighted sum of rank(S) and ‖E‖0 subject to Y = S + E.
Let the weight be γ. Then, we have:

min
(S,E)

rank(S) + γ‖E‖0, (5a)

subject to Y = S + E. (5b)

However, as rank(S) is equal to the total number of the singular values of S, this operator is
non-polynomial hard and nonconvex. To address this difficulty, rank(S) is approximated by the
absolute sum of the singular values of S. Denote the nuclear norm of a matrix Z as ‖Z‖∗. Here, the
nuclear norm of a matrix refers to the absolute sum of the singular values of that matrix. Therefore, ‖S‖∗
is minimized instead. Similarly, as ‖E‖0 refers to the total number of the nonzero elements in E, this
operator is also non-polynomial hard and nonconvex. To address this difficulty, ‖E‖0 is approximated
by the absolute sum of the elements in E. Denote the L1 norm of a matrix Z as ‖Z‖1. Here, the L1 norm
of a matrix refers to the absolute sum of the nonzero elements in that matrix. Therefore, ‖E‖1 is also
minimized instead. As a result, we have the following approximated problem:

min
(S,E)
‖S‖∗ + γ‖E‖1, (6a)

subject to Y = S + E. (6b)

3. Proposed Spike Suppression Method

Figure 1 shows the flowchart of the proposed method. Since most of the information of the
electroencephalogram is found in the δwave band (0–4 Hz), the θwave band (4–8 Hz), the αwave band
(8–12 Hz), the β wave band (12–39 Hz) and the γ wave band (30–44 Hz), these frequency bands are the
most important frequency bands for performing the electroencephalograph analysis [1–3]. To suppress
the noise outside these signal bands, a simple lowpass filtering is applied to the electroencephalogram.
To implement this filtering operation, the simplest approach is to remove the discrete Fourier transform
coefficients of the electroencephalogram outside these signal bands. As there is much existing hardware
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for the efficient implementation of the discrete Fourier transform [23–25], this filtering module is with
very low cost. Here, the frequency response of the ideal lowpass filter is:

H(ω) =

1, |ω| ≤ ωc

0, |ω| > ωc
, (7)

whereωc is the cutoff frequency of the filter. Let x(t) be the original signal and X(ω) be the corresponding
continuous time Fourier transform. Then, the filtered signal y(t) can be expressed as:

y(t) =
1

2π

∫ ωc

−ωc

X(ω)H(ω)e jωtdω. (8)

To suppress the spikes in the filtered electroencephalogram, the filtered electroencephalogram
is required to decompose into various components and appropriate processing is applied to these
components. Since the magnitudes of the spikes are large [4–6] and the singular spectrum analysis
components are expressed as the magnitudes of the eigenvalues of the trajectory matrix [15–17], the
singular spectrum analysis is an appropriate tool to decompose the filtered electroencephalogram into
various components for suppressing the spikes.

By performing the singular spectrum analysis on the filtered electroencephalogram, various
singular spectrum analysis components are obtained. First, the singular spectrum analysis components
of the filtered electroencephalogram are sorted in the descending order of the magnitudes of the
corresponding eigenvalues. Since the magnitudes of the spikes are large [4–6], the singular spectrum
analysis components corresponding to the small eigenvalues do not contain the spikes. Therefore,
the singular spectrum analysis components corresponding to the small eigenvalues are summed up
together to obtain an approximated despiked electroencephalogram. This is unlike the conventional
singular spectrum analysis based denoising methods [15–17] that the singular spectrum analysis
components corresponding to small eigenvalues are discarded. The obtained approximated despiked
electroencephalogram is called the first scale of the electroencephalogram. Mathematically, let the
sorted singular spectrum analysis components be

^
x m for m = 1, · · · , M̃. Let the first index of the

singular spectrum analysis component to be summed together be m∗. Let κ0 be the first scale of

the electroencephalogram. Then, we have κ0 =
M̃∑

m=m∗

^
x m. Here, it is required to determine m∗ via a

thresholding method. That is, the singular spectrum analysis components are categorized into two
groups, namely the group containing the singular spectrum analysis components corresponding to the
large eigenvalues and the group containing the singular spectrum analysis components corresponding
to the small eigenvalues, via a thresholding method. Since the singular spectrum analysis components
are sequentially added together starting from the last singular spectrum analysis component, if the
variance of the summed singular spectrum analysis component under the unit energy normalization
is larger than a threshold value, then the summation is terminated. The singular spectrum analysis
components involved in the summed singular spectrum analysis component are assigned to the group
corresponding to the singular spectrum analysis components corresponding to the small eigenvalues.
On the other hand, the remaining singular spectrum analysis components are assigned to the group
corresponding to the singular spectrum analysis components corresponding to the large eigenvalues.

However, the sum of the singular spectrum analysis components corresponding to the large
eigenvalues usually contains useful information of the electroencephalogram. Hence, further processing
is required to apply to the sum of these singular spectrum analysis components corresponding to
the large eigenvalues. As the low-rank decomposition can effectively decompose a signal into the
low-rank component and the sparse component as well as the low-rank component does not contain
the spikes [18–20], the low-rank decomposition is used to decompose the sum of the singular spectrum
analysis components corresponding to the large eigenvalues and the low-rank component is added to
the current scale of the electroencephalogram to obtain the next scale of the electroencephalogram.
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Mathematically, let the low-rank component and the sparse component of the sum of the singular
spectrum analysis components corresponding to the large eigenvalues be

^
e 0 and

^
s 0, respectively.

That is,
m∗−1∑
m=1

^
x m =

^
e 0 +

^
s 0. Let κ1 be the second scale of the electroencephalogram. Then, we have

κ1 = κ0 +
^
e 0.Sensors 2020, 20, x FOR PEER REVIEW 6 of 23 
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In order to further dig out the useful information from the sparse component, the variance
of the current scale of the electroencephalogram under the unit energy normalization is computed.
If this variance is smaller than another threshold value, then the above procedures are iterated on
the sparse component. Otherwise, the iterative algorithm is terminated, and the final scale of the
electroencephalogram is taken as the despiked electroencephalogram.

It is worth noting that the proposed algorithm enjoys the multi-resolution property like the
conventional wavelet-based multi-resolution property where the wavelet coefficients are added to
the current scale of the signal and the original signal is reconstructed scale by scale progressively.
Here, the singular spectrum analysis components corresponding to the small eigenvalues and the
low-rank components are added to the current scales of the electroencephalogram and the despiked
electroencephalogram is reconstructed scale by scale progressively.
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4. Computer Numerical Simulation Results

The proposed algorithm is implemented under the MATLAB 2018a environment and the computer
numerical simulations are conducted using the Core i7-6700 3.41 GHz CPU with 8 GB RAM. In this
paper, the electroencephalograms are acquired by a MUSE2 headband. The MUSE2 headband acquires
the electroencephalograms at four different locations of the head. Two are at the forehead and two are
behind the ear. In the following computer numerical simulations, the electroencephalograms are taken
from the left forehead. The sampling rate of the electroencephalograms is 100 Hz and the acquired
electroencephalograms are downloaded via the mobile application unit built in the MUSE2 headband.
It is worth noting that the acquired electroencephalograms have significant changes in the amplitudes
in the short periods of times at the locations where the spikes occur, and the locations of the spikes
are random.

4.1. Computer Numerical Simulation Results

Figure 2a,b show a realization of a section of an acquired electroencephalogram in both the
time domain and the frequency domain, respectively. That is, Figure 2a shows a section of the
entire electroencephalogram in the time domain. Figure 2b shows the same section of the entire
electroencephalogram in the frequency domain. It can be seen from Figure 2a that there are some
spikes corrupted in the acquired electroencephalogram. Also, it can be seen from Figure 2b that the
acquired electroencephalogram is a wide spectrum signal. Figure 3 shows the locations of the spikes
that need to be suppressed in the time domain. Figure 3 also shows that there are 11 spikes in the
acquired electroencephalogram and the acquired electroencephalogram has significant changes in
the amplitudes in the short periods of times at the locations where the spikes occur. Figure 4a shows
the same section of the entire electroencephalogram after applying the ideal lowpass filtering in the
time domain. Figure 4b shows the same section of the entire electroencephalogram after applying
the ideal lowpass filtering in the frequency domain. Here, since most of the information of the
electroencephalogram is found in the 0–50 Hz frequency band, ωc = 50 Hz is chosen. It can be seen
from Figure 4b that the noise outside the signal bands is removed after performing the ideal lowpass
filtering. Although it can be seen from Figure 4a that these 11 spikes are still there, the background
noise is significantly suppressed.

Figure 5 shows the singular spectrum analysis components obtained by performing the singular
spectrum analysis on the filtered electroencephalogram based on the discussion presented in Section 2.1.
It is worth noting that a too large value of L requires a heavy computational power while a too small
value of L does not contain enough of the singular spectrum analysis components to be selected for
performing the further processing. Therefore, L = 10 is chosen in the following computer numerical
simulation results. This value is a good tradeoff between the above two factors. Also, as it is 0.5% of the
length of the section of an acquired electroencephalogram which is less than half of the length of the
section of an acquired electroencephalogram, it satisfies the property of the singular spectrum analysis.
Figure 6 shows the sums of the singular spectrum analysis components starting from the last singular
spectrum analysis component. That is, the singular spectrum analysis component shown in Figure 6a
is the same as that shown in Figure 5j. The singular spectrum analysis component shown in Figure 6b
is the sum of the singular spectrum analysis components shown in Figure 5i,j. The singular spectrum
analysis component shown in Figure 6c is the sum of the singular spectrum analysis components
shown in Figure 5h–j. The rest of the singular spectrum analysis components shown in Figure 6
are the sums of the singular spectrum analysis components shown in corresponding subfigures in
Figure 5. Finally, the singular spectrum analysis component shown in Figure 6j is the sum of the
singular spectrum analysis components in all the subfigures in Figure 5. In fact, Figure 6j is the filtered
electroencephalogram. Table 1 lists the values of the variances of the sums of the singular spectrum
analysis components under the unit energy normalization. When comparing Figure 6j with other
figures in Figure 6, it can be seen that there are spikes in the sums of the singular spectrum analysis
components if the summations added from the last spectrum analysis component to the singular
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spectrum analysis components corresponding to the indices larger than or equal to four. Therefore, the
threshold value defined on the variances of the sums of the singular spectrum analysis components
under the unit energy normalization is set at 10−7 such that only the sum of the fifth singular spectrum
analysis component to the last singular spectrum analysis component is used to generate the first scale
of the electroencephalogram.

Table 1. The variances of the sums of the singular spectrum analysis components under the unit
energy normalization.

The Sum from the kth Singular Spectrum Analysis Component to the Last Singular
Spectrum Analysis Component

Variance

k= 1 3.93E-09

k= 2 1.95E-08

k= 3 4.12E-08

k= 4 7.16E-08

k= 5 1.91E-07

k= 6 1.52E-06

k= 7 5.54E-05

k= 8 1.09E-02

k= 9 6.71

k= 10 625
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Figure 4. (a) The impulsive response of the filtered electroencephalogram. (b) The magnitude response
of the filtered electroencephalogram.

Figure 7a,b show the first scale of the electroencephalogram and the residue of the
electroencephalogram, respectively. It can be seen from Figure 7a that there is no spike in the first scale
of the electroencephalogram, while all the spikes are found in the residue of the electroencephalogram.
Figure 8a,b show the low-rank component and the sparse component after performing the low-rank
decomposition on the residue of the electroencephalogram. Here, since both the sparse component
and the low-rank component have the same effects on the results, let γ= 0.5. Similarly, it can be seen
from Figure 8a that there is no spike in the low-rank component, while all the spikes are found in the
sparse component. By adding the low-rank component to the first scale of the electroencephalogram,
we obtain the second scale of the electroencephalogram which is shown in Figure 9.

To further dig out the useful information of the sparse component, the singular spectrum analysis is
applied to the sparse component to obtain a new set of the singular spectrum analysis components. The
new set of the singular spectrum analysis components corresponding to the small eigenvalues are added
to the current scale of the electroencephalogram to obtain the next scale of the electroencephalogram.
Also, the low-rank decomposition is applied to the new residue of the electroencephalogram. The
new low-rank components are also added to the current scale of the electroencephalogram to obtain
the next scale of the electroencephalogram. Here, these scales of the electroencephalogram do not
contain the spikes, but small amounts of useful information are lost. In order to recover the discarded
useful information, the above procedures are repeated on the sparse component. From here, it is
worth noting that the spikes are not gradually suppressed in each iteration. On the other hand, the
useful information is added to the scales of the electroencephalogram. Figures 10 and 11 show the
2nth scales of the electroencephalogram in the time domain and the frequency domain, respectively.
It can be seen from Figure 10c that there is no spike after performing three iterations. On the other
hand, it can be seen from Figure 10d that there are spikes after performing four iterations. Compared
with Figure 11b,c, it can be seen that the electroencephalogram after performing two iterations lost
some low-frequency information. Compared with Figure 11c,d, the low-frequency information of the
electroencephalogram after performing four iterations does not increase significantly. Table 2 shows
the variances of the 2nth scales of the electroencephalogram under the unit energy normalization. Here,
the threshold value defined on the variances of the 2nth scales of the electroencephalogram under the
unit energy normalization is set at 10 such that only three iterations are performed.
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Table 2. The variances of the 2nth scales of the electroencephalogram under the unit energy
normalization.

Iteration Index Variance

1 1.697772
2 5.202817
3 9.160693
4 11.97295
5 14.3795
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Figure 12 shows the despiked electroencephalograms based on the same set of the threshold
values for the new realizations of an electroencephalogram. It can be seen from Figure 12 that our
proposed method still achieves the good despiked performances. This is because the same type of
electroencephalograms is acquired by the same device. Therefore, the acquired electroencephalograms
have consistent characteristics. After the threshold values are predefined, it is not required to change
the predefined threshold values for the new realization of the electroencephalogram.
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spectrum analysis components. (j) The sum of all the singular spectrum analysis components.
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Figure 10. (a) The second scale of the electroencephalogram in the time domain. (b) The fourth scale of
the electroencephalogram in the time domain. (c) The sixth scale of the electroencephalogram in the
time domain. (d) The eighth scale of the electroencephalogram in the time domain. (e) The tenth scale
of the electroencephalogram in the time domain.
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Figure 11. (a) The second scale of the electroencephalogram in the frequency domain. (b) The fourth scale
of the electroencephalogram in the frequency domain. (c) The sixth scale of the electroencephalogram
in the frequency domain. (d) The eighth scale of the electroencephalogram in the frequency domain.
(e) The tenth scale of the electroencephalogram in the frequency domain.
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4.2. Comparisons to the Existing Methods

In order to demonstrate the effectiveness of our proposed method, our proposed method is
compared to the following three states of the art methods. They are the empirical mode decomposition
based denoising method [13,14], the singular spectrum analysis based denoising method [15–17] and
the low-rank decomposition based denoising method [18–20].

Since the spikes contain the high-frequency contents of the electroencephalogram, the empirical
mode decomposition based denoising method reconstructs the despiked electroencephalogram using
the intrinsic mode functions corresponding to the low-frequency components [13,14]. Here, the
intrinsic mode functions are obtained by applying the empirical mode decomposition on the original
electroencephalogram. It is worth noting that if too many intrinsic mode functions are used for
reconstructing the despiked electroencephalogram, then the despiked electroencephalogram will still
contain the spikes. On the other hand, if very few intrinsic mode functions are used for reconstructing the



Sensors 2020, 20, 341 16 of 22

despiked electroencephalogram, then the despiked electroencephalogram will be very smooth and some
useful information will be lost. To determine which intrinsic mode functions are used for reconstructing
the despiked electroencephalogram, Figures 13 and 14 show the despiked electroencephalogram
reconstructed using the last five intrinsic mode functions, the last seven intrinsic mode functions
and the last nine intrinsic mode functions shown in the time domain and in the frequency domain,
respectively. On the other hand, Figure 15 shows the despiked electroencephalogram in the time
domain obtained using our proposed approach. Our proposed approach can significantly suppress the
spikes while most of the information is retained in the despiked electroencephalogram. Figure 16a
shows the despiked electroencephalogram in the frequency domain obtained using our proposed
approach. The main lobe of the despiked electroencephalogram obtained using our proposed approach
is mainly localized within 0–10 Hz while there is a large second lobe component localized between
10 Hz and 50 Hz. From here, we can reconstruct the despiked electroencephalogram by summing
up the intrinsic mode functions from the one with the lowest frequency component to the one such
that the cutoff frequency of the summed intrinsic mode functions is located at 10 Hz. From Figure 14,
we can see that the cutoff frequency of the despiked electroencephalogram reconstructed using the
last five intrinsic mode functions is around 5 Hz, which is too low, resulting in a large amount
of information being lost. On the other hand, the despiked electroencephalogram reconstructed
using the last nine intrinsic mode functions contain too many high-frequency noises. Whereas, the
despiked electroencephalogram reconstructed using the last seven intrinsic mode functions achieves
the best tradeoff results. Therefore, the despiked electroencephalograms are reconstructed using
the last seven intrinsic mode functions and it is shown in Figure 14. However, it can be seen from
Figure 15 that the spikes are still found in the despiked electroencephalogram obtained based on the
conventional empirical mode decomposition-based method. Compared to our obtained despiked
electroencephalogram, it can be concluded that our proposed method outperforms the empirical mode
decomposition-based method in terms of suppressing the spikes.

The reconstructed electroencephalograms obtained based on our proposed method and the
conventional singular spectrum analysis-based method are shown in Figure 17. Here, the conventional
singular spectrum analysis-based method reconstructs the electroencephalogram by summing up
the fifth singular spectrum analysis component to the last singular spectrum analysis component
of the filtered electroencephalogram. On the other hand, as our proposed method also sums up
the fifth singular spectrum analysis component to the last singular spectrum analysis component
of the filtered electroencephalogram to generate the first scale of the electroencephalogram, the
reconstructed electroencephalogram obtained based on our proposed method is similar to that based
on the conventional singular spectrum analysis based method [15–17]. However, it can be seen
from Figure 17 that the reconstructed electroencephalogram obtained based on the conventional
singular spectrum analysis-based method is over-smoothen. This is because the information in
the first four singular spectrum analysis components is lost. Compared with our reconstructed
despiked electroencephalogram, it can be concluded that our proposed method outperforms the
conventional singular spectrum analysis-based method in terms of retaining the characteristics of
the electroencephalogram.

Finally, the low-rank decomposition-based method [18–22] is also compared. Here, the low-rank
component obtained by applying the low-rank decomposition to the filtered electroencephalogram
is taken as the despiked electroencephalogram. This is because the spikes are found in the sparse
component. The electroencephalograms obtained based on our proposed method and the conventional
low-rank decomposition-based method are shown in Figure 16. Similar to the conventional singular
spectrum analysis approach [15–17], it can be understood from Figure 18 that the reconstructed
electroencephalogram based on the low-rank decomposition-based method is over-smoothen. This is
because the information in the sparse component is lost. Compared with our reconstructed despiked
electroencephalogram, it can be concluded that our proposed method outperforms the low-rank
decomposition-based method in terms of retaining the characteristics of the electroencephalogram.
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Figure 13. (a) The despiked electroencephalogram in the time domain reconstructed using the last five
intrinsic mode functions. (b) The despiked electroencephalogram in the time domain reconstructed
using the last seven intrinsic mode functions. (c) The despiked electroencephalogram in the time
domain reconstructed using the last nine intrinsic mode functions.
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Figure 14. (a) The despiked electroencephalogram in the frequency domain reconstructed using the
last five intrinsic mode functions. (b) The despiked electroencephalogram in the frequency domain
reconstructed using the last seven intrinsic mode functions. (c) The despiked electroencephalogram in
the frequency domain reconstructed using the last nine intrinsic mode functions.
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Figure 16. (a) The reconstructed electroencephalogram in the frequency domain obtained based on
our proposed method. (b) The reconstructed electroencephalogram in the frequency domain obtained
based on the conventional empirical mode decomposition-based method. (c) The reconstructed
electroencephalogram in the frequency domain obtained based on the conventional singular spectrum
analysis-based method. (d) The reconstructed electroencephalograms in the frequency domain obtained
based on the conventional low-rank decomposition-based method.
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It can be seen in Figure 3 that there are 11 spikes in the electroencephalogram. Here, the objective
is to suppress the magnitudes of these 11 spikes. However, it is worth noting that the waveforms used
in the computer numerical simulations are the realizations of a practical electroencephalogram. There
is no external noise added to the electroencephalogram. Since there is no clean electroencephalogram
for performing the comparison, neither the noise level nor the signal to noise ratio cannot be measured.
Therefore, it is difficult to have a comparison of quantitative performance. To address this issue,
Table 3 shows the differences in the magnitudes of the spikes at these 11 points before and after
applying the above four despiked methods. It can be understood from Table 3 that the empirical mode
decomposition-based method does not effectively suppress the magnitudes of the spikes. Figure 16
shows the reconstructed electroencephalograms in the frequency domain obtained based on the above
four methods. It can be seen in Figure 16 that our proposed method does not lose too much information
in the low-frequency content of the electroencephalogram. On the other hand, the singular spectrum
analysis-based method loses the information in the low-frequency content of the electroencephalogram,
while the low-rank decomposition-based method loses the information in the high-frequency content
of the electroencephalogram. Hence, it can be concluded that our proposed method outperforms
the other three methods in terms of suppressing the spikes as well as retaining the information of
the electroencephalogram.

Table 3. The differences on the magnitudes of the spikes at these 11 points before and after applying
the above four despiked methods.

Spike 1 2 3 4 5 6 7 8 9 10 11

Our
method −18.669 21.035 −13.831 25.604 −13.955 −10.321 15.600 −12.295 22.358 −22.999 15.499

EMD −1.209 0.457 −16.581 14.012 −3.305 −7.149 6.157 −6.468 3.277 −15.295 11.497
SSA −28.519 33.465 −26.249 40.279 −24.582 −17.183 21.982 −20.571 32.205 −37.171 24.499
LRD −25.175 29.609 −30.222 39.398 −22.269 −21.019 22.396 −23.211 31.228 −36.574 28.262

To further demonstrate the outperformance of our proposed method, a synthetic signal is
illustrated. The clean signal s∗(n) ∈ <[n] is given by

s∗(n) = 10 sin 2π f1n + 4 sin(2π f2n + sin 2π f3n) + 3 sin(2π f3n + sin 2π f4n). (9)
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Here, f1 = 1, f2 = 10, f3 = 30 and f4 = 50. Also, the spike signal η∗(n) ∈ <[n] composed of the
convolution of two square waves with the amplitude and the position of the spike in the spike signal
being random is corrupted to s∗(n). That is, the synthetic signal is s(n) = s∗(n) + η∗(n) and it is shown
in Figure 19c. To perform the quantitative evaluation, the signal to noise ratio criterion defined as

10 log10

N∑
n=1

(s(n))2

N∑
n=1

(η∗(n))2
is evaluated. By changing the range of the amplitude and the distribution of the

position of the spike, the synthesized signals with different signal to noise ratios are obtained. Table 4
shows the signal to noise ratios of the despiked signals obtained by the above four despiked methods.
For our proposed method, L = 10 and γ= 0.5 are chosen. Moreover, the threshold value for selecting
the singular spectrum analysis components is set in such a way that the first four singular spectrum
analysis components are chosen. Furthermore, the threshold value for terminating the algorithm is
set in such a way that the eighth scale of the synthetic signal is the final despiked signal. For the
singular spectrum analysis based denoising method, the sum of the first fourth singular spectrum
analysis components is chosen as the despiked signal. For the empirical mode decomposition based
denoising method, the sum of the last seven intrinsic mode functions is chosen as the despiked signal.
For the low-rank decomposition based denoising method, γ= 0.5 is chosen. All of these parameters
are chosen as the same as that before. As shown in Table 4, our proposed method outperforms the
other three denoising methods in terms of suppressing the spikes. This is because the signal to noise
ratio achieved by our proposed method is 20 dB larger than the other three denoising methods.Sensors 2020, 20, x FOR PEER REVIEW 21 of 23 
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Table 4. The signal to noise ratios of the despiked signals obtained by the above four denoising methods.

Computer
Numerical
Simulation

Index

Signal to
Noise Ratio of
the Original

Signal

Signal to Noise
Ratio of the

Despiked Signal
Obtained by the
Empirical Mode
Decomposition

based Denoising
Method

Signal to Noise
Ratio of the

Despiked Signal
Obtained by the
Singular Spectral
Analysis based

Denoising
Method

Signal to Noise
Ratio of the

Despiked Signal
Obtained by the

Low-Rank
Decomposition

Based Denoising
Method

Signal to
Noise Ratio of
the Despiked

Signal
Obtained by

Our Proposed
Method

1 51.158 25.950 51.572 13.371 55.932
2 40.705 23.291 40.948 13.097 54.321
3 30.386 20.222 30.513 12.769 47.815
4 20.085 20.464 20.649 12.531 37.468
5 10.905 −1.903 11.016 11.212 26.661
6 0.949 2.671 1.169 9.497 18.986
7 −1.068 −21.433 −0.698 9.391 16.539
8 −10.080 −31.536 −9.912 8.790 12.203
9 −20.386 −52.846 −20.212 4.067 2.909
10 −30.792 −38.598 −30.637 5.701 3.396

5. Conclusions

This paper has proposed an iterative joint singular spectrum analysis and low-rank decomposition
method for suppressing the spikes in an electroencephalogram. Since the spikes are with large
magnitudes and they are sparse, both the singular spectrum analysis-based denoising method and the
low-rank decomposition-based denoising method can effectively suppress the spikes. The computer
numerical simulation results show that our proposed method outperforms the states of the art methods
in terms of suppressing the spikes and retaining the information of the electroencephalogram.
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swallowing vibrations. Biomed. Signal Process. Control 2016, 27, 112–121. [CrossRef] [PubMed]

13. Zhou, Y.; Ling, B.W.; Mo, X.; Guo, Y.; Tian, Z. Empirical mode decomposition based hierarchical
multiresolution analysis for suppressing noise. IEEE Trans. Instrum. Meas. 2019, in press. [CrossRef]

14. Kuang, W.; Ling, B.W.; Yang, Z. Parameter free and reliable signal denoising based on constants obtained
from IMFs of white Gaussian noise. Measurement 2017, 102, 230–243. [CrossRef]

15. Gu, J.; Lin, P.; Ling, B.W.; Yang, C.; Feng, P. Grouping and selecting singular spectral analysis components for
denoising based on empirical mode decomposition via integer quadratic programming. IET Signal Process.
2018, 12, 599–604. [CrossRef]

16. Lin, P.; Kuang, W.; Liu, Y.; Ling, B.W. Grouping and selecting singular spectrum analysis components for
denoising via empirical mode decomposition approach. Circuits Syst. Signal Process. 2019, 38, 356–370.
[CrossRef]

17. Feng, P.; Ling, B.W.; Lei, R.; Chen, J. Singular spectral analysis-based denoising without computing singular
values via augmented Lagrange multiplier algorithm. IET Signal Process. 2019, 13, 149–156. [CrossRef]

18. Fan, H.; Li, J.; Yuan, Q.; Liu, X.; Ng, M. Hyperspectral image denoising with bilinear low rank matrix
factorization. Signal Process. 2019, 163, 132–152. [CrossRef]

19. Fan, L.; Li, X.; Zhang, C. An adaptive boosting procedure for low-rank based image denoising. Signal Process.
2019, 164, 110–124. [CrossRef]

20. Gomes, P.R.B.; da Costa, J.P.C.L.; de Almeida, A.L.F.; de Sousa, R.T., Jr. Tensor-based multiple denoising via
successive spatial smoothing, low-rank approximation and reconstruction for R-D sensor array processing.
Digit. Signal Process. 2019, 89, 1–7. [CrossRef]

21. Kong, W.; Kong, X.; Fan, Q.; Zhao, Q.; Cichocki, A. Task-free brainprint recognition based on low-rank and
sparse decomposition model. Int. J. Data Min. Bioinform. 2019, 22, 280–300. [CrossRef]

22. Kong, X.; Kong, W.; Fan, Q.; Zhao, Q.; Cichocki, A. Task-Independent EEG Identification via Low-Rank
Matrix Decomposition. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 412–419.

23. Kircheis, M.; Potts, D. Direct inversion of the nonequispaced fast Fourier transform. Linear Algebra Appl.
2019, 575, 106–140. [CrossRef]

24. Wülker, C. Fast SGL Fourier transforms for scattered data. Appl. Comput. Harmon. Anal. 2019, in press.
25. Strain, J. Fast Fourier transforms of piecewise polynomials. J. Comput. Phys. 2018, 373, 346–369. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0304-3940(94)90182-1
http://dx.doi.org/10.1016/j.compbiomed.2011.05.007
http://www.ncbi.nlm.nih.gov/pubmed/21621200
http://dx.doi.org/10.1016/j.sigpro.2018.12.006
http://dx.doi.org/10.1016/j.isatra.2019.02.018
http://dx.doi.org/10.1016/j.engappai.2018.12.004
http://dx.doi.org/10.1016/j.sigpro.2019.04.005
http://dx.doi.org/10.1016/j.bspc.2016.01.012
http://www.ncbi.nlm.nih.gov/pubmed/27152118
http://dx.doi.org/10.1109/TIM.2019.2914734
http://dx.doi.org/10.1016/j.measurement.2017.02.011
http://dx.doi.org/10.1049/iet-spr.2017.0432
http://dx.doi.org/10.1007/s00034-018-0861-1
http://dx.doi.org/10.1049/iet-spr.2018.5086
http://dx.doi.org/10.1016/j.sigpro.2019.04.029
http://dx.doi.org/10.1016/j.sigpro.2019.06.004
http://dx.doi.org/10.1016/j.dsp.2019.01.005
http://dx.doi.org/10.1504/IJDMB.2019.100629
http://dx.doi.org/10.1016/j.laa.2019.03.028
http://dx.doi.org/10.1016/j.jcp.2018.06.076
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Reviews on the Singular Spectrum Analysis and the Low-Rank Decomposition 
	Review on the Singular Spectrum Analysis B15-sensors-628392,B16-sensors-628392,B17-sensors-628392 
	Review on the Low-Rank Decomposition B18-sensors-628392,B19-sensors-628392,B20-sensors-628392,B21-sensors-628392,B22-sensors-628392 

	Proposed Spike Suppression Method 
	Computer Numerical Simulation Results 
	Computer Numerical Simulation Results 
	Comparisons to the Existing Methods 

	Conclusions 
	References

