ORIGINAL RESEARCH

Efficacy and Safety of Ticagrelor Monotherapy by Clinical Presentation: Pre-Specified Analysis of the GLOBAL LEADERS Trial

Pascal Vranckx, MD, PhD;* Marco Valgimigli, MD, PhD;* Ayodele Odutayo, MD, DPhil;* Patrick W. Serruys, MD, PhD; Christian Hamm, MD, PhD; Philippe Gabriel Steg, MD; Dik Heg, PhD; Eugene P. Mc Fadden, MD; Yoshinobu Onuma, MD, PhD; Edouard Benit, MD; Luc Janssens, MD; Roberto Diletti, MD, PhD; Maurizio Ferrario, MD; Kurt Huber, MD; Lorenz Räber, MD; Stephan Windecker, MD; Peter Jüni, MD; on behalf of the GLOBAL LEADERS Investigators

BACKGROUND: The optimal duration of dual antiplatelet therapy after coronary drug-eluting stent placement in adults with stable coronary artery disease (SCAD) versus acute coronary syndromes (ACS) remains uncertain.

METHODS AND RESULTS: This was a prespecified subgroup analysis of the GLOBAL LEADERS trial. Participants were randomly assigned 1:1 to the experimental or reference strategy, stratified by ACS (experimental, n=3750; reference, n=3737) versus SCAD (experimental, n=4230; reference, n=4251). The experimental strategy was 75 to 100 mg aspirin daily plus 90 mg ticagrelor twice daily for 1 month, followed by 23 months of ticagrelor monotherapy. The reference strategy was 75 to 100 mg aspirin daily plus either 75 mg clopidogrel daily (for SCAD) or 90 mg ticagrelor twice daily (for ACS) for 12 months, followed by aspirin monotherapy for 12 months. The primary end point at 2 years was a composite of all-cause mortality or non-fatal centrally adjudicated new Q-wave myocardial infarction. The key secondary safety end point was site-reported Bleeding Academic Research Consortium grade 3 or 5 bleeding. The primary end point occurred in 147 (3.92%) versus 169 (4.52%) patients with ACS (rate ratio [RR], 0.86; 95% Cl, 0.69–1.08; *P*=0.189), and in 157 (3.71%) versus 180 (4.23%) patients with SCAD (RR, 0.87; 95% Cl, 0.71–1.08; *P*=0.221) with experimental and reference strategy, respectively (*P*-interaction=0.926). Bleeding Academic Research Consortium grade 3 or 5 bleeding occurred in 73 (1.95%) versus 100 (2.68%) patients with ACS (RR, 0.73; 95% Cl, 0.54–0.98; *P*=0.037), and in 90 (2.13%) versus 69 (1.62%) patients with SCAD (RR, 1.32; 95% Cl, 0.97–1.81; *P*=0.081; *P*-interaction=0.007).

CONCLUSIONS: While there was no evidence for differences in efficacy between treatment strategies by subgroup, the experimental strategy appeared to reduce bleeding risk in patients with ACS but not in patients with SCAD.

REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01813435.

Key Words: acute coronary syndrome all-comers antiplatelet therapy coronary intervention stable coronary artery disease ticagrelor

Correspondence to: Peter Jüni, MD, Department of, Medicine & Institute of Health Policy, Management and Evaluation, Applied Health Research Centre (AHRC), Li Ka Shing Knowledge Institute of St. Michael's Hospital, Canada Research Chair in Clinical Epidemiology of Chronic Diseases, University of Toronto, 30 Bond Street, Toronto, Ontario, Canada M5B 1W8. E-mail: peter.juni@utoronto.ca

[†]P. Vranckx, M. Valgimigli and A. Odutayo contributed equally.

JAHA is available at: www.ahajournals.org/journal/jaha

Supplementary Material for this article is available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.119.015560

For Sources of Funding and Disclosures, see page 11.

^{© 2021} The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

CLINICAL PERSPECTIVE

What Is New?

- In patients with acute coronary syndrome, treatment with ticagrelor and aspirin as dual antiplatelet therapy for 1 month followed by ticagrelor monotherapy reduced Bleeding Academic Research Consortium grade 3 or 5 bleeding with no difference in ischemic outcomes.
- In patients with stable coronary artery disease, treatment with ticagrelor and aspirin as dual antiplatelet therapy for 1 month followed by ticagrelor monotherapy resulted in a non-significant increase in the risk of bleeding compared with guideline recommended treatment with clopidogrel and aspirin.

What Are the Clinical Implications?

• Ticagrelor monotherapy following an abbreviated treatment with dual antiplatelet therapy may provide an optimal balance between ischemic and bleeding risk in patients with acute coronary syndrome but not in stable coronary artery disease.

Nonstandard Abbreviations and Acronyms

BARC	Bleeding Academic Research Consortium
DAPT	dual antiplatelet therapy
SCAD	stable coronary artery disease

Gurrent guidelines recommend dual antiplatelet therapy (DAPT) with aspirin and clopidogrel for a duration of 6 to 12 months following percutaneous coronary intervention (PCI) in patients with stable coronary artery disease (SCAD) and DAPT with aspirin and a potent P2Y12 inhibitor (ticagrelor or prasugrel) for a duration of 12 months in patients with acute coronary syndromes (ACS). Long-term aspirin monotherapy is recommended for all patients.^{1–3}

In the advent of potent P2Y12 inhibitors, more evidence is needed on antiplatelet strategies that optimize the balance between bleeding risk and cardiovascular protection in ACS and SCAD. For instance, in the PLATO (Platelet Inhibition and Patient Outcomes) trial, treatment with ticagrelor as compared with clopidogrel (both given in combination with aspirin) reduced the rate of major adverse cardiac events and all-cause mortality in patients with ACS.⁴ However, ticagrelor has not been tested in the setting of elective PCI for SCAD.

Likewise, the optimal dose and duration of aspirin therapy in combination with ticagrelor has not been

investigated.⁵ Indeed, the establishment of aspirin as the main antiplatelet used after PCI stems from studies that are outdated with contemporary practice.⁶ Whether monotherapy with more potent antiplatelet medications may obviate the need for combination treatment with aspirin warrants further study in ACS and SCAD.

In the GLOBAL LEADERS trial, the experimental regimen consisting of ticagrelor and aspirin DAPT for 1 month, followed by ticagrelor monotherapy for 23 months was not superior to standard DAPT for 12 months followed by aspirin monotherapy in the prevention of all-cause mortality or new Q-wave myocardial infarction (Q-wave MI) at 2 years after PCI with biodegradable polymer biolimus A9-eluting stents.^{7,8} Randomization was stratified according to clinical presentation (ACS versus SCAD). Here we report on a prespecified subgroup analysis according to clinical presentation (ACS versus SCAD),⁸ including landmark analyses to examine ischemic and bleeding outcomes up to 30 days, from 31 days to 1 year, and from 1 to 2 years of follow-up.

METHODS

Data Sharing Statement

The statistical analysis plan and the final version of the study protocol are available from the corresponding author. GLOBAL LEADERS trial is an investigator-initiated trial. Multiple substudies are predefined. Internal investigators, who actively participated in the study, and who provide a methodologically sound study proposal will be granted priority access to the study data for 60 months. After 60 months, this option might be extended to external investigators not affiliated to the trial, whose proposed use of the data have been approved by an independent review committee identified by the steering committee for this purpose. Study proposals can be filed at global.leaders@cardialyis.nl.

Study Design

The design and the primary end point results of the GLOBAL LEADERS open-label, multicenter superiority trial, were reported previously.^{7,8} The trial was approved by the institutional review board at each participating center and all participants provided written informed consent. Sixty months after completion of the primary GLOBAL LEADERS trial, the data underlying this study may be shared with external investigators not affiliated to the trial, whose proposed use of the data has been approved by an independent review committee identified by the steering committee for this purpose.

Study Patients

The study population consisted of patients scheduled to undergo PCI for ACS or symptomatic SCAD, requiring DAPT.^{7,8} PCI was standardized by uniform implantation of biodegradable polymer-based biolimus A9-eluting stent(s) and bivalirudin anticoagulation whenever indicated or feasible. There was no restriction on the number of treated lesions or vessels, on lesion length or number of stents used. The main inclusion and exclusion criteria were previously reported.^{7,8} All patients provided written informed consent.

Study Procedures and Randomization

After diagnostic coronary angiography but before PCI, patients were centrally randomized in a 1:1 ratio using a web-based system stratified by center and clinical presentation (ACS versus SCAD) and blocked using randomly varied block sizes of 2 and 4. The experimental strategy consisted of DAPT with aspirin 75 to 100 mg once daily in combination with ticagrelor 90 mg twice daily for 1 month followed by ticagrelor 90 mg twice daily monotherapy for 23 months irrespective of clinical presentation. The reference treatment consisted of 1 year of DAPT with aspirin 75 to 100 mg daily in combination with either clopidogrel 75 mg once daily in patients with SCAD or ticagrelor 90 mg twice daily in patients with ACS and patients with SCAD who had already been on treatment with either ticagrelor or prasugrel, followed by aspirin 75 to 100 mg monotherapy once daily for the remaining 12 months.^{7,8} Follow-up visits were scheduled at 30 days, 3, 6, 12, 18, and 24 months after the index procedure. A 12-lead ECG was obtained at discharge, 3 months, and 2 years, and intercurrently in case of revascularization procedures or suspected ischemic events. ECG analyses were performed in a central core laboratory (Cardialysis BV, Rotterdam, the Netherlands). Core laboratory staff were unaware of study arm assignments.^{7,8}

End Points

The primary end point was a composite of all-cause death or new Q-wave MI within 730 days of the index procedure.^{7,8} Q-wave MI was defined according to the Minnesota classification (new major Q-QS wave abnormalities) or by the appearance of a new left bundle branch block in conjunction with abnormal biomarkers.9,10 The key secondary safety end point was investigator reported bleeding assessed according to the Bleeding Academic Research Consortium criteria (grade 3 or 5).¹¹ Other secondary end points of the study included the individual components of the primary end point, the composite end point of all-cause death, new Q-wave MI or stroke, myocardial infarction, stroke, target vessel and any revascularization, and stent thrombosis.⁸ More detailed definitions of the end points are reported elsewhere.7,8,12

Statistical Analysis

Statistical analyses were performed by an academic statistical group led by 2 of the authors (D. H., P. J.), who had access to the full data set. All analyses were performed according to the intention-to-treat principle, including all patients in the analysis according to the clinical presentation. Events up to 730 days postrandomization were considered. We analyzed primary and secondary end points separately for patients with ACS and SCAD, based on time to occurrence of first event using the Mantel-Cox model to derive rate ratios with 95% Cls, and performed treatment-by-subgroup interaction tests. There was no prespecified hierarchical testing of end points. Landmark analyses used prespecified cut-off points at 30 days (corresponding to the planned dates of discontinuation of aspirin in the experimental arm) and 1 year (corresponding to the planned dates of discontinuation of a P2Y₁₂ antagonist in the reference arm) after the index procedure with rate ratios (RRs) calculated separately for events up to and beyond the landmark. Categorical variables were compared with the use of the Chi-square test or Fisher exact test. Continuous variables were compared with use of Student t-test or the Wilcoxon rank-sum test for non-normally distributed data. Lesion level data were analyzed with mixed models accounting for lesions nested within patients. All statistical analyses were performed with Stata software, version 14.2.

RESULTS

The GLOBAL LEADERS trial enrolled 7487 patients with ACS (experimental n=3750, reference n=3737), and 8481 patients with SCAD (experimental n=4230, reference n=4251) at 130 sites in 18 countries from July 2013 through November 2015 (Figure S1). Complete follow-up for vital status through 730 days was available in 7483 (99.9%) patients with ACS and 8477 (99.9%) patients with SCAD. Baseline clinical and angiographic features were balanced between arms within each presentation stratum (Tables 1 and 2). Patients with ACS were younger, had a lower body mass index, and lower prevalence of cardiovascular risk factors or prior cardiovascular events including stroke, myocardial infarction, or coronary revascularization compared with patients with SCAD (Table 1). Finally, radial access was less frequent, bivalirudin use slightly more common and procedural complexity lower in ACS compared with patients with SCAD (Table 2).

At 1 year, 2975 out of 3537 (84.1%) versus 3122 out of 3512 (85.2%) assessed patients with ACS, and 3197 out of 4013 (79.7%) versus 3733 out of 4021 (92.8%) Patients with SCAD adhered to experimental and reference strategies, respectively. At 2 years, adherence to the experimental strategy was 79.4% (2788 of 3510) in

	Acute coronary syndro	ome ACS	SCAD		ACS vs SCAD
	Experimental treatment strategy	Reference treatment strategy	Experimental treatment strategy	Reference treatment strategy	
Total no. of patients	n=3750	n=3737	n=4230	n=4251	P value
Age, y	63.2±10.8	63.3±10.8	65.6±9.7	65.7±9.7	<0.001
Women	870/3750 (23.2%)	854/3737 (22.9%)	995/4230 (23.5%)	995/4251 (23.4%)	0.523
Body mass index, kg/m ²	28.0±4.5	28.1±4.7	28.3±4.6	28.3±4.6	0.001
Medical history					
Diabetes	809/3746 (21.6%)	795/3736 (21.3%)	1240/4228 (29.3%)	1194/4247 (28.1%)	<0.001
Insulin-dependent	208/3734 (5.6%)	243/3727 (6.5%)	398/4221 (9.4%)	374/4239 (8.8%)	<0.001
Hypertension	2560/3731 (68.6%)	2523/3718 (67.9%)	3322/4223 (78.7%)	3310/4242 (78.0%)	<0.001
Hypercholesterolemia	2178/3580 (60.8%)	2211/3569 (62.0%)	3167/4138 (76.5%)	3212/4178 (76.9%)	<0.001
Current smoker	1288/3750 (34.3%)	1255/3737 (33.6%)	778/4230 (18.4%)	848/4251 (19.9%)	<0.001
Peripheral vascular disease	191/3711 (5.1%)	196/3699 (5.3%)	285/4193 (6.8%)	333/4219 (7.9%)	<0.001
COPD	174/3729 (4.7%)	177/3720 (4.8%)	230/4218 (5.5%)	240/4229 (5.7%)	0.016
Previous Major bleeding	24/3734 (0.6%)	24/3730 (0.6%)	22/4225 (0.5%)	28/4249 (0.7%)	0.686
Impaired renal function*	500/3734 (13.4%)	467/3728 (12.5%)	599/4200 (14.3%)	605/4221 (14.3%)	0.015
Previous stroke	81/3744 (2.2%)	94/3732 (2.5%)	129/4223 (3.1%)	117/4246 (2.8%)	0.029
Previous MI	685/3742 (18.3%)	695/3730 (18.6%)	1146/4214 (27.2%)	1184/4236 (28.0%)	<0.001
Previous PCI	854/3749 (22.8%)	872/3733 (23.4%)	1755/4225 (41.5%)	1740/4247 (41.0%)	<0.001
Previous CABG	130/3750 (3.5%)	145/3735 (3.9%)	318/4224 (7.5%)	350/4246 (8.2%)	<0.001
Type of ACS		·		·	
Unstable angina	1004/3750	1018/3737			
Non-ST-segment- elevation MI	1684/3750	1689/3737			
ST-segment-elevation MI	1062/3750	1030/3737			

	Table 1.	Baseline Characteristics of	Randomly Assigned I	Patients by Clinical I	Presentation (ACS Versus SCAD
--	----------	------------------------------------	---------------------	------------------------	-------------------------------

Depicted are sample sizes (n); and counts (%), means±SDs or medians (25%–75% interquartile range). ACS indicates acute coronary syndrome; CABG, coronary artery bypass grafting; COPD, chronic obstructive pulmonary disease; MI, myocardial infarction; PCI, percutaneous coronary intervention; and SCAD, stable coronary artery disease.

*Based on creatinine-estimated glomerular filtration rate clearance of <60 mL/min per 1.73 m², using the Modification of Diet in Renal Disease formula.

ACS and 76.0%; (3022 of 3978) in patients with SCAD and adherence to the reference strategy was 96.0% (3358 of 3497) in ACS and 90.6% (3623 of 4001) in patients with SCAD (Figure S2).

Two-Year Clinical Outcomes

Table 3 presents results for all outcomes at the end of follow-up in patients with ACS and SCAD, Figure 1 provides results for key secondary outcomes. The primary end point of all-cause mortality or new Q-wave MI at 2 years occurred in 147 (3.92%) versus 169 (4.52%) patients with ACS (RR, 0.86; 95% CI, 0.69–1.08; P=0.189), and in 157 (3.71%) versus 180 (4.23%) patients with SCAD (RR, 0.87; 95% CI, 0.71–1.08; P=0.221) with experimental and reference strategy, respectively (P for interaction [P-int]=0.926). Both components, all-cause mortality and new-Q-MI, were numerically, but not statistically (P≥0.266) lower in the experimental arm of each subgroup, with negative tests for treatment-by-subgroup interaction (P-int≥0.884).

Tests for treatment-by-subgroup interaction were negative with respect to myocardial infarction (*P*-int=0.904), stroke (*P*-int=0.662), and definite stent thrombosis (*P*-int=0.356). There was a statistical trend towards less target vessel revascularization in the experimental arm in the ACS (4.51% versus 5.46%; RR, 0.82; 95% CI, 0.67–1.01; *P*=0.061) but not the SCAD subgroup (5.20% versus 5.60%; RR, 0.93; 95% CI, 0.78–1.12; *P*=0.446), but the test for interaction was again negative (*P*-int=0.379).

Bleeding Academic Research Consortium (BARC) grade 3 or 5 bleeding occurred in 73 (1.95%) versus 100 (2.68%) patients with ACS (RR, 0.73; 95% Cl, 0.54–0.98; P=0.037), and in 90 (2.13%) versus 69 (1.62%) patients with SCAD (RR, 1.32; 95% Cl, 0.97–1.81; P=0.081; P-int=0.007).

Landmark Analyses

Landmark analyses are presented in Figures 2 and 3 and in the appendix (Tables S1 and S2, Figures S3 and

Table 2. Baseline Angiographic Characteristics of Randomly Assigned Patients Stratified by Clinical Presentation (ACS Versus SCAD)

	ACS		SCAD		ACS vs SCAD
	Experimental treatment strategy	Reference treatment strategy	Experimental treatment strategy	Reference treatment strategy	
Total no. of patients	n=3750	n=3737	n=4230	n=4251	P value
PCI performed*	3730 (99.5%)	3727 (99.7%)	4213 (99.6%)	4213 (99.1%)	0.038
Vascular access site	1	1	l		
Radial	2886 (77.4%)	2934 (78.7%)	2986 (70.9%)	2955 (70.1%)	<0.001
Femoral	850 (22.8%)	805 (21.6%)	1240 (29.4%)	1267 (30.1%)	<0.001
Brachial	18 (0.5%)	13 (0.3%)	28 (0.7%)	34 (0.8%)	0.009
Bivalirudin during PCI	3299 (88.4%)	3290 (88.3%)	3645 (86.5%)	3636 (86.3%)	<0.001
No. of lesions treated per patient [†]	n=3719,	n=3715,	n=4188,	n=4196,	<0.001
One lesion	2839 (76.3%)	2841 (76.5%)	3056 (73.0%)	3069 (73.1%)	<0.001
Two lesions	714 (19.2%)	704 (19.0%)	904 (21.6%)	865 (20.6%)	0.002
Three or more lesions	166 (4.5%)	170 (4.6%)	228 (5.4%)	262 (6.2%)	<0.001
Total number of treated lesions	n=4834	n=4818	n=5642	n=5697	
Lesions treated in vessel(s) [‡]	n=4803,	n=4796,	n=5600,	n=5642,	0.003
Left main coronary artery	76 (1.6%)	86 (1.8%)	121 (2.2%)	104 (1.8%)	
Left anterior descending artery	1916 (39.9%)	1961 (40.9%)	2367 (42.3%)	2422 (42.9%)	
Left circumflex artery	1180 (24.6%)	1209 (25.2%)	1344 (24.0%)	1344 (23.8%)	
Right coronary artery	1581 (32.9%)	1494 (31.2%)	1703 (30.4%)	1712 (30.3%)	
Bypass graft	50 (1.0%)	46 (1.0%)	65 (1.2%)	60 (1.1%)	
Lesions treated per patient	n=4737	n=4725	n=5504	n=5558	
No. of stents per lesion [‡]	n=4737, 1.2±0.5	n=4725, 1.2±0.5	n=5504, 1.2±0.5	n=5558, 1.2±0.5	0.904
Type of stent [‡]					
Biolimus-eluting stent§	4523/4737 (95.5%)	4493/4725 (95.1%)	5185/5504 (94.2%)	5214/5558 (93.8%)	0.154
Other stent	267/4737 (5.6%)	283/4725 (6.0%)	387/5504 (7.0%)	402/5558 (7.2%)	
Total stent length per lesion, mm [‡]	25.2±13.8	25.2±13.7	24.4±14.0	24.5±14.2	<0.001
Average stent diameter per lesion, mm [‡]	3.01±0.47	3.01±0.48	2.97±0.46	2.97±0.46	<0.001
Direct stenting per lesion [‡]	1580/4737 (33.4%)	1643/4725 (34.8%)	1754/5504 (31.9%)	1707/5558 (30.7%)	<0.001
Bifurcation per lesion [‡]	586/4803 (12.2%)	602/4796 (12.6%)	665/5600 (11.9%)	663/5642 (11.8%)	0.22
Thrombus aspiration performed per lesion [‡]	459/4803 (9.6%)	508/4796 (10.6%)	24/5600 (0.4%)	43/5642 (0.8%)	<0.001
TIMI flow pre-procedure [‡]	n=4538,	n=4544,	n=5299,	n=5344,	<0.001
0 or 1	985 (21.7%)	994 (21.9%)	311 (5.9%)	320 (6.0%)	
2	641 (14.1%)	593 (13.1%)	546 (10.3%)	580 (10.9%)	
3	2912 (64.2%)	2957 (65.1%)	4442 (83.8%)	4444 (83.2%)	
TIMI flow post-procedure [‡]	n=4647,	n=4672,	n=5417,	n=5473,	0.625
0 or 1	22 (0.5%)	19 (0.4%)	19 (0.4%)	13 (0.2%)	
2	40 (0.9%)	33 (0.7%)	10 (0.2%)	13 (0.2%)	
3	4585 (98.7%)	4620 (98.9%)	5388 (99.5%)	5447 (99.5%)	

Depicted are sample size (n); and counts (%) or means±SDs. ACS indicates acute coronary syndrome; PCI, percutaneous coronary syndrome; SCAD, stable coronary artery disease; and TIMI, thrombolysis in myocardial infarction.

*Thirty patients with acute coronary syndrome did not receive percutaneous coronary intervention (PCI): medical treatment only (n=5 reference arm, n=16 experimental arm), transferred to urgent surgery (n=5 reference arm, n=4 experimental arm), died before PCI (n=0). Fifty-five stable patients with stable coronary artery disease did not receive PCI: medical treatment only (n=28 reference arm, n=15 experimental arm), transferred to urgent surgery (n=10 reference arm, n=2 experimental arm), died before PCI (n=0).

[†]Fifty-three patients with acute coronary syndrome did not have information available on the number of treated lesions. Ninety-seven patients did not have information available on the number of treated lesions.

[‡]Calculated per lesion and analyzed using general or generalized linear mixed-effects models with a random effect of the patient to account for multiple lesions treated within patients.

[§]Per-protocol BioMatrix family stent used. In n=147 lesions both BioMatrix family stent(s) and other stent(s) were implanted (n=68 reference arm lesions, n=79 experimental arm lesions).

^{II}Grafts counted as one separate vessel (n=221).

Versu
(ACS
Presentation
Clinical
by
, d
ears Follow
2
Outcomes at
Clinical
le 3.

	ACS				SCAD				
	Experimental treatment strategy	Reference treatment strategy			Experimental treatment strategy	Reference treatment strategy			
Total no. of patients	n=3750	n=3737	CI)	<i>P</i> value	n=4230	n=4251	(95% CI)	P value	P value
All-cause mortality or new Q-wave MI	147 (3.92)	169 (4.52)	0.86 (0.69–1.08)	0.189	157 (3.71)	180 (4.23)	0.87 (0.71–1.08)	0.221	0.926
All-cause mortality	116 (3.09)	132 (3.53)	0.87 (0.68–1.12)	0.286	108 (2.55)	121 (2.85)	0.90 (0.69–1.16)	0.410	0.884
New Q-wave MI*	33 (0.88)	41 (1.10)	0.80 (0.50–1.26)	0.335	50 (1.18)	62 (1.46)	0.81 (0.56–1.18)	0.266	0.964
All-cause mortality, new Q-wave MI or BARC 3 or 5 bleeding	199 (5.31)	243 (6.50)	0.81 (0.67–0.98)	0.029	232 (5.48)	231 (5.43)	1.02 (0.85–1.22)	0.870	0.094
All-cause mortality, stroke or any MI	264 (7.04)	277 (7.41)	0.95 (0.80–1.13)	0.567	244 (5.77)	260 (6.12)	0.95 (0.80–1.13)	0.557	0.980
NACCE	310 (8.27)	342 (9.15)	0.90 (0.77–1.05)	0.188	306 (7.23)	311 (7.32)	1.00 (0.85–1.17)	0.961	0.377
Myocardial infarction	133 (3.55)	132 (3.53)	1.01 (0.79–1.28)	0.955	115 (2.72)	118 (2.78)	0.99 (0.76–1.27)	0.911	0.904
Stroke	44 (1.17)	42 (1.12)	1.04 (0.68–1.59)	0.841	36 (0.85)	40 (0.94)	0.91 (0.58–1.43)	0.681	0.662
Ischemic stroke	35 (0.93)	35 (0.94)	1.00 (0.62–1.59)	0.990	28 (0.66)	33 (0.78)	0.86 (0.52–1.42)	0.549	0.667
Hemorrhagic stroke	7 (0.19)	6 (0.16)	1.16 (0.39–3.46)	0.786	6 (0.14)	3 (0.07)	2.02 (0.51-8.10)	0.309	0.537
Undetermined stroke	2 (0.05)	1 (0.03)	1.99 (0.18–21.98)	0.565	4 (0.09)	4 (0.09)	1.01 (0.25-4.04)	0.987	0.628
Revascularization	336 (8.96)	348 (9.31)	0.96 (0.83–1.12)	0.596	403 (9.53)	445 (10.47)	0.91 (0.80–1.04)	0.175	0.608
Target vessel revascularization	169 (4.51)	204 (5.46)	0.82 (0.67–1.01)	0.061	220 (5.20)	238 (5.60)	0.93 (0.78–1.12)	0.446	0.379
Definite stent thrombosis	32 (0.85)	37 (0.99)	0.86 (0.54–1.39)	0.540	32 (0.76)	27 (0.64)	1.20 (0.72–2.00)	0.490	0.356
BARC 3 or 5 bleeding	73 (1.95)	100 (2.68)	0.73 (0.54–0.98)	0.037	90 (2.13)	69 (1.62)	1.32 (0.97–1.81)	0.081	0.007
BARC 5 bleeding	14 (0.37)	13 (0.35)	1.07 (0.50–2.29)	0.853	8 (0.19)	11 (0.26)	0.73 (0.30–1.83)	0.504	0.528
BARC 5b bleeding	9 (0.24)	10 (0.27)	0.90 (0.36–2.21)	0.814	6 (0.14)	8 (0.19)	0.76 (0.26–2.18)	0.605	0.810
BARC 5a bleeding	5 (0.13)	3 (0.08)	1.66 (0.40–6.96)	0.482	2 (0.05)	3 (0.07)	0.67 (0.11-4.03)	0.663	0.435
BARC 3 bleeding	66 (1.76)	97 (2.60)	0.68 (0.49–0.92)	0.014	84 (1.99)	62 (1.46)	1.37 (0.99–1.91)	0.058	0.002
BARC 3c bleeding	14 (0.37)	18 (0.48)	0.78 (0.39–1.56)	0.474	21 (0.50)	7 (0.16)	3.04 (1.29–7.15)	0.007	0.013
BARC 3b bleeding	21 (0.56)	42 (1.12)	0.50 (0.30-0.84)	0.008	32 (0.76)	32 (0.75)	1.01 (0.62–1.65)	0.967	0.052
BARC 3a bleeding	35 (0.93)	41 (1.10)	0.85 (0.54–1.34)	0.483	42 (0.99)	29 (0.68)	1.46 (0.91–2.35)	0.112	0.103

Percentage of patients at risk. Rate ratios (RR) with 95% Cl with *P* values from Mantel-Lox tog-ratio with action of values from Mantel-Lox tog-ratio with action at percutaneous coronary intervention (acute coronary syndrome value). ACS indicates acute coronary syndrome; BARC, Bleeding Academic Hesearch because of the presentation at percutaneous coronary intervention (acute coronary syndrome value). ACS indicates acute coronary syndrome; BARC, Bleeding Academic Hesearch Consortium; MI, myocardial infarction; NACCE, composite of all-cause mortality, stroke, any myocardial infarction or, Bleeding Academic Research Consortium 3 or 5 bleeding; and SCAD, stable coronary artery disease. *New Q-wave or equivalent left bundle branch block as adjudicated by an independent physician.

S4). Analyses up to 30 days, from 31 days to 1 year, and from 1 to 2 years did not show any significant interaction according to clinical presentation with respect to all-cause mortality or ischemic end points. For BARC grade 3 or 5 bleeding, there was evidence for a qualitative treatment-by-subgroup interaction in the landmark analysis up from 31 days to 1 year (*P*-int=0.017), with a benefit of the experimental strategy in patients with ACS, but not in patients with SCAD. Conversely, there was little evidence for a treatment-by-subgroup interaction up to 30 days or from 1 to 2 years (Figure 3 and Tables S1 and S2).

DISCUSSION

In this prespecified subgroup analysis of the GLOBAL LEADERS trial, we analyzed prespecified efficacy and safety end points according to clinical presentation throughout 2 years. For the primary composite end point of all-cause mortality or new Q-Wave MI, we did not find a difference in treatment effects between ACS and patients with SCAD treated with ticagrelor and aspirin DAPT for 1 month followed by ticagrelor monotherapy for 23 months (experimental strategy) or standard DAPT for 12 months followed by aspirin monotherapy (reference strategy). Furthermore, there was no evidence for differences in treatment effects between subgroups in terms of investigator reported myocardial infarction, stroke, or definite stent thrombosis.

Conversely, we found a biologically plausible treatment-by-subgroup interaction for the key secondary safety outcome, BARC-grade 3 or 5 bleeding, with a significantly lower incidence of bleeding with the experimental strategy in patients with ACS, but a non-significant increase in the risk of bleeding with the experimental strategy in patients with SCAD. Using a landmark analysis, this treatment-by-subgroup interaction was most pronounced from 30 days to 1 year. This time period corresponded to ticagrelor monotherapy in the experimental strategy for both ACS and SCAD compared with DAPT with ticagrelor and aspirin in the reference strategy for patients with ACS and clopidogrel and aspirin in the reference strategy for patients with SCAD. Given that aspirin and P2Y₁₂, inhibitors exert a synergistic inhibitory effect on platelet activation, the combined use of these agents as compared with monotherapy mainly contributes to bleeding. Our

	Rate Ratio (95% CI)		p-value	interaction p-value§
		Rate ratio (95% CI)		
All-cause mortality				
ACS	0.87 (0.68-1.12)		0.286	0.88
Stable CAD	0.90 (0.69-1.16)		0.410	
Myocardial infarction MI				
ACS	1.01 (0.79-1.28)		0.955	0.90
Stable CAD	0.99 (0.76-1.27)		0.911	
Stroke				
ACS	1.04 (0.68-1.59)	·	0.841	0.66
Stable CAD	0.91 (0.58-1.43)	·	0.681	
All-cause mortality, MI or Stroke				
ACS	0.95 (0.80-1.13)		0.567	0.98
Stable CAD	0.95 (0.80-1.13)		0.557	
BARC 3 or 5 Bleeding				
ACS	0.73 (0.54-0.98)		0.037	0.007
Stable CAD	1.32 (0.97-1.81)		0.081	
NACCE		-		
ACS	0.90 (0.77-1.05)		0.188	0.38
Stable CAD	1.00 (0.85-1.17)		0.961	

Figure 1. Caterpillar plot for key clinical outcomes by clinical presentation (acute coronary syndrome vs stable coronary artery disease).

Depicted are the first event per event type for each patient only (disregards multiple events of the same type within the same patient and censoring at 730 days since index percutaneous coronary intervention). Percentage of patients at risk. Exact censoring days used at each follow-up, ie, events occurring up to number of days are used for the first events: 2 years=730 days. ACS indicates acute coronary syndrome; BARC, Bleeding Academic Research Consortium; MI, myocardial infarction; NACCE, composite of all-cause mortality, stroke, any myocardial infarction or, Bleeding Academic Research Consortium 3 or 5 bleeding; and SCAD, stable coronary artery disease. [§]Interaction *P* value of modifying effect of acute coronary syndrome/stable coronary artery disease on the rate ratio comparing experimental vs reference regimen, within the specified period (*df*=1).

	Rate Ratio (95% CI)		p-value	interaction p-value
Α	F	Rate ratio (95% CI)	p tuite	
	0.25	0.5 1.0 2.0 4.0		
All-cause mortality				
ACS	0.87 (0.49-1.57)		0.646	0.78
Stable CAD	1.01 (0.44-2.32)		0.990	
Myocardial infarction MI				
ACS	1.28 (0.82-1.98)	-+■	0.273	0.71
Stable CAD	1.13 (0.70-1.81)		0.615	
Stroke				
ACS	0.91 (0.40-2.07)		0.828	0.91
Stable CAD	0.84 (0.26-2.75)		0.771	
All-cause mortality, MI or Stroke				
ACS	1.01 (0.73-1.41)	- -	0.943	0.96
Stable CAD	1.03 (0.69-1.53)		0.896	
BARC 3 or 5 Bleeding				
ACS	0.85 (0.52-1.40)		0.521	0.14
Stable CAD	1.58 (0.81-3.10)		0.176	
NACCE				
ACS	0.95 (0.71-1.26)		0.703	0.54
Stable CAD	1.09 (0.76-1.56)	_	0.625	
			and the second second	
	Rate Ratio (95% CI)		p-value	interaction p-value§
В	R	ate ratio (95% CI)		
	0.25	0.5 1.0 2.0 4.0		
All-cause mortality				
ACS	0.74 (0.49-1.13)	- - +	0.160	0.66
Stable CAD	0.85 (0.55-1.31)		0.458	
Myocardial infarction MI				
ACS	0.96 (0.65-1.42)		0.850	0.36
Stable CAD	1 26 (0.82-1.94)		0 294	0.00
Stroke	1120 (0102 110 1)		01201	
ACS	1.21 (0.60-2.46)		0.593	0.89
Stable CAD	1 13 (0 59-2 17)		0.714	0.05
All-cause mortality. MI or Stroke	1.15 (0.55-2.17)		0.714	
ACS	0.91 (0.69-1.21)		0 528	0.42
Stable CAD	1 08 (0 81-1 43)		0.520	0.42
BARC 3 or 5 Bleeding	1.00 (0.01-1.45)		0.000	
ACS	0 52 (0 33-0 81)	-	0.004	0.017
Stable CAD	1 12 (0 71-1 80)		0.507	0.017
NACCE	1.13 (0.71-1.80)	-	0.337	
ACS	0.70 (0.62-1.00)		0.052	0.08
ALS Stable CAD	1.07 (0.02-1.00)		0.032	0.08
Stable CAD	1.07 (0.84-1.38)		0.584	
	Rate Ratio (95% CI)		p-value	interaction p-value
C	R	ate ratio (95% CI)		
	0.25	0.5 1.0 2.0 4.0		
All-cause mortality				
	0.99 (0.69-1.43)		0.965	0.74
Stable CAD	0.99 (0.09-1.43)		0.905	0.74
Muscardial infarction MI	0.51 (0.04-1.50)		0.005	
	0 84 (0 54-1 20)		0.421	0.50
Stable CAD	0.64 (0.54-1.50)		0.431	0.50
Stable CAD	0.00 (0.43-1.00)	-	0.084	
ACS	1 00 (0 50 1 00)		0.000	0.52
Stable CAD	0.71 (0.34-1.59)		0.330	0.52
All-cause mortality MI or Stroke	0.71 (0.54-1.50)	-	0.3/1	
ACC	0.95 (0.73.1.35)		0.711	0.45
ACS	0.95 (0.72-1.25)		0.711	0.45
Stable CAD	0.82 (0.62-1.07)		0.140	
Stable CAD				
Stable CAD BARC 3 or 5 Bleeding				
Stable CAD BARC 3 or 5 Bleeding ACS	1.32 (0.62-2.79)		0.466	0.84
Stable CAD BARC 3 or 5 Bleeding ACS Stable CAD	1.32 (0.62-2.79) 1.45 (0.83-2.53)		0.466 0.189	0.84
Stable CAD BARC 3 or 5 Bleeding ACS Stable CAD NACCE	1.32 (0.62-2.79) 1.45 (0.83-2.53)	B	0.466 0.189	0.84
Stable CAD BARC 3 or 5 Bleeding ACS Stable CAD NACCE ACS	1.32 (0.62-2.79) 1.45 (0.83-2.53) 1.03 (0.78-1.36)		0.466 0.189 0.826	0.84

analysis therefore suggests that withdrawal of aspirin after a short period of DAPT and continued treatment with ticagrelor monotherapy may represent a safer alternative to the current guideline recommended treatment for reducing recurrent ischemic events in patients with ACS.

Our analysis does not support the experimental strategy in patients with SCAD because of the **Figure 2.** Caterpillar plot of landmark analyses for clinical outcomes up to 30 days (A), from 31 days to 1 year (B) and from 1 year to end of follow-up (C) by clinical presentation (acute coronary syndrome vs stable coronary artery disease).

Top panel (**A**) Up to 30 days, middle panel (**B**) 31 days to 1 year and bottom panel (**C**) from 1 year to end of follow-up. Within each landmark period, depicted are the first event per event type for each patient only (disregards multiple events of the same type within the same patient and censoring at 730 days since index percutaneous coronary intervention). Percentage of patients at risk. Exact censoring days used at each follow-up, ie, events occurring up to number of days are used for the first events: 2 years=730 days. ACS indicates acute coronary syndrome; BARC, Bleeding Academic Research Consortium; MI, myocardial infarction; NACCE, composite of all-cause mortality, stroke, any myocardial infarction or, Bleeding Academic Research Consortium 3 or 5 bleeding; and SCAD, stable coronary artery disease. §Interaction *P* value of modifying effect of acute coronary syndrome/ stable coronary artery disease on the rate ratio comparing experimental vs reference regimen, within the specified period (*df=*1).

increased, albeit not statistically significant, incidence of bleeding throughout all landmark periods.⁷ Of note, there was no benefit for BARC-grade 3 or 5 bleeding from day 30 to 1 year with the experimental versus reference strategy in patients with SCAD (RR, 1.13; 95% CI, 0.71–1.80). This landmark period corresponds to ticagrelor monotherapy in the experimental strategy and DAPT with clopidogrel and aspirin in the reference strategy. However, the CI for the SCAD subgroup is wide and we cannot rule out a 29% reduction in the incidence of BARC-grade 3 or 5 bleeding. This paradoxical finding may therefore be attributable to chance.

We previously reported on the composites of allcause mortality or Q-wave MI, and BARC 3 or 5 bleeding for these subgroups for months 1 to 24 combined,⁷ and on a post-hoc landmark analysis of months 2 to 12 in patients with ACS.¹³ The present analyses now provide the full picture for all relevant investigator reported clinical outcomes over 3 distinct periods characterized by changes in anti-platelet treatment (month 1, months 2–12, and months 13–24), with appropriate tests for interaction between treatment and subgroup. Our results allow a differentiated, mechanistic understanding beyond the grand mean of the negative GLOBAL LEADERS trial.⁷

Beyond the GLOBAL LEADERS trial, there is limited evidence about the efficacy and safety of monotherapy with potent P2Y12 inhibitors. The SMART-CHOICE trial, an open-label non-inferiority study in 2993 patients undergoing PCI, randomized participants to 3 months of DAPT with aspirin and a P2Y12 inhibitor, followed by P2Y12 inhibitor monotherapy, compared with guideline recommended 12 months of treatment with DAPT.¹⁴ In this trial, the experimental strategy was non-inferior to guideline recommended treatment with respect to major adverse cardiac and cerebrovascular events (MACCE) and reduced the incidence of BARC 2 to 5 bleeding.¹⁴ There was also no variation in the treatment effect for MACCE or bleeding when stratified by clinical presentation (ACS versus SCAD) or by type of P2Y12 inhibitor (clopidogrel versus ticagrelor or prasugrel).¹⁴ In comparison to the GLOBAL LEADERS trial, the SMART-CHOICE trial included a lower risk patient population and only 23% of participants received a potent P2Y12 inhibitor such as ticagrelor or prasugrel. Nonetheless, the findings of the SMART-CHOICE trial are complementary to this prespecified analysis of the GLOBAL LEADERS trial, reinforcing the finding that a short period of DAPT followed by P2Y12 monotherapy may provide an optimal balance between ischemic and bleeding risk.

The TWILIGHT (Ticagrelor with Aspirin or Alone in High-Risk Patients after Coronary Intervention) trial examined a higher ischemic risk patient population undergoing treatment with ticagrelor monotherapy after 3 months of DAPT compared with DAPT using aspirin and ticagrelor for the duration of 12 months.¹⁵ In the subgroup of patients with ACS, TWILIGHT demonstrated that ticagrelor monotherapy after 3 months of DAPT reduced the incidence of BARC 2, 3, or 5 bleeding by 53% (hazard ratio, 0.47; 95% Cl, 0.36-0.61).15 The results of TWILIGHT are therefore consistent with our subgroup analysis in ACS, which showed a 48% reduction in the incidence BARC 3 or 5 bleeding (RR, 0.52; 95% CI, 0.33–0.81) while preserving efficacy for ischemic outcomes. Taken together, the TWILIGHT trial and our subgroup analysis suggest a role for stopping aspirin within 3 months after PCI in patients with ACS receiving ticagrelor to decrease bleeding risk while preserving efficacy for ischemic end points compared with standard DAPT up to 12 months after implantation of drug-eluting stents. Conversely, our experimental strategy does not seem to convey a benefit when predominantly compared with clopidogrel in patients with SCAD, neither in terms of efficacy nor safety.

TWILIGHT and GLOBAL LEADERS should stimulate the next appropriately powered randomized trial comparing monotherapy with a potent P2Y12 inhibitor against standard DAPT in patients with ACS using an even shorter initial DAPT period than the 1 month used in GLOBAL LEADERS or the 3 months used in TWILIGHT. In view of the biologic half-life of aspirin and the considerable decrease in the risk of ischemic events in patients with ACS beyond 7 to 10 days after stent implantation, a restriction of DAPT to 7 to 10 days or to the period of hospitalization could be considered in such a trial. This restriction may result in an even more optimal balance between protection from recurrent ischemic events and bleeding risk.

On an absolute scale, there is also a strong rationale for further research focused on optimizing the balance between ischemic and bleeding risk after PCI.

Within each landmark period, depicted are the first event per event type for each patient only (disregards multiple events of the same type within the same patient and censoring at 730 days since index percutaneous coronary intervention). Top panel: Acute coronary syndrome patients. Cumulative incidence of (A) Bleeding Academic Research Consortium 3 or 5 events (acute coronary syndrome), lower panel: (B) Bleeding Academic Research Consortium 3 or 5 events (stable coronary artery disease), (blue: experimental strategy arm; red: reference strategy arm). ACS indicates acute coronary syndrome; BARC, Bleeding Academic Research Consortium; and SCAD, stable coronary artery disease.

In our study, the absolute difference in the incidence of BARC 3 or 5 bleeding over 2 years in patients with ACS is 0.73% with the experimental compared with the reference strategy. This corresponds to a number needed to treat 143 adults. For comparison, the absolute risk difference in BARC major bleeding with the use of radial versus femoral access for PCI was also 0.7%. Further research into the optimal antiplatelet regimen in adults with ACS may be a simple yet effective strategy to further improve clinical outcomes.

Limitations of the GLOBAL LEADERS trial also apply to this prespecified subgroup analysis and need to be considered.⁷ First, GLOBAL LEADERS was an open-label trial, and therefore participants and investigators were not masked to the components of the treatment strategy. Efforts that were made to minimize bias included a focus on major, objective primary outcomes, namely all-cause mortality, and adjudicated new Q-wave MI. Investigator reporting for bleeding, MI, stroke, and stent thrombosis was used without central adjudication to ascertain secondary outcomes. Bias and random misclassification can therefore not be excluded for these secondary outcomes. However, GLOBAL LEADERS was monitored for event under-reporting and consistency of event definitions.7 Second, the ACS and SCAD subgroups varied in important baseline characteristics that may suggest a lower risk of bleeding in adults with ACS. Specifically, adults with ACS were younger and less likely to have hypertension, hypercholesterolemia, and to be active smokers compared with adults with SCAD. Furthermore, PCI in adults with ACS was more often performed using radial access compared with adults with SCAD. These baselines differences would suggest that the incidence of bleeding should be lower in adults with ACS versus SCAD throughout the duration of follow-up. However, our study only identified a treatment-by-subgroup interaction for BARC-grade 3 or 5 bleeding from 30 days to 1 year. Therefore, the withdrawal of aspirin and the continuation of treatment with continuation of ticagrelor monotherapy in adults with ACS likely accounts for the treat-by-subgroup interaction for BARC-grade 3 or 5 bleeding in our study. Third, non-adherence was more common in the experimental strategy than in the control group for both the ACS and SCAD subgroups.⁷ This was driven primarily by dyspnea in participants receiving ticagrelor and was largely limited to the first year of treatment.¹⁶ Furthermore, the rate of non-adherence of the experimental regimen in our trial compared favorably with those reported in other large outcome trials involving ticagrelor for various indications.¹⁶ Fourth, PCI in the GLOBAL LEADERS trial was standardized by uniform implantation of biodegradable polymer-based biolimus A9-eluting stents and bivalirudin administration whenever indicated or feasible. Although the choice of anticoagulant and stent in GLOBAL LEADERS may not represent prevalent clinical practice, these treatments were used comparably in the experimental and reference strategy groups and unlikely to bias the results of our study. In addition, guidelines

updated since the initiation of the GLOBAL LEADERS trial now recommend 6 months of DAPT after PCI in adults with SCAD versus the 1 year of DAPT that was used in our trial.³ A shorter duration of DAPT would likely reduce the incidence of bleeding in the reference strategy group and provide further support for avoiding monotherapy with a P2Y12 inhibitor in adults with SCAD. Finally, GLOBAL LEADERS was negative in the main analysis of the primary outcome in the overall population, neither the ACS nor SCAD analysis were powered to detect between-group differences in clinical outcomes or treatment-bysubgroup interactions and there was no formal procedure planned to account for multiple testing. Our results should therefore be considered exploratory in nature. Strength of this subgroup analysis include its prespecified nature, the stratification of randomization by type of presentation, and the large sample size of GLOBAL LEADERS, which means that the analyzed ACS and SCAD populations are larger than the populations included in most randomized trials in patients with coronary artery disease.

In conclusion, this analysis provides novel largescale randomized evidence to support the use ticagrelor monotherapy following an abbreviated treatment with DAPT to mitigate the risk of bleeding in patients with ACS while preserving efficacy. Ticagrelor monotherapy after PCI in patients with ACS therefore deserves further study.

ARTICLE INFORMATION

Received December 9, 2019; accepted July 7, 2021.

Affiliations

Jessa Ziekenhuis, Faculty of Medicine and Life Sciences at the Hasselt University, Hasselt, Belgium (P.V., E.B.); Department of Cardiology, University of Bern, Inselspital, Bern, Switzerland (M.V., L.R., S.W.); Department of Medicine and Institute of Health Policy, Management and Evaluation, Applied Health Research Centre, Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Canada (A.O., P.J.); Imperial College London, London, United Kingdom (P.W.S.); Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany (C.H.); INSERM U-1148, FACT (French Alliance for Cardiovascular Trials), Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, France (P.G.S.); National Heart and Lung Institute, Royal Brompton Hospital, Imperial College, London, United Kingdom (P.G.S.); Clinical Trials Unit, University of Bern, Switzerland (D.H.); (E.P.M.F.); and (E.P.M.F.), Cork University Hospital, Wilton, Cork, Ireland; Imeldaziekenhuis, Bonheiden, Belgium (L.J.); Cardialysis, Rotterdam, The Netherlands (Y.O.); Erasmus Medical Center, Rotterdam, The Netherlands (Y.O., R.D.); UOC Cardiologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (M.F.); and 3rd Department of Medicine, Cardiology and Intensive Care Medicine, Medical Faculty, Wilhelminen Hospital and Sigmund Freud University, Vienna, Austria (K.H.).

Acknowledgments

Author contributions: Profs. Vranckx, Valgimigli, Serruys, Windecker, Jüni were responsible for the conception and design of the study; All authors were involved in acquisition, analysis, or interpretation of data; Prof. Vranckx, Prof. Valgimigli, Dr. Odutayo, and Prof. Jüni drafted the manuscript; All authors critically revised the manuscript for important intellectual content; Prof. Heg was responsible for the statistical analysis; All authors and full access to all of the data (including statistical reports and tables) in the study and take responsibility for the integrity of the data and the accuracy of the data

analysis; Profs. Vranckx and Jüni are the guarantors of the study results, had full access to the final data, and had final responsibility for content and the decision to submit for publication.

Sources of Funding

GLOBAL LEADERS is an investigator-initiated trial sponsored by the European Clinical Research Institute (www.ECRI-trials.com), which received funding from 1 device (Biosensors International Ltd, Europe) and 2 drug manufacturers (Astra Zeneca, Cambridge, United Kingdom; The Medicines Company, Parsippany, New Jersey).

Disclosures

Dr Vranckx discloses the following relationships: personal fees from Astra Zeneca and the Medicines Company during the conduct of the study; personal fees from Bayer Health Care, CLS-Behring, Terumo, and Daiichi Sankyo outside the submitted work. Dr Valgimigli discloses the following relationships: personal fees from Abbott, personal fees from Chiesi, personal fees from Bayer, personal fees from Daiichi Sankyo, personal fees from Terumo, personal fees from Carbostent & Implantable Devices, personal fees from Amgen, grants from Swiss National Foundation, grants from Terumo, grants from Medicure, grants from Abbott, grants from Astra Zeneca, personal fees from Astra Zeneca, outside the submitted work. Dr Serruys discloses the following relationships: personal fees from Abbott Laboratories, Astra Zeneca, Biotronik, Cardialysis, GLG Research, Medtronic, Sino Medical Sciences Technology, Société Europa Digital Publishing, Stentys France, Svelte Medical Systems, Philips/Volcano, St Jude Medical, Qualimed, Xeltis, outside the submitted work. Dr Hamm discloses the following relationships: personal fees from AstraZeneca outside the submitted work. Dr Steg discloses the following relationships: research grant from Bayer/Janssen; grants and personal fees from Merck, Sanofi, Amarin; personal fees from Amgen, Bristol-Myers-Squibb, Boehringer-Ingelheim, Pfizer, Novartis, Regeneron, Lilly, AstraZeneca; grants, personal fees, and non-financial support from Servier, outside the submitted work. Dik Heg discloses the following relationships: affiliated with clinical trials unit Bern, University of Bern, which has a staff policy of not accepting honoraria or consultancy fees. However, clinical trials unit Bern is involved in design, conduct, or analysis of clinical studies funded by not-for-profit and for-profit organizations. In particular, pharmaceutical and medical device companies provide direct funding to some of these studies. For an up-to-date list of clinical trials unit Bern's conflicts of interest see http://www.ctu.unibe. ch/research/declaration_of_interest/index_eng.html. Dr Mc Fadden discloses the following relationships: personal fees from ECRI. Rotterdam, Netherlands. during the conduct of the study; grants from Astra Zeneca; personal fees from Abbott Vascular; personal fees from Daiichi Sankyo, non-financial support from Menarini Ireland; grants from Bayer; grants from Terumo, outside the submitted work. Dr Onuma discloses consultancy fees from Abbott Vascular. Dr Diletti discloses consultancy fees from Sanofi Aventis and Biosensors outside the submitted work. Dr Kurt Huber discloses personal fees from AstraZeneca, Sanofi Aventis, and Biosensors outside the submitted work. Dr Räber discloses the following relationships: research grants to the institution by Abbott Vascular, Boston Scientific, Heartflow, Sanofi, and Regeneron; and speaker fees from Abbott Vascular, Amgen, Astra Zeneca, Biotronic, CLS Behring, Sanofi, and Regeneron. Dr Windecker discloses the following relationships: research and educational contracts to the institution from Abbott, Amgen Inc., Bayer AG, BMS, Biotronik, Boston Scientific, CSL Behring, Edwards Lifesciences, Medtronic, St Jude Medical, Polares, and Sinomed outside the submitted work. Dr Jüni discloses the following relationships: research grants to the institution from Astra Zeneca, Biotronik, Biosensors International, Eli Lilly, and The Medicines Company; unpaid member of the steering group of trials funded by Astra Zeneca, Biotronik, Biosensors, St. Jude Medical, and The Medicines Company; and a Tier 1 Canada Research Chair in Clinical Epidemiology of Chronic Diseases; this research was completed, in part, with funding from the Canada Research Chairs Programme. The remaining authors have no disclosures to report.

Supplementary Material

Tables S1–S2

Figures S1-S4

REFERENCES

 Capodanno D, Alfonso F, Levine GN, Valgimigli M, Angiolillo DJ. ACC/ AHA versus ESC guidelines on dual antiplatelet therapy: JACC guideline comparison. J Am Coll Cardiol. 2018;72:2915-2931. doi: 10.1016/j. jacc.2018.09.057

- Valgimigli M, Bueno H, Byrne RA, Collet J-P, Costa F, Jeppsson A, Jüni P, Kastrati A, Kolh P, Mauri L, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). *Eur Heart J.* 2018;39:213–260. doi: 10.1093/eurheartj/ ehx419
- Neumann F-J, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, Byrne RA, Collet J-P, Falk V, Head SJ, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. *Eur Heart J*. 2019;40:87–165. doi: 10.1093/eurhearti/ehy394
- Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, Horrow J, Husted S, James S, Katus H, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. *N Engl J Med.* 2009;361:1045–1057. doi: 10.1056/NEJMoa0904327
- Mahaffey KW, Wojdyla DM, Carroll K, Becker RC, Storey RF, Angiolillo DJ, Held C, Cannon CP, James S, Pieper KS, et al. Ticagrelor compared with clopidogrel by geographic region in the Platelet Inhibition and Patient Outcomes (PLATO) trial. *Circulation*. 2011;124:544–554. doi: 10.1161/CIRCULATIONAHA.111.047498
- Capodanno D, Mehran R, Valgimigli M, Baber U, Windecker S, Vranckx P, Dangas G, Rollini F, Kimura T, Collet J-P, et al. Aspirinfree strategies in cardiovascular disease and cardioembolic stroke prevention. *Nat Rev Cardiol.* 2018;15:480–496. doi: 10.1038/s4156 9-018-0049-1
- Vranckx P, Valgimigli M, Jüni P, Hamm C, Steg PG, Heg D, van Es GA, McFadden EP, Onuma Y, van Meijeren C, et al. Ticagrelor plus aspirin for 1 month, followed by ticagrelor monotherapy for 23 months vs aspirin plus clopidogrel or ticagrelor for 12 months, followed by aspirin monotherapy for 12 months after implantation of a drug-eluting stent: a multicentre, open-label, randomised superiority trial. *Lancet*. 2018;392:940–949. doi: 10.1016/S0140-6736(18)31858-0
- Vranckx P, Valgimigli M, Windecker S, Steg P, Hamm C, Jüni P, Garcia-Garcia H, van Es G, Serruys P. Long-term ticagrelor monotherapy versus standard dual antiplatelet therapy followed by aspirin monotherapy in patients undergoing biolimus-eluting stent implantation: rationale and design of the GLOBAL LEADERS trial. *EuroIntervention*. 2016;12:1239– 1245. doi: 10.4244/EIJY15M11_07
- 9. Prineas RJ, Crow RS, Zhang Z-M. The Minnesota Code Manual of Electrocardiographic Findings. Springer, London; 2009.
- 10. Prineas RJ, Crow RS, Blackburn HW. *The Minnesota Code Manual of Electrocardiographic Findings*. 1982.
- Mehran R, Rao SV, Bhatt DL, Gibson CM, Caixeta A, Eikelboom J, Kaul S, Wiviott SD, Menon V, Nikolsky E, et al. Standardized bleeding definitions for cardiovascular clinical trials: a consensus report from the Bleeding Academic Research Consortium. *Circulation*. 2011;123:2736– 2747. doi: 10.1161/CIRCULATIONAHA.110.009449
- Serruys PW, Tomaniak M, Chichareon P, Modolo R, Kogame N, Takahashi K, Chang C-C, Spitzer E, Walsh SJ, Adlam D, et al. Patientoriented composite endpoints and net adverse clinical events with ticagrelor monotherapy following percutaneous coronary intervention: insights from the randomized GLOBAL LEADERS trial. *EuroIntervention*. 2019;15:e1090–e1098. doi: 10.4244/EIJ-D-19-00202
- Tomaniak M, Chichareon P, Onuma Y, Deliargyris EN, Takahashi K, Kogame N, Modolo R, Chang CC, Rademaker-Havinga T, Storey RF, et al. Benefit and risks of aspirin in addition to ticagrelor in acute coronary syndromes. *JAMA Cardiol.* 2019;4:1–10. doi: 10.1001/jamac ardio.2019.3355
- Hahn J-Y, Song YB, Oh J-H, Chun WJ, Park YH, Jang WJ, Im E-S, Jeong J-O, Cho BR, Oh SK, et al. Effect of P2Y12 inhibitor monotherapy vs dual antiplatelet therapy on cardiovascular events in patients undergoing percutaneous coronary intervention. *JAMA*. 2019;321:2428–2510. doi: 10.1001/jama.2019.8146
- Mehran R, Baber U, Sharma SK, Cohen DJ, Angiolillo DJ, Briguori C, Cha JY, Collier T, Dangas G, Dudek D, et al. Ticagrelor with or without aspirin in high-risk patients after PCI. *N Engl J Med.* 2019;381:2032– 2042. doi: 10.1056/NEJMoa1908419
- Jüni P, Vranckx P, Valgimgli M, Serruys P, Windecker S; GLOBAL LEADERS Investigators. Dyspnoea in the GLOBAL LEADERS trial— Authors' reply. *Lancet*. 2019;393:2393–2394. doi: 10.1016/S0140-6736 (19)30685-3

SUPPLEMENTAL MATERIAL

TABLE S1. Landmark analysis.

Clinical outcomes up to 30 days; and from 31 days to 2 years of Follow up.

	A	cute coronary s	syndrome ACS			Stable	e CAD		interac tion
	Experi- mental Strategy	Reference Strategy	Rate Ratio (95% CI)	p- value	Experi- mental Strategy	Reference Strategy	Rate Ratio (95% CI)	p- value	p- value
Total number of patients	N=3750	N=3737			N=4230	N=4251			
At 30 days									
All-cause mortality or new Q- wave MI ^c	22 (0.59)	28 (0.75)	0.78 (0.45- 1.37)	0.388	12 (0.28)	14 (0.33)	0.86 (0.40-1.86)	0.704	0.843
All-cause mortality	21 (0.56)	24 (0.64)	0.87 (0.49- 1.57)	0.646	11 (0.26)	11 (0.26)	1.01 (0.44-2.32)	0.990	0.784
New Q-wave MI ^e	1 (0.03)	5 (0.13)	0.20 (0.02- 1.70)	0.101	1 (0.02)	3 (0.07)	0.34 (0.03-3.22)	0.320	0.742
All-cause mortality, new Q-wave MI ^c or BARC 3 or 5 Bleeding	45 (1.20)	57 (1.53)	0.79 (0.53- 1.16)	0.228	29 (0.69)	24 (0.56)	1.22 (0.71-2.09)	0.479	0.200
All-cause mortality, stroke or any MI	71 (1.89)	70 (1.87)	1.01 (0.73- 1.41)	0.943	49 (1.16)	48 (1.13)	1.03 (0.69-1.53)	0.896	0.956
NACCE	92 (2.45)	97 (2.60)	0.95 (0.71- 1.26)	0.703	63 (1.49)	58 (1.36)	1.09 (0.76-1.56)	0.625	0.536
Myocardial infarction	46 (1.23)	36 (0.96)	1.28 (0.82- 1.98)	0.273	37 (0.87)	33 (0.78)	1.13 (0.70-1.81)	0.615	0.707

Stroke	11 (0.29)	12 (0.32)	0.91 (0.40- 2.07)	0.828	5 (0.12)	6 (0.14)	0.84 (0.26-2.75)	0.771	0.907
Ischemic stroke	8 (0.21)	10 (0.27)	0.80 (0.31- 2.02)	0.633	3 (0.07)	5 (0.12)	0.60 (0.14-2.53)	0.485	0.749
Haemorrhagic stroke	3 (0.08)	1 (0.03)	2.99 (0.31- 28.76)	0.319	2 (0.05)	0 (0.00)			
Undetermined stroke	0 (0.00)	1 (0.03)			0 (0.00)	1 (0.02)			
Revascularisation	62 (1.65)	82 (2.19)	0.75 (0.54- 1.05)	0.090	50 (1.18)	60 (1.41)	0.84 (0.57-1.22)	0.353	0.675
Target Vessel Revascularization	40 (1.07)	51 (1.36)	0.78 (0.52- 1.18)	0.241	33 (0.78)	42 (0.99)	0.79 (0.50-1.25)	0.308	0.973
Definite stent thrombosis	18 (0.48)	17 (0.45)	1.06 (0.54- 2.05)	0.873	12 (0.28)	12 (0.28)	1.01 (0.45-2.24)	0.989	0.928
BARC 3 or 5 Bleeding ^b	29 (0.77)	34 (0.91)	0.85 (0.52- 1.40)	0.521	22 (0.52)	14 (0.33)	1.58 (0.81-3.10)	0.176	0.142
BARC 5 Bleeding	6 (0.16)	4 (0.11)	1.50 (0.42- 5.30)	0.530	4 (0.09)	4 (0.09)	1.01 (0.25-4.03)	0.994	0.678
BARC 5b Bleeding	4 (0.11)	4 (0.11)	1.00 (0.25- 3.99)	0.997	4 (0.09)	3 (0.07)	1.34 (0.30-6.00)	0.700	0.776
BARC 5a Bleeding	2 (0.05)	0 (0.00)			0 (0.00)	1 (0.02)			
BARC 3 Bleeding	25 (0.67)	32 (0.86)	0.78 (0.46- 1.31)	0.348	18 (0.43)	11 (0.26)	1.65 (0.78-3.49)	0.188	0.106
BARC 3c Bleeding	3 (0.08)	6 (0.16)	0.50 (0.12- 1.99)	0.315	3 (0.07)	0 (0.00)			
BARC 3b Bleeding	10 (0.27)	15 (0.40)	0.66 (0.30- 1.48)	0.314	6 (0.14)	5 (0.12)	1.21 (0.37-3.96)	0.756	0.412

BARC 3a Bleeding	13 (0.35)	13 (0.35)	1.00 (0.46- 2.15)	0.995	10 (0.24)	6 (0.14)	1.68 (0.61-4.62)	0.311	0.421
From 30 days to 2 Years (landmark at 30 days)	125 (3.35)	141 (3.80)	0.88 (0.69- 1.12)	0.290	145 (3.44)	166 (3.92)	0.88 (0.70-1.09)	0.244	0.989
All-cause mortality or new Q- wave MI	95 (2.55)	108 (2.91)	0.87 (0.66- 1.15)	0.335	97 (2.30)	110 (2.59)	0.89 (0.67-1.16)	0.384	0.942
All-cause mortality	32 (0.86)	36 (0.97)	0.88 (0.55- 1.42)	0.604	49 (1.16)	59 (1.39)	0.83 (0.57-1.22)	0.347	0.857
New Q-wave MI	154 (4.18)	186 (5.08)	0.82 (0.66- 1.02)	0.069	203 (4.86)	207 (4.92)	0.99 (0.82-1.20)	0.936	0.196
All-cause mortality, new Q-wave MI ^c or BARC 3 or 5 Bleeding	193 (5.28)	207 (5.67)	0.93 (0.77- 1.13)	0.479	195 (4.69)	212 (5.07)	0.93 (0.77-1.13)	0.473	0.998
All-cause mortality, stroke or any MI	218 (6.00)	245 (6.76)	0.88 (0.74- 1.06)	0.187	243 (5.87)	253 (6.06)	0.97 (0.82-1.16)	0.767	0.457
NACCE	87 (2.38)	96 (2.62)	0.91 (0.68- 1.21)	0.506	78 (1.88)	85 (2.03)	0.93 (0.68-1.26)	0.643	0.905
Myocardial infarction	33 (0.89)	30 (0.81)	1.10 (0.67- 1.80)	0.714	31 (0.74)	34 (0.81)	0.92 (0.57-1.50)	0.745	0.625
Stroke	27 (0.73)	25 (0.68)	1.08 (0.63- 1.86)	0.789	25 (0.60)	28 (0.66)	0.90 (0.53-1.55)	0.711	0.652
Ischemic stroke	4 (0.11)	5 (0.14)	0.80 (0.21- 2.97)	0.736	4 (0.10)	3 (0.07)	1.35 (0.30-6.03)	0.693	0.604
Haemorrhagic stroke	2 (0.05)	0 (0.00)			4 (0.10)	3 (0.07)	1.35 (0.30-6.03)	0.694	
Undetermined stroke	274 (7.52)	266 (7.36)	1.02 (0.87- 1.21)	0.780	353 (8.52)	385 (9.25)	0.92 (0.80-1.07)	0.273	0.355

Revascularisation	129 (3.52)	153 (4.20)	0.84 (0.66-	0.137	187 (4.50)	196 (4.69)	0.96 (0.79-1.18)	0.702	0.379
	()	()	1.06)		()		· · · · · · · · · · · · · · · · · · ·		
Target Vessel Revascularization	14 (0.38)	20 (0.54)	0.70 (0.35-	0.301	20 (0.48)	15 (0.36)	1.35 (0.69-2.64)	0.376	0.174
	()	()	1.38)						
Definite stent thrombosis	44 (1 20)	66 (1 80)	0.66 (0.45-	0.033	68 (1 63)	55 (1 31)	1 25 (0 88-1 79)	0 211	0.016
	44 (1.20)	00 (1.00)	0.97)	0.000	00 (1.00)	00 (1.01)	1.20 (0.00 1.70)	0.211	0.010
BARC 3 or 5 Blooding	8 (0.22)	0 (0 24)	0.89 (0.34-	0 804	4 (0 10)	7 (0 17)	0.58 (0.17-1.08)	0 376	0 580
BARC 5 01 5 Bleeding	8 (0.22)	9 (0.24)	2.30)	0.004	4 (0.10)	7 (0.17)	0.56 (0.17-1.96)	0.370	0.569
PARC 5 Planding	E (0 1 4)	C (0 1C)	0.83 (0.25-	0.750	2 (0.05)	E (0.12)	0.40.00.00.000	0.064	0 402
BARC 5 bleeding	5 (0.14)	0 (0.10)	2.72)	0.759	2 (0.05)	5 (0.12)	0.40 (0.06-2.09)	0.204	0.403
DADC 5h Blooding	2 (0.08)	2 (0 09)	1.00 (0.20-	0.009	2 (0.05)	2 (0.05)	1 01 (0 14 7 19)	0.001	0.001
DARC 30 Dieeding	3 (0.08)	3 (0.08)	4.94)	0.996	2 (0.05)	2 (0.05)	1.01 (0.14-7.18)	0.991	0.991
DADC to Pleading	11 (1 11)	CE (1 77)	0.63 (0.42-	0.019	CC (1 EQ)	E1 (1 01)	1 21 (0 01 1 80)	0 1 4 2	0.006
BARC Sa Bleeding	41 (1.11)	05 (1.77)	0.93)	0.018	00 (1.00)	51 (1.21)	1.31 (0.91-1.69)	0.143	0.006
	44 (0.20)	40 (0.00)	0.91 (0.40-	0.000	40 (0.40)	7 (0 47)	0.01 (1.00.0.04)	0.005	0.000
BARC 3 Bleeding	11 (0.30)	12 (0.33)	2.07)	0.828	18 (0.43)	7 (0.17)	2.61 (1.09-6.24)	0.025	0.082
	44 (0.00)	07 (0 70)	0.41 (0.20-	0.000	00 (0 00)	07 (0.04)		0.000	0.050
BARC 30 Bleeding	11 (0.30)	27 (0.73)	0.82)	0.009	26 (0.62)	27 (0.64)	0.97 (0.57-1.67)	0.923	0.050
	00 (0 00)	00 (0 70)	0.78 (0.45-	0.000	00 (0 77)		4 44 (0 00 0 44)	0.000	0.400
BARC 30 Bleeding	22 (0.60)	28 (0.76)	1.37)	0.390	32 (0.77)	23 (0.55)	1.41 (0.82-2.41)	0.208	0.136
		00 (0 70)	0.78 (0.45-	0.000	00 (0 77)			0.000	0.400
BARC 3a Bleeding	22 (0.60)	28 (0.76)	1.37)	0.390	32 (0.77)	23 (0.55)	1.41 (0.82-2.41)	0.208	0.136

Depicted are the first event per event type for each patient only (disregards multiple events of the same type within the same patient and censoring at 730 days since index PCI). Percentage of patients at risk. NACCE: composite of all-cause mortality, stroke, any myocardial infarction or, BARC 3 or 5 bleeding

 Table S2. Clinical outcomes up to 1 year; and from 366 days to 2 years of Follow up.

	Acute coronary syndrome ACS			Stable CAD					
	Experi- mental Strategy	Referenc e Strategy	Rate Ratio (95% CI)	p- value	Experi- mental Strategy	Reference Strategy	Rate Ratio (95% CI)	p- value	p- valu
Total No. of patients	N=3750	N=3737			N=4230	N=4251			
At 1 Year									
All-cause mortality or new Q-	77 (2 05)	103 (2 76)	0 74 (0 55-1 00)	0 047	79 (1 87)	94 (2 21)	0 84 (0 63-1 14)	0 266	(
wave MI	(2.00)	100 (2.10)		01011	10 (1101)	0 1 (2.2.1)		0.200	
All-cause mortality	59 (1.57)	75 (2.01)	0.78 (0.56-1.10)	0.158	49 (1.16)	56 (1.32)	0.88 (0.60-1.29)	0.513	(
New Q-wave MI	18 (0.48)	30 (0.80)	0.60 (0.33-1.07)	0.079	30 (0.71)	39 (0.92)	0.77 (0.48-1.24)	0.287	(
All-cause mortality, new Q-									
wave MI or BARC 3 or 5	126 (3.36)	179 (4.79)	0.70 (0.56-0.88)	0.002	131 (3.10)	133 (3.13)	0.99 (0.78-1.27)	0.963	(
Bleeding									
All-cause mortality, stroke or	166 (4 42)	174 (4 66)	0.05 (0.77.4.49)	0.662	149 (2 50)	141 (2.22)	1 06 (0 94 1 94)	0.620	
any MI	100 (4.43)	174 (4.00)	0.95 (0.77-1.18)	0.002	140 (3.30)	141 (3.32)	1.00 (0.04-1.34)	0.020	C
NACCE	208 (5.55)	244 (6.53)	0.85 (0.71-1.02)	0.084	190 (4.49)	178 (4.19)	1.08 (0.88-1.32)	0.466	(
Myocardial infarction	96 (2.56)	88 (2.35)	1.09 (0.82-1.46)	0.555	83 (1.96)	70 (1.65)	1.20 (0.87-1.65)	0.266	(

Stroke	28 (0.75)	26 (0.70)	1.07 (0.63-1.83)	0.792	24 (0.57)	23 (0.54)	1.05 (0.59-1.87)	0.857	0.961
Ischemic stroke	21 (0.56)	22 (0.59)	0.95 (0.52-1.73)	0.874	19 (0.45)	19 (0.45)	1.01 (0.53-1.91)	0.975	0.896
Haemorrhagic stroke	6 (0.16)	3 (0.08)	1.99 (0.50-7.97)	0.319	4 (0.09)	2 (0.05)	2.02 (0.37- 11.04)	0.407	0.991
Undetermined stroke	1 (0.03)	1 (0.03)	1.00 (0.06-15.92)	0.999	1 (0.02)	2 (0.05)	0.50 (0.05-5.56)	0.569	0.714
Revascularisation	243 (6.48)	254 (6.80)	0.95 (0.80-1.14)	0.586	275 (6.50)	295 (6.94)	0.94 (0.80-1.11)	0.450	0.906
Target Vessel	104 (2 21)	147 (3.93)	0.84 (0.66-1.07)	0.153	144 (3.40)	159 (3.74)	0.91 (0.73-1.14)	0.424	0.623
Revascularization	124 (3.31)								
Definite stent thrombosis	25 (0.67)	23 (0.62)	1.08 (0.62-1.91)	0.779	28 (0.66)	18 (0.42)	1.57 (0.87-2.84)	0.132	0.376
BARC 3 or 5 Bleeding	57 (1.52)	88 (2.35)	0.64 (0.46-0.90)	0.009	60 (1.42)	48 (1.13)	1.26 (0.86-1.85)	0.225	0.009
BARC 5 Bleeding	8 (0.21)	8 (0.21)	1.00 (0.37-2.66)	0.997	6 (0.14)	8 (0.19)	0.76 (0.26-2.18)	0.603	0.706
BARC 5b Bleeding	5 (0.13)	6 (0.16)	0.83 (0.25-2.73)	0.760	4 (0.09)	5 (0.12)	0.81 (0.22-3.00)	0.747	0.972
BARC 5a Bleeding	3 (0.08)	2 (0.05)	1.50 (0.25-8.96)	0.656	2 (0.05)	3 (0.07)	0.67 (0.11-4.03)	0.663	0.533
BARC 3 Bleeding	52 (1.39)	85 (2.27)	0.61 (0.43-0.86)	0.004	55 (1.30)	43 (1.01)	1.29 (0.87-1.93)	0.204	0.005
BARC 3c Bleeding	10 (0.27)	12 (0.32)	0.83 (0.36-1.92)	0.665	13 (0.31)	4 (0.09)	3.29 (1.07- 10.09)	0.027	0.048
BARC 3b Bleeding	19 (0.51)	39 (1.04)	0.49 (0.28-0.84)	0.008	24 (0.57)	23 (0.54)	1.05 (0.59-1.87)	0.856	0.054
BARC 3a Bleeding	26 (0.69)	38 (1.02)	0.68 (0.41-1.12)	0.131	26 (0.61)	19 (0.45)	1.38 (0.77-2.50)	0.281	0.072

From 1 Year to 2 Years

(landmark at 365 days)

All-cause mortality or new Q-	70 (1 91)	66 (1 82)	1 05 (0 75-1 47)	0 781	78 (1 88)	86 (2.07)	0.01 (0.67-1.23)	0.541	0 537
wave MI	70 (1.91)	00 (1.02)	1.05 (0.75-1.47)	0.701	70 (1.00)	00 (2.07)	0.91 (0.07-1.23)	0.541	0.557
All-cause mortality	57 (1.55)	57 (1.56)	0.99 (0.69-1.43)	0.965	59 (1.41)	65 (1.55)	0.91 (0.64-1.30)	0.605	0.745
New Q-wave MI	15 (0.41)	11 (0.30)	1.35 (0.62-2.95)	0.447	20 (0.48)	23 (0.55)	0.87 (0.48-1.59)	0.655	0.382
All-cause mortality, new Q-									
wave MI or BARC 3 or 5	73 (2.05)	64 (1.82)	1.13 (0.81-1.58)	0.486	101 (2.50)	98 (2.41)	1.04 (0.79-1.38)	0.761	0.732
Bleeding									
All-cause mortality, stroke or	09 (2 79)	103 (2.92)	0.95 (0.72-1.25)	0.711	96 (2.39)	119 (2.93)	0.82 (0.62-1.07)	0.140	0.447
any MI	90 (2.70)								
NACCE	102 (2.92)	98 (2.83)	1.03 (0.78-1.36)	0.826	116 (2.92)	133 (3.30)	0.88 (0.69-1.14)	0.335	0.419
Myocardial infarction	37 (1.04)	44 (1.24)	0.84 (0.54-1.30)	0.431	32 (0.79)	48 (1.17)	0.68 (0.43-1.06)	0.084	0.496
Stroke	16 (0.44)	16 (0.44)	1.00 (0.50-1.99)	0.990	12 (0.29)	17 (0.41)	0.71 (0.34-1.50)	0.371	0.521
Ischemic stroke	14 (0.39)	13 (0.36)	1.07 (0.50-2.28)	0.857	9 (0.22)	14 (0.34)	0.65 (0.28-1.50)	0.310	0.384
Haamarrhagia atroko	1 (0.02)	2 (0.08)		0.215	2 (0.05)	4 (0.00)	2.03 (0.18-	0 555	0.265
naemormagic stroke	1 (0.03)	3 (0.06)	0.33 (0.03-3.19)	0.315	2 (0.05)	1 (0.02)	22.39)	0.555	0.205
Undetermined stroke	1 (0.03)	0 (0.00)			3 (0.07)	2 (0.05)	1.52 (0.25-9.09)	0.645	
Revascularisation	93 (2.74)	94 (2.78)	0.98 (0.74-1.31)	0.900	128 (3.33)	150 (3.88)	0.86 (0.68-1.08)	0.198	0.472

Target Vessel	15 (1 29)	57 (1 64)	0 79 (0 52 1 15)	0 212	76 (1.01)	70 (1 07)	0 07 (0 71 1 22)	0 947	0 306
Revascularization	43 (1.20)	57 (1.04)	0.78 (0.53-1.15)	0.212	76 (1.91)	79 (1.97)	0.97 (0.71-1.33)	0.047	0.390
Definite stent thrombosis	7 (0.19)	14 (0.39)	0.50 (0.20-1.23)	0.125	4 (0.10)	9 (0.22)	0.45 (0.14-1.47)	0.174	0.896
BARC 3 or 5 Bleeding	16 (0.45)	12 (0.34)	1.32 (0.62-2.79)	0.466	30 (0.74)	21 (0.51)	1.45 (0.83-2.53)	0.189	0.843
BARC 5 Bleeding	6 (0.17)	5 (0.14)	1.20 (0.36-3.92)	0.768	2 (0.05)	3 (0.07)	0.68 (0.11-4.05)	0.665	0.600
BARC 5b Bleeding	4 (0.11)	4 (0.11)	1.00 (0.25-3.98)	0.996	2 (0.05)	3 (0.07)	0.68 (0.11-4.05)	0.665	0.736
BARC 5a Bleeding	2 (0.06)	1 (0.03)	1.99 (0.18-21.97)	0.566	0 (0.00)	0 (0.00)			
BARC 3 Bleeding	14 (0.39)	12 (0.34)	1.15 (0.53-2.50)	0.714	29 (0.71)	19 (0.46)	1.55 (0.87-2.76)	0.135	0.550
	4 (0 11)	6 (0 17)	0.66 (0.10-2.35)	0 522	8 (0 20)	3 (0 07)	2.71 (0.72-	0 125	0 124
DAILO SC Dieeding	4 (0.11)	0 (0.17)	0.00 (0.19-2.33)	0.522	0 (0.20)	5 (0.07)	10.21)	0.120	0.124
BARC 3b Bleeding	2 (0.06)	3 (0.08)	0.66 (0.11-3.96)	0.648	8 (0.20)	9 (0.22)	0.90 (0.35-2.33)	0.824	0.767
BARC 3a Bleeding	9 (0.25)	3 (0.08)	2.98 (0.81-11.02)	0.085	16 (0.39)	10 (0.24)	1.62 (0.74-3.57)	0.226	0.430

Figure S1. Consort flowchart of the Global LEADERS randomized clinical trial.

DAPT, dual antiplatelet treatment; SAPT, single antiplatelet treatment; APT, antiplatelet treatment. Restart of appropriate DAPT was allowed for 30 days in experimental arm and 365 days in reference arm after any revascularization; in case of death last medication taken.

Figure S2. Distribution of patient adherence to the allocated antiplatelet treatment strategies stratified by clinical presentation over the 2-year trial period.

A: Patients with acute coronary syndromes

Revascularisations and per-protocol restart of DAPT allowed:

Experimental arm: Ticagrelor & Aspirin allowed for 30 days

Reference arm: Ticagrelor & Aspirin in ACS, and also in Stable CAD patients who were pre-treated with Ticagrelor or Prasugrel, was allowed for 365 days; Clopidogrel & Aspirin was allowed for 365 days in Stable CAD patients who were pre-treated with Clopidogrel or no P2Y12 inhibitor

B: Patients with stable coronary artery disease.

Revascularisations and per-protocol restart of DAPT allowed:

Experimental arm: Ticagrelor & Aspirin allowed for 30 days

Reference arm: Ticagrelor & Aspirin in ACS, and also in Stable CAD patients who were pre-treated with

Ticagrelor or Prasugrel, was allowed for 365 days; Clopidogrel & Aspirin was allowed for 365 days in

Stable CAD patients who were pre-treated with Clopidogrel or no P2Y12 inhibitor

Figure S3. Landmark Analysis for All-Cause Mortality, BARC 3 or 5 Bleeding up and Myocardial infarction to 30 days, from 31 days to 1 year and from 1 year to end of follow up Kaplan-Meier graphs of the Endpoints.

Top panels: Acute coronary syndrome patients. Cumulative incidence of A) all-cause mortality (ACS), B) Bleeding Academic Research Consortium 3 or 5 events (ACS), C) investigator reported myocardial infarction (ACS); lower panels: stable coronary artery disease. patients (D-F) (blue: experimental strategy arm; red: reference strategy arm).

Figure S4. Landmark Analysis for NACCE – Net Adverse Clinical and Cerebral Events and stroke up to 30 days, from 31 days to 1 year and from 1 year to end of follow up Kaplan-Meier graphs of the Endpoints.

Within each landmark period, depicted are the first event per event type for each patient only (disregards multiple events of the same type within the same patient and censoring at 730 days since index PCI). Top panels: Acute coronary syndrome patients. Cumulative incidence of A) NACCE - Net Adverse Clinical and Cerebral Events (ACS), B) Stroke (ACS); lower panels: stable coronary artery disease. patients (C-D) (blue: experimental strategy arm; red: reference strategy arm).