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Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous endocrine-disrupting

combustion by-products that have been linked to preterm birth. One possible

mechanism is through disruption of placental corticotropin releasing hormone

(pCRH), a key hormone implicated in parturition. As an extension of recent

research identifying pCRH as a potential target of endocrine disruption, we

examined maternal PAH exposure in relation to pCRH in a large, diverse

sample. Participants, drawn from the CANDLE cohort, part of the ECHO-

PATHWAYS Consortium, completed study visits at 16-29 weeks (V1) and 22-

39 weeks (V2) gestation (n=812). Seven urinary mono-hydroxylated PAH

metabolites (OH-PAHs) were measured at V1 and serum pCRH at V1 and V2.

Associations between individual log-transformed OH-PAHs (as well as two

summed PAH measures) and log(pCRH) concentrations across visits were

estimated using mixed effects models. Minimally-adjusted models included

gestational age and urinary specific gravity, while fully-adjusted models also

included sociodemographic characteristics. We additionally evaluated effect
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modification by pregnancy complications, fetal sex, and maternal childhood

trauma history. We observed associations between 2-OH-Phenanthrene (2-

OH-PHEN) and rate of pCRH change that persisted in fully adjusted models

(b=0.0009, 0.00006, 0.0017), however, positive associations with other

metabolites (most notably 3-OH-Phenanthrene and 1-Hydroxypyrene) were

attenuated after adjustment for sociodemographic characteristics.

Associations tended to be stronger at V1 compared to V2 and we observed

no evidence of effect modification by pregnancy complications, fetal sex, or

maternal childhood trauma history. In conclusion, we observed modest

evidence of association between OH-PAHs, most notably 2-OH-PHEN, and

pCRH in this sample. Additional research using serial measures of PAH

exposure is warranted, as is investigation of alternative mechanisms that may

link PAHs and timing of birth, such as inflammatory, epigenetic, or oxidative

stress pathways.
KEYWORDS

polycyclic aromatic hydrocarbons, pregnancy, endocrine disruption, hormones,
placenta, corticotropin releasing hormone
Introduction

Polycyclic aromatic hydrocarbons (PAHs) are common

environmental pollutants that occur due to incomplete

combustion of organic matter (1). PAH exposure occurs

through ambient air pollution and tobacco smoke as well as

through food sources and occupational hazards, resulting in

nearly ubiquitous exposure around the world (2–4). Even among

non-smokers, PAH exposure is widespread, with recent research

suggesting 96% of non-smoking Americans have detectable

levels of one or more urinary PAH metabolites (5). Evidence

of PAHs’ carcinogenic, teratogenic, and mutagenic properties (6,

7) has led to their designation as priority pollutants by the

United State EPA and the European Commission (8, 9). In

addition, research increasingly demonstrates their endocrine

disrupting properties, with in vitro and animal model evidence

indicating impacts on estrogen (10–12), thyroid (13–15), and

progesterone pathways (16, 17).

The widespread PAH exposure documented in pregnant

people is of particular concern given fetal vulnerability to

environmental contaminants, including endocrine disruptors

(18). Recent work from our group examined urinary

hydroxylated PAH metabolites (OH-PAHs), a common

biomarker of PAH exposure, reporting that higher second

trimester urinary 2-hydroxynaphthalene (2-OH-NAP) was

associated with earlier gestational age at birth and higher 1-

hydroxypyrene (1-OH-PYR) with increased odds of

spontaneous preterm birth among participants carrying female

infants (19). Several studies examining alternative measures of

PAH exposure, such PAH-DNA adducts and air monitoring, have
02
similarly reported associations with shorter gestation (20) and

increased risk of preterm birth (21, 22). Beyond potential impacts

on timing of birth, the detection of PAH biomarkers in cord blood

at delivery (23) and spontaneously aborted fetal tissue (24),

demonstrates that they can cross the placental barrier to reach

the developing fetus, and some evidence suggests associations with

adverse downstream child health outcomes, including cognition

and behavior (25–27), growth and pubertal development (28, 29),

and asthma and allergic outcomes (30–32).

While prenatal exposures to PAHs (and environmental

chemicals more generally) are often presumed to impact child

development through direct effects on the fetus’ developing

tissues, it is also possible that indirect effects may occur

through alterations in placental development and physiology,

with downstream effects on fetal/child health and development

(33). Supporting this premise is prior research showing that

PAHs are present in measurable levels in the placenta (23, 34)

and in experimental models, PAH exposure reduces trophoblast

cell function and viability (35–37).

Given the placenta’s role as a primary endocrine organ during

pregnancy, the impact of PAH exposure on placental hormone

production merits consideration. Of particular relevance is

placental corticotropin releasing hormone (pCRH), which rises

exponentially across pregnancy [reviewed in 38]. Mid-late

pregnancy pCRH and the rise in pCRH across pregnancy have

been linked to preterm birth (39–42), pregnancy complications

(43, 44), postpartum depression (45, 46), and offspring

development (47, 48). Although the same molecule is also

produced by the hypothalamus as part of the hypothalamic-

pituitary-adrenal (HPA) axis (49), given that CRH levels are
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10,000 times higher in pregnant versus non-pregnant individuals,

virtually all detectable CRH in maternal circulation is of placental

origin (pCRH). Surprisingly, this important hormone has received

little attention in the context of chemical exposures in pregnancy,

although several recent studies have shown alterations in pCRH in

relation to prenatal maternal exposures to endocrine-disrupting

phthalates (50, 51) and per- and poly-fluoroalkyl substances (52).

To our knowledge, to date, only one epidemiological study

has examined associations between prenatal OH-PAH exposures

and placental hormones, including pCRH (53). In that study of

707 pregnant participants from the PROTECT cohort in Puerto

Rico, interquartile (IQR) increases in OH-PAHs in mid-late

pregnancy were associated with 14-24% increases in pCRH, with

some evidence indicating stronger associations among pregnant

people carrying male fetuses.

In light of epidemiological evidence that PAH exposures are

associated with shorter gestation as well as results from the

PROTECT study indicating direct associations between OH-

PAHs and pCRH concentrations, here we extend the current,

limited literature on this topic by examining maternal urinary

OH-PAHs in relation to pCRH concentrations in mid- and late-

pregnancy. We do so within the context of the Conditions

Affecting Neurocognitive Development and Learning in Early

Childhood (CANDLE) study, a socioeconomically and racially

diverse, well-characterized pregnancy cohort located in the

Southeastern United States.
Materials and methods

Study population and overview

From 2006-2011, pregnant participants were recruited into

the CANDLE study through participating prenatal clinics in

Shelby County, Tennessee, USA (54). Eligible participants had

low medical-risk pregnancies at enrollment, were carrying a

singleton fetus, 16-29 weeks pregnant, and 16-40 years old, with

plans to deliver at a participating hospital. Low-medical risk was

assessed as lacking major medical conditions at the time of

consent, including (but not limited to) insulin-dependent

diabetes and other endocrine disorders as well as chronic

hypertension. Two study visits were conducted, roughly

corresponding to mid- (Visit 1 [V1]; 16-29 weeks) and late

(Visit 2 [V2]; 22-39 weeks) pregnancy, allowing for flexibility of

timing to coordinate with clinical care and minimize participant

burden. Prior to any study activities, Institutional Review Board

approvals were obtained from the University of Tennessee

Health Sciences Center (primary data collection site) and

participants signed written, informed consent. The current

analysis was facilitated by the NIH’s Environmental Influences

of Child Health Outcomes (ECHO) program and in particular,

the ECHO-PATHWAYS Consortium.
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Inclusion in the current analysis was determined based on

having data on urinary OH-PAH concentrations (measured at V1)

as well as plasma pCRH concentrations (measured at V1 and V2).

Given the strong impact of active smoking on PAH exposures as

well as pregnancy physiology, in our main analyses, we excluded

women who self-reported smoking during pregnancy and/or had

urinary cotinine levels exceeding 200 ng/mL (55).
Exposure assessment: Maternal urinary
PAH metabolites

At V1 in mid-pregnancy, participants provided a spot urine

sample. Specific gravity (SG) was measured with a handheld

refractometer after which samples were aliquoted and frozen at

-80°C until shipment on dry ice to the Wadsworth Laboratory,

New York State Department of Health, Albany, New York. Using

methods previously described elsewhere (56), twelve OH-PAH

metabolites were measured including: two metabolites of

naphthalene (1-OH-NAP, 2-OH-NAP), four metabolites of

phenanthrene (2-hydroxyphenanthrene [2-OH-PHEN], 3-

hydroxyphenanthrene [3-OH-PHEN], 4-hydroxyphenanthrene

[4-phen], combined 1/9-hydroxyphenanthrene [1/9-OH-

PHEN]), combined 2/3/9-hydroxyfluorene (2/3/9-OH-FLUO),

1-OH-PYR, 3-hydroxybenzo[c]phenanthrene (3-BCP), two

metabolites of hydroxychrysene (1-hydroxychrysene [1-OH-

CHRY], 6-hydroxychrysene [6-OH-CHRY]), and 1-

hydroxybenz[a]anthracene (1-OH-BAA). Briefly, 10 ng of

isotopically-labeled internal standard mixture was added to 500

µL urine samples, and then combined with 1 mL of 0.5 M

ammonium acetate buffer containing 200 units/mL of b-
glucuronidase/sulfatase enzyme (MP Biomedicals, LLC, Solon,

OH, USA). Following an overnight incubation, the sample

mixtures were diluted with 2 mL of HPLC-grade water and

extracted with a 7 mL pentane:toluene solution for one hour.

Samples were centrifuged for 20 minutes at 3600 x g and the

resulting supernatant was transferred for instrumental analysis. A

Waters Acquity I-Class UPLC system (Waters; Milford, MA,

USA) connected with an Eclipse Plus C18 RRHD column

(100 mm × 2.1 mm, 1.8 mm, Agilent; Santa Clara, CA, USA)

was used for chromatographic separation of the OH-PAH

metabolites followed by quantification using an ABSCIEX 5500

triple quadrupole mass spectrometer (Applied Biosystems; Foster

City, CA, USA). Two Standard Reference Materials (SRM 3672,

SRM 3673) were used as quality assurance protocols and analyte

recovery in the SRMs was 79-109%. To ensure instrument

stability, during the sample run, calibration standards were

periodically injected. The limits of detection varied by

metabolite ranging from 0.02-0.12 ng/mL We limited the

current analyses to seven PAH metabolites above the LOD

in >60% of samples, specifically: 1-OH-NAP, 2-OH-NAP, 2-

OH-PHEN, 3-OH-PHEN, 1/9-OH-PHEN, 2/3/9-OH-FLUO,
frontiersin.org

https://doi.org/10.3389/fendo.2022.1011689
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Barrett et al. 10.3389/fendo.2022.1011689
and 1-OH-PYR. For these metabolites, values below the LOD

were replaced with LOD/√2. We additionally calculated ∑NAP as

the sum of 1-OH-NAP and 2-OH-NAP, and ∑PHEN as the sum

of 2-OH-PHEN, 3-OH-PHEN, 4-OH-PHEN, and 1/9-

OH-PHEN.
Outcome assessment: pCRH

At V1 and V2, participants provided blood samples in

EDTA plasma separator tubes. Blood was processed and

frozen at -80°CC until it was shipped on dry ice to University

of Newcastle, Australia for pCRH analysis. pCRH was measured

in pg/mL using radioimmunoassay according to previously

published protocols (57). The inter- and intra-assay

coefficients of variation were 8.7% and 7.3% respectively.

pCRH concentrations were non-normally distributed and were

therefore log-transformed for subsequent analysis.
Covariates

Data on key covariates, selected a priori based on the literature,

were collected from questionnaires administered during

pregnancy as well as from clinical chart reviews. Participants

reported on age, highest level of educational attainment

(categorized for this analysis as less than high school, high

school/GED/technical school, or college or higher), parity

(parous/nulliparous), and pre-pregnancy weight and height

(used to calculate body mass index in kg/m2). Participants also

reported race and ethnicity, which were included here (categorized

as non-Hispanic White, non-Hispanic Black, Hispanic, or Other)

as proxies for chronic exposure to discrimination and systemic

racism, which may contribute to variation in exposures as well as

alter endocrine activity in pregnancy. Relevant to our focus on

pCRH, participants additionally reported on history of childhood

exposures to traumatic stressors via three items from the

Traumatic Life Events Questionnaire (TLEQ) specifically

querying history of physical abuse and family violence before

age 18 and sexual abuse prior to age 13. These items were used to

construct a counts (discrete) variable for total number of types of

childhood traumatic exposures, ranging from 0-3 (58, 59).

Gestational age at sample collection was determined based on

the medical record. In general, clinical determination was based on

date of last menstrual period and confirmed with ultrasound

dating, with the latter being prioritized in cases of discrepancies.

Maternal gestational diabetes and hypertension were self-reported

shortly after delivery, then confirmed by medical record

abstraction and are included in the current analysis based on

prior work indicating associations with pCRH in this cohort (51,

60). Finally, although participants who reported actively smoking

or had cotinine levels >200 ng/mL were excluded from our

primary analyses, exposure to environmental tobacco smoke was
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assessed by measurement of cotinine in spot urine samples

collected at V1 (considered continuously in models).
Statistical analysis

Participants who: (1) had OH-PAH metabolite data; (2) had

pCRH data at one or more timepoint; and (3) did not report

smoking during pregnancy (and had cotinine ≤200 ng/mL),

were eligible for inclusion in our primary analyses. We

calculated descriptive statistics to characterize the sample

including geometric mean and SD, median, min, max,

quartiles, %<LOD, percentages, and frequencies) followed by

bivariate analyses to examine relationships between the variables

of interest, including the exposures and outcomes. We used

Spearman correlations to examine associations among the

OH-PAHs.

We fitted a set of individual linear regression models for each

of the seven OH-PAHs included in the current analysis as well as

two summed PAH variables (SNAP and SPHEN). For each OH-

PAH, we examined the rate of change in pCRH between V1 and

V2 using a mixed effects model with gestational day at pCRH

sampling as a continuous variable and random intercepts for

subjects. For each metabolite, we fit three staged models

(minimally adjusted, fully adjusted, and extended), with

covariates determined a priori based on the literature,

particularly our recent publications on pCRH in this cohort

(51, 60). Minimally adjusted models considered only those

covariates most relevant to the biomarker measures

themselves, namely specific gravity (as a measure of urine

dilution) and gestational age at blood collection (relevant given

the strong temporal changes in pCRH across pregnancy). Our

primary, fully adjusted models additionally included maternal

and pregnancy-related covariates associated with pCRH

concentrations (and in some cases, with OH-PAH

concentrations) including maternal age, race/ethnicity,

education, pre-pregnancy BMI, cotinine, parity, childhood

traumatic events, and fetal sex. In extended models, we

additionally considered gestational diabetes and gestational

hypertension as they have been confounders of pCRH in prior

work, but could arguably be on the pathway between exposure

and outcome (61, 62). Results are reported for the interaction

between each of the OH-PAHs and time in days. Additionally,

based on our prior work on pCRH in this cohort, we evaluated

effect modification by the binary variables fetal sex, maternal

childhood traumatic events (any/none), gestational

hypertension, and gestational diabetes (51). To do so we

refitted extended models adding a multiplicative interaction

term (e.g. OH-PAH*fetal sex) with the p-value for the

interaction term used to determine statistical significant

differences by group (at alpha level=0.05).

Secondarily, we fit linear regression models examining

pCRH at the two outcome timepoints (V1 and V2) separately.
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We additionally conducted a series of sensitivity analyses to

evaluate the robusticity of our results. First, we refitted

minimally adjusted, fully adjusted, and extended models using

PAH levels pre-adjusted for specific gravity before model fitting

(rather than including specific gravity as a covariate in the

primary analysis) using the formula:

Pc = P*
SGmedian − 1

SG − 1

� �

In this formula, P represents measured urinary OH-PAH

concentration, SG represents individual participants’ specific

gravity, and SGmedian is the median SG for the batch (63). We

additionally refitted models: (1) including smokers and women

with urinary cotinine >200ng/mL; (2) omitting preterm (<37

weeks) and post-term (>42 weeks) births; (3) omitting women

with a history of prior preterm birth; and (4) without adjustment

for childhood traumatic events. Finally, to avoid concerns

around overlap in timing of V1 and V2, we refit models that

more strictly adhered to trimester definitions (e.g. only including

V1 occurring prior to 27 weeks and V2 occurring after 27 weeks

gestation). All analyses were conducted using R 4.1.3 (R

Foundation for Statistical Computing, Vienna, Austria).
Results

In total, 812 CANDLE participants were included in our

main analyses (Table 1). Participants were on average 26.8 ± 5.6

years old at enrollment with a pre-pregnancy BMI of 28.1 ± 7.8

kg/m2. Most participants were non-Hispanic Black (62.0%) or

non-Hispanic White (32.0%), with few identifying as Hispanic

(1.0%) or another race (5.0%). The majority of participants had a

high school/GED/or technical school-level education (55.0%),

with an additional 37.0% completing college or higher. In total,

41.0% of participants were nulliparous and just over half (52.0%)

were carrying female fetuses. A small percentage of participants

developed gestational diabetes (6.0%) or gestational

hypertension (10.0%) during the index pregnancy.

Of the OH-PAHs measured, 1-OH-NAP, 2-OH-NAP, 3-OH-

PHEN, and 2/3/9-OH-FLUO were found in >96% of participants,

with average 2-OH-NAP concentrations being highest (geometric

mean 5.37 ± 2.41 ng/mL; Table 2). Correlations between the OH-

PAHmetabolites tended to bemoderate to high, ranging from a low

of r=0.22 for 1/9-OH-PHEN and 2-OH-NAP to a high of 0.85 for

2-OH-PHEN and 3-OH-PHEN (Supplementary Table S1). Overall,

PAH metabolites tended to be higher among younger participants,

less educated participants, participants with higher BMI, and non-

Hispanic Black participants (compared to non-Hispanic White;

Supplementary Table S2).

In mixed effect models integrating both outcome timepoints, all

interaction terms for OH-PAHs and gestational days (time)

indicated positive associations with the rate of the pCRH rise

(Table 3). In minimally adjusted models, the strongest associations
Frontiers in Endocrinology 05
with the rate of the pCRH rise were observed for 2-OH-PHEN

(b=0.0010;95%CI:0.0002,0.0018), 3-OH-PHEN(b=0.0008;95%CI:

-0.000002, 0.0016); and 1-OH-PYR (0.0007; 95% CI: -0.00003,

0.0013). In fully adjusted models, after adjustment for

sociodemographic covariates, associations with the rate of the

pCRH rise were moderately attenuated for all three metabolites: 2-

OH-PHEN (b=0.0009; 95% CI:0.00006, 0.0017), 3-OH-PHEN

(b=0.0007; 95% CI: -0.0002, 0.0015); and 1-OH-PYR (b=0.0005;
95%CI: -0.0002, 0.0010).Results of the extendedmodelswere similar

to those of the fully adjusted models, with all confidence intervals

including the null, with the exception of 2-OH-PHEN (b=0.0008;
95% CI:0.00002, 0.0016). In analyses evaluating effect modification

by fetal sex, maternal exposure to childhood trauma, gestational

diabetes, and gestational hypertension, little evidence of effect

modification was observed (Supplementary Table S3).

In secondary models examining the association between

OH-PAH concentrations and pCRH at individual timepoints

(Supplementary Table S4), we similarly observed associations

in minimally adjusted models that were attenuated after

adjustment for covariates. In minimally adjusted models,

examin ing pCRH at V1 , we observed s ign ifican t

associations with 3-OH-PHEN (b=-0.09, 95%CI: -0.16,

-0.01), 2/3/9-OH-FLUO (b=-0.07, 95% CI: -0.13, -0.001), 1-

OH-PYR (b=-0.10, 95%CI: -0.16, -0.03), and ∑NAP (b=-0.06,
95% CI: -0.12, -0.01), with a trend towards association

observed for 2-OH-PHEN (b=-0.07, 95%CI: -0.14, 0.01).
TABLE 1 Characteristics of CANDLE mother-child dyads (n=812).

Characteristics (continuous) Mean ± SD

Maternal age (years) 26.8 ± 5.6

Pre-pregnancy BMI (kg/m2) 28.1 ± 7.8

Gestational age at Visit 1 (V1; weeks) 22.9 ± 3.1

Gestational age at Visit 2 (V2; weeks) 31.8 ± 1.6

Change in gestational age (V2-V1; weeks) 8.9 ± 3.1

Maternal Childhood Traumatic Life Events 0.5 ± 0.8

Maternal Adult Traumatic Life Events 3.2 ± 2.3

pCRH at V1 (pg/mL) 57.1 ± 77.9

pCRH at V2 (pg/mL) 360.3 ± 431.7

Urinary cotinine (ng/mL) 2.5 ± 7.5

Characteristics (categorical) N (%)

Maternal race/ethnicity
Non-Hispanic Black
Non-Hispanic White
Hispanic
Other

503 (62.0)
256 (32.0)
12 (1.0)
41 (5.0)

Highest level of maternal education<High school
High school/GED/Technical School
College or higher

65 (8.0)
444 (55.0)
302 (37.0)

Nulliparous 329 (41.0)

Gestational diabetes 47 (6.0%)

Gestational hypertension 82 (10.0%)

Fetal sex-female 420 (52.0%)
f
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Most associations between OH-PAHs and V2 pCRH were

inverse , but non-s ignificant . Only 1-OH-PYR was

significantly associated with lower V2 pCRH (b=-0.08, 95%
CI: -0.15, -0.004). However, in fully adjusted models

including sociodemographic and lifestyle-related covariates,

associations were generally in the positive direction, though

estimates were small in magnitude and 95% confidence

intervals included the null across all OH-PAHs and all

outcome measures (Supplementary Table S4). In extended

models also including pregnancy complications, results were
Frontiers in Endocrinology 06
nearly identical to the fully adjusted models and again, null

for all exposure-outcome associations.

In sensitivity analyses using specific gravity-adjusted OH-PAH

values rather than including specific gravity as a covariate, results

were unchanged (not shown). We additionally refit models to also

including smokers and participants with urinary cotinine >200 ng/

mL (an additional 119 participants), observing that overall,

associations were similar, but modestly strengthened

(Supplementary Table S5), with significant associations observed

for 2-OH-PHEN and 3-OH-PHEN in the fully adjusted models.
TABLE 3 Mixed effect models examining log-transformed PAH metabolite concentrations in relation to change in pCRH concentrations across
mid-late pregnancy.

OH-PAH metabolite1,2 Minimally adjusted model3b
(95% CI); p-value

Fully adjusted model4b
(95% CI); p-value

Extended model5b
(95% CI); p-value

N=812 N=797 N=792

1-OH-NAP 0.0002 (-0.0002, 0.0006); 0.34 0.0001 (-0.0003, 0.0006); 0.49 0.0002 (-0.0002, 0.0006); 0.27

2-OH-NAP 0.0003 (-0.0002, 0.0009); 0.25 0.0003 (-0.0003, 0.0009); 0.33 0.0003 (-0.0003, 0.0009); 0.31

2-OH-PHEN 0.0010 (0.0002, 0.0018); 0.01 0.0009 (0.00006, 0.0017); 0.03 0.0008 (0.00002, 0.0016); 0.05

3-OH-PHEN 0.0008 (-0.00002, 0.0016); 0.06 0.0007 (-0.0002, 0.0015); 0.12 0.0007 (-0.00009, 0.0015); 0.08

1/9-OH-PHEN 0.0002 (-0.0003, 0.0006); 0.47 0.0009 (-0.0002, 0.0006); 0.39 0.0003 (-0.0001, 0.0007); 0.19

2/3/9-OH-FLUO 0.0003 (-0.0004, 0.0010); 0.47 0.00009 (-0.0006, 0.0008); 0.81 0.0001 (-0.0006, 0.0008); 0.79

1-OH-PYR 0.0007 (-0.000003, 0.0013); 0.05 0.0005 (-0.0002, 0.0012); 0.15 0.0006 (-0.00005, 0.0013); 0.07

∑NAP 0.0005 (-0.00012, 0.0010); 0.12 0.0004 (-0.0002, 0.0010); 0.18 0.0005 (-0.0001, 0.0010); 0.12

∑PHEN 0.0004 (-0.0003, 0.0011); 0.31 0.0003 (-0.0004, 0.0011); 0.36 0.0005 (-0.0003, 0.0012); 0.20
1 1-OH-NAP= 1-OH-Naphthalene; 2-OH-NAP=2-OH-Naphthalene; 2-OH-PHEN= 2-OH-Phenanthrene; 3-OH-PHEN= 3-OH-Phenanthrene; 1/9-OH-PHEN=combined 1/9-OH-
Phenanthrene; 2/3/9-OH-FLUO= combined 2/3/9-OH-Fluorene; 1-OH-PYR= 1-OH-Pyrene; ∑NAP=sum of 1-OH-NAP and 2-OH-NAP; ∑PHEN=sum of 2-OH-PHEN, 3-OH-PHEN, 4-
OH-PHEN, and 1/9-OH-PHEN.
2 Coefficients, 95% confidence intervals, and the p-values for the interaction between each of the log-transformed OH-PAHs and time (repeated measures of gestational age at blood
collection) are reported.
3 Minimally adjusted models include gestational age at blood collection, specific gravity.
4 Fully adjusted models include gestational age at blood collection, specific gravity, maternal age, race/ethnicity, education, pre-pregnancy BMI, cotinine, fetal sex, parity, and childhood
traumatic events as well as interaction terms for each of the covariates * gestational age at blood collection.
5 Extended models include gestational age at blood collection, specific gravity, maternal age, race/ethnicity, education, pre-pregnancy BMI, cotinine, fetal sex, parity, childhood traumatic
events, gestational diabetes, and gestational hypertension as well as interaction terms for each of the covariates * gestational age at blood collection.
TABLE 2 Maternal urinary PAH metabolites at Visit 1 in ng/mL (n=812).

OH-PAH metabolite LOD %<LOD1 Min. 5th % 25th % 50th% 75th% 95th% Max. Geo. Mean Geo. SD

1-OH-Naphthalene (1-OH-NAP) 0.02 0 0.08 0.30 0.61 1.15 2.32 11.82 367.78 1.34 3.30

2-OH-Naphthalene (2-OH-NAP) 0.025 0.25 0.01 1.47 3.09 5.41 8.77 20.63 151.99 5.37 2.41

2-OH-Phenanthrene (2-OH-PHEN) 0.03 14.29 0.01 0.04 0.07 0.10 0.15 0.32 4.13 0.10 1.94

3-OH-Phenanthrene (3-OH-PHEN) 0.03 0 0.01 0.04 0.07 0.10 0.15 0.30 2.99 0.10 1.90

4-OH-Phenanthrene (4-OH-PHEN) 0.03 58.13 0.01 0.02 0.03 0.04 0.06 0.14 0.91 0.04 1.95

1/9-OH-Phenanthrene (1/9-OH-PHEN) 0.08 16.50 0.01 0.02 0.20 0.37 0.62 1.37 13.07 0.31 3.15

2/3/9-OH-Fluorene (2/3/9-OH-FLUO) 0.12 3.94 0.04 0.35 0.66 0.97 1.54 3.44 32.48 1.02 2.05

1-OH-Pyrene (1-OH-PYR) 0.03 11.82 0.02 0.05 0.09 0.15 0.25 0.55 3.38 0.15 2.15

1-hydroxybenz[a]anthracene (1-OH-BAA) 0.03 100 0.01 0.02 0.02 0.02 0.04 0.08 0.42 0.03 1.74

3-hydroxybenzo[c]phenanthrene (3-BCP) 0.025 100 0.01 0.01 0.02 0.02 0.03 0.07 0.35 0.02 1.74

1-hydroxychrysene (1-OH-CHRY) 0.02 100 0.01 0.01 0.01 0.02 0.02 0.06 0.28 0.02 1.74

6-hydroxychrysene (6-OH-CHRY) 0.025 100 0.01 0.01 0.02 0.02 0.03 0.07 0.35 0.02 1.74
fron
OH-PAH, monohydroxy-polycyclic aromatic hydrocarbon; LOD, limit of detection; Min., Minimum; Max, Maximum; Geo. Mean, geometric mean; Geo SD, geometric standard deviation.
1 Only metabolites with<40% of samples below the LOD were included in subsequent analyses.
2 Individual values below the LOD were imputed as LOD/(sqrt2).
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Results were similarly robust to the exclusion of preterm (<37

weeks) and post-term (>42 weeks) births (68 participants excluded),

with positive associations and/or trends observed for 2-OH-PHEN,

3-OH-PHEN, and 1-OH-PYR in fully adjusted models

(Supplementary Table S6). Results were virtually unchanged

when we restricted analyses to participants with no history of

prior preterm birth (60 participants excluded), although

associations with 1-OH-PYR were stronger and reached statistical

significance (b=0.008; 95% CI: 0.001, 0.0015; Supplementary Table

S7). Results were nearly identical to our main models in sensitivity

analyses excluding maternal childhood traumatic events as a

covariate (Supplementary Table S8). Finally, patterns of

association were robust to stricter adherence to visit timing by

trimester (i.e. analyses restricted to participants with V1 occurring

at or prior to 27 weeks and V2 occurring after 27 weeks gestation;

Supplementary Table S9), although estimates were modestly

attenuated, likely due to the smaller sample size (n=713).
Discussion

In this analysis, we examined associations between OH-PAHs

and pCRH in a large, socioeconomically and racially diverse

pregnancy cohort, observing that higher maternal 2-OH-PHEN

concentrations (and to a lesser extent, 3-OH-PHEN and 1-OH-

PYR) were associated with a more rapid rate of increase in pCRH

in mid-late pregnancy, after adjustment for covariates. In models

examining pCRH at individual timepoints, associations between

OH-PAHs and pCRH in mid-pregnancy were attenuated after

adjustment for sociodemographic and lifestyle factors, and no

associations with late pregnancy pCRH were observed. We

additionally observed no evidence of effect modification by fetal

sex, childhood traumatic history, or pregnancy complications.

Overall, our results suggest that maternal PAH exposure,

particularly to 2-OH-PHEN, 3-OH-PHEN, and 1-OH-PYR,

may amplify pCRH production in mid-late pregnancy,

extending the limited prior literature on PAHs and pCRH.

In the prior study on this topic in the Puerto Rico-based

PROTECT cohort (n=659), across nearly all metabolites,

participants with higher PAH exposures had considerably higher

pCRH concentrations, echoing the positive associations observed in

our mixed effect models (50). In PROTECT, comparing women in

the highest quartile of PAH exposure relative to the lowest, pCRH

concentrations were higher in relation to 1-OH-NAP (14.0%, 95%

CI: 4.06%, 24.9%), 1-OH-PYR (9.21%; 95% CI: -1.93%, 21.6%), 2-

OH-FLU (15.30%; 95% CI: 4.54%, 27.10%), 1-OH-PHE (24.3%;

95% CI: 13.0%, 36.7%), and sum2,3-OH-PHE (18.1%, 95% CI:

7.00%, 30.4%). We similarly observed positive associations in

relation to 1-OH-PYR as well as with 2-OH-PHEN and 3-OH-

PHEN (considered individually in our study, but summed in

PROTECT). However, in contrast to that study, we did not

observe associations between pCRH and 1-OH-NAP nor the 2/3/

9-hydroxyfluorene metabolites. In PROTECT, associations tended
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to be stronger in early in pregnancy (16-20 weeks) compared to the

later visits (20-24 and 24-28 weeks); while we also observed stronger

associations with pCRH in mid- (versus late) pregnancy, in models

examining individual outcome timepoints, results were attenuated

and confidence intervals included the null after adjustment for

sociodemographic factors.

Despite the different geographic study locations, with likely

differences in patterns of exposure to air pollutants as well as

dietary sources of PAHs, concentrations of the four OH-PAHs

measured in common across both studies (1-OH-NAP, 2-OH-

NAP,1-OH-PYR, 4-OH-PHEN) were similar and, in some cases,

slightly higher in CANDLE as compared to PROTECT. Across

the two cohorts, pCRH concentrations were similar at the earlier

study visit, with CANDLE median levels of 57.1 pg/mL at 16-29

weeks gestation and PROTECT median levels of 56.3 pg/mL at

16-20 weeks gestation. However, at the later study visit,

CANDLE median pCRH levels rose to 360.3 pg/mL, whereas

PROTECT levels stayed flat at 54.9 pg/mL. While some of this

difference may be attributable to differences in the timing of the

later visit (22-39 weeks in CANDLE vs 24-28 weeks in

PROTECT), a more likely explanation is the use of enzyme-

linked immunosorbent assay (ELISA) to perform the assays in

PROTECT as compared to RIA in CANDLE. A recent study of

169 women with a prior preterm birth compared pCRH

measured both by RIA and ELISA, showed that pCRH

concentrations measured by ELISA were stable across

gestation, whereas the same samples assayed using RIA

showed a steep rise in late pregnancy (64). The flat pCRH

levels across pregnancy as measured by ELISA are likely due

to binding protein (CRH-BP) interference, which could bias

results. While it is possible to perform ELISA with an extraction

step that reduces this interference, more commonly that step is

not included. Of note, in the comparison study, pCRH levels

measured by RIA (but not ELISA) were associated with preterm

birth, providing further evidence of pCRH as a “placental clock”.

The positive associations observed between OH-PAH

concentrations and pCRH in the PROTECT study were

hypothesized to be evidence of a potential mechanism by which

PAHs may contribute to preterm birth (53). At present, evidence

linking PAHs to preterm birth has been somewhat inconsistent,

possibly due to methodological differences regarding study design,

inclusion of smokers, preterm birth subtypes, adjustment for

confounders, and varied approaches to exposure ascertainment

(19–22, 65, 66). Within studies, results can be similarly

inconsistent; for instance, in a Fresno, California study,

participants in the highest quartile of PAH exposure during the

last six weeks of pregnancy had 2.74 times the odds of delivering

extremely preterm (20-27 weeks gestation) compared to the lowest

quartile (21). However, the association did not hold for later

preterm deliveries and, in some models examining other exposure

windows, associations appeared to be protective. Most recently, we

analyzed harmonized data from CANDLE and two additional

cohorts, observing that 10-fold higher second trimester 2-OH-
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NAP concentrations were associated with 1.6 day shorter gestation,

with some evidence of greater vulnerability to spontaneous preterm

birth among female fetuses (19). In the current analysis associations

between 2-OH-NAP and pCRH were weak and included the null.

Conversely, OH-PAH metabolites associated in this analysis with

higher rate of pCRH change across pregnancy (such as 2-OH-

PHEN) showed little association with preterm birth in that prior

analysis. Overall, these results suggest that if there are associations

between OH-PAHs and preterm birth and/or shorter gestation,

alternative mechanisms may warrant consideration, including

induction of oxidative stress (65), changes in DNA methylation

(20, 67), and disruption of other placental hormones, such as

estriol (53).

A notable strength of this study is the socioeconomic and

racial diversity of the sample, which included participants across

a broad range of SES and was comprised of over 60% non-

Hispanic Black women, a group often underrepresented in

pregnancy cohort studies. Our use of a urinary biomarker of

PAH exposure is also a strength of the current analysis. The

urinary biomarker reflects exposure through multiple sources,

including diet, which may account for over 90% of PAH

exposure in non-smokers (68, 69). We used gold standard RIA

for pCRH analysis of maternal plasma, which is considered

superior to pCRH assays conducted using other analytic

approaches or sample types (64, 70). Given the well-

characterized nature of the CANDLE cohort, moreover, we

were able to assess a number of confounders and potential

effect modifiers that could influence our analyses; indeed, the

significant associations observed in some minimally adjusted

models were attenuated after adjustment for factors related to

the social determinants of health, such as education, race, and

childhood trauma. We observed inequalities in exposure such

that OH-PAH concentrations were notably higher among Black

and Hispanic participants (compared to non-Hispanic White),

participants with lower levels of educational attainment, and

overweight or obese participants. The higher OH-PAH

concentrations observed in some sub-populations are likely the

product of systemic racism and discrimination that leads to

greater environmental pollution in marginalized communities.

Our results were robust to a number of sensitivity analyses,

including restricting the sample to term births, suggesting that

associations were not driven by women with prior preterm birth

history, who may have differing pCRH profiles.

We note several limitations of the current work. First, OH-PAH

metabolites have a half-life of approximately 2-6 hours in the body

(71) and in other studies, intra-class correlations characterizing

OH-PAH concentrations across pregnancy have been in the low to

moderate range (72). In this study, OH-PAHs were measured at a

single timepoint in mid-pregnancy raising the possibility of

exposure misclassification. Future work examining repeated OH-

PAH exposures across pregnancy in relation to placental hormone

production would be beneficial. Finally, although the diversity of the
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sample and its representativeness of Shelby County, Tennessee is a

strength and findings are likely generalizable to other, understudied

communities in the U.S. South, we cannot assume generalizability

to the U.S. as a whole and certain sub-groups, like Latina and Asian

women, are under-represented in our analysis. Additionally, by

design, CANDLE participants were of relatively low medical risk at

the time of recruitment and although some women ultimately

developed pregnancy complications, by excluding higher risk

pregnancies and women with major medical conditions (e.g.

chronic hypertension requiring therapy, endocrine disease, and

insulin-dependent diabetes) at enrollment, we may have reduced

our ability to detect associations.

In conclusion, in this large pregnancy cohort, we observed

some, limited evidence that mid-pregnancy OH-PAH

metabolites, particularly 2-OH-PHEN, 3-OH-PHEN, and 1-

OH-PYR, are associated with a more rapid increase in

production of the placental hormone pCRH in mid to late

pregnancy. Future research on disruption of placental

hormone activity should examine OH-PAHs repeatedly across

pregnancy and additional work is needed to identify alternative

biological mechanisms that may link PAHs to preterm birth.
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J, et al. Aryl hydrocarbon receptor-dependent metabolism plays a significant role in
estrogen-like effects of polycyclic aromatic hydrocarbons on cell proliferation.
Toxicol Sci (2018) 165:447–61. doi: 10.1093/toxsci/kfy153

12. Sahay D, Lloyd SE, Rivera JA, Jezioro J, McDonald JD, Pitiranggon M, et al.
Prenatal polycyclic aromatic hydrocarbons, altered ERa pathway-related
methylation and expression, and mammary epithelial cell proliferation in
offspring and grandoffspring adult mice. Environ Res (2021) 196:110961. doi:
10.1016/j.envres.2021.110961
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